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Background: To better restore the anatomy of the native anterior cruciate ligament (ACL) attachment and fiber arrangement,
researchers have developed techniques for changing the shape of the ACL bone tunnel during ACL reconstruction.

Purpose: To compare the coverage of the ACL tibial footprint and influence on the anterior root of lateral meniscus (ARLM)
between a rounded-rectangular tibial tunnel and a conventional round tibial tunnel for ACL reconstruction.

Study Design: Controlled laboratory study.

Methods: A total of 16 (8 matched-paired) fresh-frozen human cadaveric knees were distributed randomly into 2 groups: a
rounded-rectangular tunnel (RRT) group and a round tunnel (RT) group. One of the knees from each pair was reamed with rounded-
rectangular tibial tunnel, whereas the other was reamed with round tibial tunnel. Coverage of the ACL tibial footprint and areas of
ARLM attachment before and after reaming were measured using 3-dimensional isotropic magnetic resonance imaging.

Results: In the RRT group, the average percentage of ACL tibial footprint covered by the tunnel was 70.8% ± 2.5%, which was
significantly higher than that in the RT group (48.2% ± 6.4%) (P ¼ .012). As for the ARLM attachment area, in the RT group, there
was a significant decrease (22.5% ± 5.9%) in ARLM attachment area after tibial tunnel reaming compared with the intact state (P
< .001). Conversely, in the RRT group, the ARLM attachment area was not significantly affected by tibial tunnel reaming.

Conclusion: Rounded-rectangular tibial tunnel was able to better cover the native ACL tibial footprint and significantly lower the
risk of iatrogenic injury to the ARLM attachment than round tibial tunnel during ACL reconstruction.
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Anatomic anterior cruciate ligament (ACL) reconstruction
has been widely applied to restore native ACL anatomy and
biomechanical functions in patients with deficient ACLs
and is able to achieve better clinical outcomes compared
with nonanatomic ACL reconstruction.12,21 The key for
this technique is to place the bone tunnel accurately
within the native ACL footprint, thereby better
mimicking the footprint and collagen orientation of native
ACL.10,44

With native ACL anatomy being the foundation of ana-
tomic ACL reconstruction, detailed anatomic research
regarding native ACL has been performed in recent
years,7,37,38 and the results have shown that native ACL
has a flat appearance in terms of both midsubstance and
attachments. Quantitatively, the cross-sectional area of the
ACL attachments was significantly larger than that of the
ACL midsubstance.7 Based on the anatomic findings and
the concept of “anatomic” reconstruction, the graft should
be adjusted to being “flat.”37 Theoretically, a flat ACL graft
was better able to mimic the anatomy of native ACL, cov-
ering a larger footprint area and better restoring the func-
tional properties of native ACL fibers. Nevertheless, in
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clinical practice, ACL bone tunnels are created by rounded-
shaped reamers, and as a result, the shape of the tunnel
apertures and the cross section of the graft were all circular
rather than flat. Failure to fully restore the attachment
sites and collagen orientation of native ACL during
single-bundle (SB) ACL reconstruction may result in resid-
ual rotational instability postoperatively.11,13

Regarding tibial attachment, the mismatch between the
bone tunnel and the native ACL attachment could cause
iatrogenic injuries to the surroundings, given that the diam-
eter of the tunnel is always larger than that of the minor axis
of the ACL tibial attachment.37,49 Because the anterior root
of lateral meniscus (ARLM) attachment is close to ACL tibial
attachment, which serves as the lateral border of the latter,
and a portion of ACL fibers near its tibial bony attachment
has an overlap with the ARLM attachment,26,40 an ARLM
attachment is at risk of being damaged during tibial tunnel
reaming. In recent years, a few studies have focused on
iatrogenic injury to ARLM caused by round tibial tunnel
reaming during SB ACL reconstruction,19,25,45 and the
results showed that the incidence of this injury was
21.7% to 100%, depending on different drilling methods
and the diameter of the reamer. Nevertheless, these
time-zero studies were based only on cadaveric specimens;
whether this injury would cause clinically negative conse-
quences remains to be determined.

To better restore the anatomy of the native ACL attach-
ment and fibers arrangement, several researchers have
developed techniques that change the shape of the ACL bone
tunnel into oval, rectangular, rounded-rectangular, or “C"
shapes, with some satisfactory early clinical outcomes.6,22,23

In this study, we used a flat-tunnel ACL reconstruction tech-
nique developed by Liu et al20 and Zhang et al.47,49 Using
this technique, the shape of the bone tunnel was adjusted to
a rounded rectangle. It was assumed that, by adjusting the
shape of the tibial tunnel, the rounded-rectangular tunnel
(RRT) would be able to better mimic the flat anatomy of
native tibial attachment and lower the risk of damaging the
ARLM attachment.

The purpose of this study was to (1) investigate the tib-
ial footprint coverage between the rounded-rectangular
tibial tunnel and round tibial tunnel, and (2) compare
the influence on the ARLM attachment between the 2 tun-
nels. It was hypothesized that a rounded-rectangular tib-
ial tunnel would better cover the native ACL tibial
footprint and lower the risk of iatrogenic injury to the
ARLM attachment than a round tibial tunnel during ACL
reconstruction.

METHODS

Specimen Preparation

A total of 16 (8 matched-paired) fresh-frozen human cadav-
eric knees (5 male and 3 female; mean age, 50.5 years;
range, 26-65 years) were used in this study. Cadaveric spe-
cimens used in this study were from donations to the
Department of Anatomy of Peking University (Beijing,
China), and this study was approved by a hospital ethics
committee. Left and right knees for each pair were distrib-
uted randomly into 2 groups: an RRT group and a round
tunnel (RT) group. Specimens with previous knee injury or
disease, including ligamentous and meniscal injury or
severe cartilage degeneration, were excluded from the
study. The knees were stored at �20�C and thawed at room
temperature for 24 hours.

3-Dimensional Magnetic Resonance Imaging

Because we created the bone tunnels under arthroscopy,
specimens could not be dissected before surgery; hence,
we used a 3-dimensional magnetic resonance imaging
(3D-MRI) technique, which has been proven to be an effec-
tive noninvasive method with good accuracy and reliability,
to calculate the relevant parameters.2 Preoperative MRI
scans were performed after the specimens had fully
thawed, and postoperative MRI scans were performed
directly after surgery. All knees were positioned on full
extension and scanned using a high-resolution 3-T mag-
netic resonance (MR) scanner (uMR 790, United Imaging).
The images were collected using a 3D isotropic matrix
sequence (Table 1). The Digital Imaging and Communica-
tions in Medicine data of MRI scans were then imported
into Mimics 21.0 software (Materialise). Significant ana-
tomic components of the tibial plateau, ACL tibial footprint,
ACL tibial tunnel, and ARLM attachment site were seg-
mented manually using mainly coronal images and checked
simultaneously against the sagittal images by 2 surgeons
(J.S. and J.Z.) (Figure 1). Only ACL fibers directly attached
to the bones were identified as the ACL tibial footprint; the
fibers that overlapped with the ARLM attachment were
identified carefully and excluded because these fibers were
not attached directly to the tibia (Figure 2).17,40,43 The 3D
models for each structure were then calculated and recon-
structed using Mimics software.

The 3D models of postoperative ACL tibial tunnel and
tibial plateau of postoperative MR were exported as
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standard template library (STL) files and then imported
into the preoperative model. Using STL registration in
Mimics and manual adjustment, the postoperative tibial
plateau could be matched with the preoperative tibial pla-
teau. The images were then imported into ImageJ software
(National Institutes of Health), and the following para-
meters were calculated: (1) major (anterior-posterior) and

minor (medial-lateral) axes and area of native ACL foot-
print; (2) area of ACL tibial tunnel; (3) footprint coverage
of ACL tibial tunnel; and (4) pre- and postoperative ARLM
attachment area.

Graft Harvest

Ipsilateral semitendinosus and gracilis tendons were har-
vested by use of a close tendon stripper (Karl Storz). Non-
absorbable sutures (Ethicon) were then used to weave the
grafts into 4 or 5 strands. The diameter of the graft was
measured by a conventional round measuring device (Karl
Storz). The diameter of the graft should be at least 8 mm; in
this study, the diameters of the weaved ACL grafts were all
8 mm.

Surgical Procedure

The specimens were visualized arthroscopically, with the
femur attached rigidly to a custom-made fixed device. The
anteromedial and anterolateral portals were used for
instruments and arthroscope, respectively. The ACL was

TABLE 1
Parameters of Isotropic 3D-MRI Sequencea

Parameter Value

MRI sequence Proton density-weighted coronal 3D sequence
Repetition time 1000 ms
Echo time 72 ms
Field of view 160 � 160 mm
Slice thickness 0.80 mm
Interslice gap 0 mm
Resolution 0.8 � 0.8 � 0.8 mm
Matrix size 256 � 0.95

a3D, three-dimensional; MRI, magnetic resonance imaging.

Figure 1. (A-E) The ACL tibial footprint (blue) and ARLM attachment (green) were identified by each slice from (A) anterior to
(E) posterior in a 3D-MRI sequence. 3D-MRI, 3-dimensional magnetic resonance imaging; ACL, anterior cruciate ligament; ARLM,
anterior root of lateral meniscus.
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visualized, then the midsubstance was cut by a sharp scalpel
under arthroscopy. The ACL attachment site and ARLM
were fully exposed, with residual ACL fibers carefully shaved
to the ACL footprint. A tip-to-tip tibial aiming guide (Acufex
Director, Smith and Nephew, Inc.) was used to ream the
tibial tunnel for both groups. In addition to the ACL tibial
footprint, the following reference points were used as land-
marks for tunnel position: posterior border of ARLM, medial
tibial spine, anterior ridge, and posterior cruciate ligament.
The tip of the aimer was positioned at the calculated center of
the ACL tibial footprint. A 2-mm guide pin was then inserted
and aimed at the center of the ACL tibial footprint. For the
RT group, the pin was overdrilled with a conventional 8-mm
round reamer (Cannulated Headed Reamer). For the RRT
group, the tibial tunnel was first overreamed with a 5-mm
conventional reamer, and then a bone rasp was used to
expand the RT to become round-rectangular step-by-step
(Figure 3). The key point for this procedure was to rasp the
bone tunnel along the long axis of the ACL footprint and
match this with its theoretical value, which can be calculated
from the previous literature.47 The bone tunnel was created
within the ACL tibial footprint. To standardize the size and
shape of the tibial tunnel, a custom-made arthroscopic ruler
and dilator of standard size (Figure 4) were applied during
the reaming procedure.

All bone tunnels were created by a single orthopaedic sur-
geon (P.L.) with over 20 years of experience in knee surgery.

Statistical Analyses

An initial pilot study was undertaken with 3 matched knees
to determine the sample size calculation for this study. The a
priori power analysis was performed with an error probabil-
ity of 0.05 and power of 0.8 using the G*Power software
(v3.1.9.3, F. Faul, Christian-Albrechts-Universität Kiel).
The results showed that a minimum sample size of 4 per
group was required for testing (see Supplemental Material).

To determine the reliability of MRI evaluation, all mea-
surements were performed twice by 1 observer (J.S.) with

an interval of 4 weeks to assess intraobserver reliability,
and by 2 independent observers (J.S. and S.R.) to assess the
interobserver reliability. The intraclass coefficients were

Figure 2. The overlap between ACL fibers and ARLM (dashed
red lines). These overlapped ACL fibers were not included as
part of the ACL tibial footprint. (A) Coronal view; (B) sagittal
view. ACL, anterior cruciate ligament; ARLM, anterior root of
lateral meniscus.

Figure 3. Tibial tunnel reaming in the RRT group. (A) The
aimer was placed at the calculated center of the ACL tibial
footprint. (B) A small round tunnel was reamed using a con-
ventional reamer. (C, D) The tunnel was adjusted into
rounded-rectangular shape using a bone rasp. ACL, anterior
cruciate ligament; RRT, rounded-rectangular tunnel.

Figure 4. (A-D) Custom-made tunnel dilators of different sizes
(A-C) and an arthroscopic ruler (D).
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used to assess the intra- and interobserver reliability,
which was >0.90 for all measurements.

Statistical analyses were performed using SPSS Statis-
tics 20.0 software (IBM). The paired Student t test was used
to compare the matched specimens if the data were in nor-
mal distribution; otherwise, Wilcoxon signed-rank test was
used; P < .05 was considered statistically significant.

RESULTS

Parameters of Native ACL Tibial Footprint
and ARLM Attachment

The major and minor axes of the native ACL tibial footprint
were 14.4 ± 1.0 mm and 5.2 ± 0.4 mm, respectively, with a
major/minor ratio of 2.8 ± 0.3. The mean area of the native
ACL tibial footprint was 78.1 ± 7.9 mm2. The mean area of
the ARLM attachment was 75.3 ± 9.3 mm.2 Figure 5 shows
the ACL tibial footprint in relation to the ARLM.

Tibial Footprint Coverage in RRT and RT Group

A diagram of ACL footprint coverage in the RRT and RT
groups is shown in Figure 6. The mean area of ACL tibial
footprint in the RRT and RT group were without significant

difference (P¼ .401). However, the mean coverage area and
footprint coverage in RRT group were significantly higher
than in the RT group (P ¼ .012). The mean nonfootprint
coverage area of RRT group was significantly lower than
that in the RT group (Table 2).

Influence on the ARLM Attachment

After tunnel reaming, all specimens (8/8) in the RT group
had injuries to the ARLM attachment. The areas of pre- and

Figure 5. The ACL tibial footprint (blue) in relation to the ARLM attachment (green) in the tibial plateau (yellow) using Mimics
software. ACL, anterior cruciate ligament; ARLM, anterior root of lateral meniscus.

Figure 6. Diagram of footprint coverage in (A) RRT and (B) RT group. The ACL tibial tunnel is shown in purple, the ACL tibial
footprint in blue, ARLM attachment in green, and the tibial plateau in yellow. ACL, anterior cruciate ligament; ARLM, anterior root of
lateral meniscus; RRT, rounded-rectangular tunnel; RT, round tunnel.

TABLE 2
Footprint Coverage in RRT and RT Groupsa

RRT RT P Value

Native tibial footprint, mm2 77.8 ± 8.6 78.3 ± 7.8 .401
Tibial tunnel area, mm2 59.7 ± 5.5 58.8 ± 3.0 .674
Footprint coverage area, mm2 55.0 ± 5.7 37.7 ± 5.4 .012
Nonfootprint coverage area, mm2 4.7 ± 2.6 21.1 ± 6.8 .012
Footprint coverage, % 70.8 ± 2.5 48.2 ± 6.4 .012

aData are reported as mean ± SD. Bold values indicate statis-
tically significant difference between groups (P < .05). RRT,
rounded-rectangular tunnel; RT, round tunnel.

The Orthopaedic Journal of Sports Medicine Tibial Tunnel Shape in ACLR 5



postoperative ARLM attachment in RT group and RRT
group are shown in Table 3.

The mean area of ARLM insertions in the RRT and
RT group were statistically different (P ¼ .498). In the
RRT group, the area of ARLM attachment after reaming
was 72.9 ± 8.2 mm2, and the decreased area was 2.2 ±
2.8 mm2, accounting for 2.7% ± 3.5% of the native ARLM
attachment area. The postreaming area was not signifi-
cantly different from its intact state (P ¼ .063). In the RT
group, the postreaming area was 58.6 ± 8.1 mm2, which
was decreased significantly compared with its intact state
(P< .001). The decreased area was 17.0 ± 4.9 mm2, account-
ing for 22.5% ± 5.9% of native ARLM attachment area. The
postreaming area and decreased percentage in 2 groups
were statistically different from each other.

DISCUSSION

The most important finding of this study is that rounded-
rectangular tibial tunnel is able to cover a larger portion of
native ACL tibial footprint area and reduce iatrogenic
injury to the ARLM attachment more than round tibial
tunnel.

Recent works by others have shown that anatomic ACL
reconstruction was able to achieve better clinical outcomes
than nonanatomic ACL reconstruction, indicating that cor-
rect tunnel position was critical for ACL reconstruc-
tion.12,21 Because native ACL anatomy forms the basis for
anatomic ACL reconstruction, knowing the detailed anat-
omy of the native ACL footprint is crucial. Recent studies
found that the native ACL tibial footprint had a flat appear-
ance. The shape of the ACL tibial footprint could be
described as C-shaped, triangular, and oval.9,37 Quantita-
tively, the major/minor ratio of the ACL tibial footprint was
over 2.0.37,49 All these findings supported the flat ACL
anatomy theory proposed by Siebold.36

In conventional ACL reconstruction, the tibial reamer
was rounded-shaped, which would create an oval-shaped
tibial tunnel. Nevertheless, assuming that the guide was
set at 45�, the theoretical major/minor ratio of the tibial
tunnel was only 1.41, which was far less than the 2.8 ±
0.3 measured in our study, suggesting the tibial tunnel was
not flat enough.

To better reconstruct the flat anatomy of the native ACL
footprint, several studies have developed novel approaches
in creating oval or rounded-rectangular ACL tun-
nels.23,24,32 In this study, we used the technique developed
by Liu et al20 and Zhang et al,47,49 in which the tibial and

femoral tunnels were reamed to become rounded-
rectangular shape. The biggest advantage of this technique
was that the tunnel was created by a ream-and-rasp proce-
dure so that the shape and location of the tunnel could be
adjusted individually.

The center position has always been an important
parameter in evaluating whether the tunnel was anatomic
for ACL reconstruction.29,41 However, based on the flat
anatomy of native ACL, the shape of the tunnel and how
well it matched with the native ACL attachment should
also be taken into consideration. In 2011, Siebold35 devel-
oped the concept of “complete footprint restoration,” which
aimed to reconstruct the maximum area of the ACL foot-
print. Based on this concept, several studies used footprint
coverage as a new parameter to evaluate the matches
between the tunnel and the footprint.3,8,31,33 In this study,
we compared the footprint coverage by RRT and RT, and
our results showed that, under the same cross-sectional
area of the tunnel, the rounded-rectangular tibial tunnel
(70.8 ± 2.5%) could significantly cover more of the ACL
tibial footprint than round tibial tunnel (48.2 ± 6.4%). Cor-
respondingly, the area of tunnel that extruded the footprint
was lower in the RRT group (4.7 ± 2.6 mm2) than in the RT
group (21.1 ± 6.8 mm2). Previous studies have indicated
that restoration of the footprint was crucial for fibers
recruited during knee movement and that only the covered
footprint would be functional.16,33 Rounded-rectangular
tibial tunnel would therefore be able to recruit more ACL
graft fibers and reduce the noneffective footprint coverage.
Consequently, RRT could theoretically better improve knee
kinematics and clinical outcomes compared with RT.
Recent studies have also raised concerns regarding iatro-
genic injury of ARLM attachment during anatomic SB ACL
reconstruction, as native ACL tibial footprint and ARLM
attachment are closely associated with each
other.17,25,27,40,46 Watson et al45 reported that 66% of the
ARLM of human knee specimens were injured during tibial
tunnel reaming using a 10-mm diameter reamer. LaPrade
et al19 found that, when using an 11-mm-diameter reamer,
the ARLM was injured in all specimens, and the mean
decrease of attachment area was 38% compared with the
intact state. However, an 11-mm diameter tunnel is
extremely uncommon in ACL surgery at our practice.
Oishi et al25 showed that the incidence of ARLM injury
using a 10-mm-diameter reamer was 21.7%. In the
present study, we found that even using an 8-mm-
diameter reamer could result in significant decrease of
the ARLM attachment area, which was not recognized in

TABLE 3
Pre- and Postoperative Area of ARLM Attachmenta

Preoperative Area, mm2 Postoperative Area, mm2 Decrease, % P Value

RRT group 75.1 ± 9.7 72.9 ± 8.2 2.7 ± 3.5 .063
RT group 75.6 ± 9.5 58.6 ± 8.1 22.5 ± 5.9 < .001
P value .498 < .001 < .001

aData are reported as mean ± SD. Bold values indicate statistically significant difference between groups (P< .05). ARLM, anterior root of
lateral meniscus; RRT, rounded-rectangular tunnel; RT, round tunnel.
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previous studies. This was because the minor axis of the
native ACL tibial footprint was only 5.2 ± 0.4 mm, which
was far less than the diameter of the tunnel. The tunnel
extruding from the footprint could cause injuries to the
surrounding tissues, and the ARLM attachment, in
particular, is easily damaged as it forms the lateral
border of the ACL tibial footprint. This iatrogenic injury
could impair the integrity of the ARLM attachment site,
reducing the area and, ultimately, the strength of the
ARLM attachment site.19

Injuries to the ARLM attachment can be of clinical sig-
nificance. Kodama et al15 found that a posterolaterally
located tibial tunnel aperture increased extrusion of the
lateral meniscus after ACL reconstruction, indicating that
injury to the ARLM attachment during ACL reconstruction
could cause instability of the lateral meniscus. Other stud-
ies have shown that injuries to the meniscal root were
related to early osteoarthritis and altered knee mechan-
ics.18,39 Some researchers reported that a complete menis-
cal root tear was biomechanically similar to total
meniscectomy.1,28 Thus, avoidance of iatrogenic injury to
the ARLM attachment is of great significance. Some studies
investigated whether double-bundle (DB) ACL reconstruc-
tion would reduce this injury, as the tunnels in DB ACL
reconstruction were smaller than those in SB ACL recon-
struction. Results have shown that the incidence of the
injury was lower in the DB group (4.3%-16.7%) than in the
SB group (21.7%-50%),14,25 but there was no significant
difference between the 2 groups.

In the RRT group, because the diameter of the tunnel
was smaller than the native tibial footprint and the tunnel
was created within the footprint by the ream-and-rasp
technique, the possibility of tunnel extrusion was reduced.
Our results showed that the mean area of ARLM attach-
ment was higher in the RRT group (72.9 ± 8.2 mm2) than in
the RT group (58.6 ± 8.1 mm2) postoperatively, which ver-
ified our hypothesis. Although the postoperative area of
ARLM attachment in RRT was lower than its intact state
(preoperative area, 75.1 mm2; postoperative area,
72.9 mm2), there was no statistical difference between the
2 (P ¼ .063), suggesting that our technique could prevent
most of the ARLM attachment from injury.

The current study showed the strengths of the rounded-
rectangular tibial tunnel in terms of increased footprint
restoration and protection of ARLM attachment. Recent
studies also presented other advantages using the flat ACL
anatomy concept and RRT technique. Zhao et al50 revealed
that a flattened bone tunnel could accelerate tendon-bone
healing in the early period after ACL reconstruction in rab-
bit. Zhang et al47 showed that a flattened RRT was superior
to the RT regarding graft maturity, postoperative Tegner
score, and pivot-shift tests. These results suggested that
using the flat ACL anatomy concept combined with
rounded-rectangular bone tunnel ACL reconstruction tech-
nique could better restore the native ACL footprint and
improve the clinical outcomes after ACL reconstruction.

We acknowledge some limitations to this study. First, it
was a cadaveric study. The average age of the donors was
older than the population who underwent ACL reconstruc-
tion, which might slightly influence the results.5 Second,

we used 3D-MRI to reconstruct each structure, which was
not the gold standard in the current literature. However, as
the tunnels were reamed arthroscopically, specimens could
not be dissected before surgery, and 3D-MRI has been
proven as an effective noninvasive method with good accu-
racy and reliability.2,30,34,42 Third, our results showed that
RRT could restore a larger portion of tibial footprint than
RT, but it still could not achieve complete footprint resto-
ration. This was because the size of the tunnel was deter-
mined by the diameter of the hamstring tendon. Future
studies need to find ways to obtain a larger graft to com-
pletely restore the native ACL footprint. Lastly, current
literature reports controversial biomechanical results
between the flat-tunnel and RT techniques in ACL recon-
struction.4,48 Whether the RRT technique has biomechani-
cal advantages over the RT technique was not confirmed in
the current study.

CONCLUSION

Rounded-rectangular tibial tunnel could better cover the
native ACL tibial footprint and significantly lower the risk
and extent of ARLM attachment injury compared with
round tibial tunnel during ACL reconstruction.
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