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Abstract: The prevalence of neurodegenerative disease (ND) is increasing, partly owing to extensions
in lifespan, with a larger percentage of members living to an older age, but the ND aetiology and
pathogenesis are not fully understood, and effective treatments are still lacking. Neurodegenerative
diseases such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis are
generally thought to progress as a consequence of genetic susceptibility and environmental influences.
Up to now, several environmental triggers have been associated with NDs, and recent studies
suggest that some cyanotoxins, produced by cyanobacteria and acting through a variety of molecular
mechanisms, are highly neurotoxic, although their roles in neuropathy and particularly in NDs are
still controversial. In this review, we summarize the most relevant and recent evidence that points at
cyanotoxins as environmental triggers in NDs development.

Keywords: cyanobacteria; cyanotoxins; neurodegenerative diseases; ALS; Amyotrophic Lateral
Sclerosis; PD; Parkinson’s Disease; AD; Alzheimer Disease; L-BMAA

1. Introduction

The aetiology and pathogenesis of neurodegenerative diseases (NDs) such as Alzheimer’s
disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS) are not fully
understood. All these neurodegenerative disorders have a significant genetic contribution,
although mendelian forms of NDs, attributed to rare gene mutations, may account only
for up to 5–10% of the cases, and the remaining 90–95% are due to idiopathic mechanisms.
Recent high-throughput genomic technologies have demonstrated that the NDs share
common genetic factors, and microarrays and next-generation RNA-sequencing point to
shared gene expression signatures, such as neuroinflammation genes [1], with further
overlaps identified in genes related to RNA splicing and protein turnover between ALS
and PD and mitochondrial dysfunction genes as a common theme between PD and AD.
Moreover, a recent meta-analysis study on -omic data obtained at all gene expression levels
reveals significant overlaps between the different diseases [2].

Patients affected by NDs share common genetic patterns, although a consistent per-
centage of sporadic cases may have causes other than or in addition to human hereditary
factors. The non-genetic factors may include the involvement of a variety of environmental
factors, such as toxins, produced naturally by microorganisms. Table 1 summarizes some
of the most representative epidemiological data, verified by meta-analysis, linking NDs to
environmental factors.
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Table 1. Environmental factors in neurodegenerative diseases.

Environmental Factors Effects Diseases Reference

Heavy metals

Lead (crosses the blood–brain barrier and accumulates
in neuronal and glial cells) ALS 1 [3,4]

Aluminium AD 2 [5,6]

Manganese PD 3 [6,7]

Pesticide

Pentachlorobenzene ALS [8]

Rotenone and paraquat ALS, PD [9,10]

Organophosphate pesticides ALS, PD, AD [11]

Electromagnetic fields Contradictory results ALS, AD [12–14]

Smoking Protective PD [15,16]

Risk factor AD, ALS [17,18]

Physical activity Protective PD [19]

Body mass index and nutritional state Lower nutritional parameters AD [20]

Microbiota structure
and dysfunction of the gut–brain axis

Akkermansia muciniphila reduces symptoms;
Ruminococcus torques and Parabacteroides distasonis ALS [21,22]

Suppression of Prevotellaceae and anti-inflammatory
genera; blooming of pro-inflammatory Proteobacteria,

Enterococcaceae, and Enterobacteriaceae
PD [23–25]

Suppression of anti-inflammatory taxa such as
Eubacterium rectale and a profusion of

pro-inflammatory taxa such as Escherichia and Shigella
AD [24,26]

Cyanobacteria and cyanotoxins Risk factors ALS, PD, AD [27,28]
1 ALS, Amyotrophic Lateral Sclerosis, 2 AD, Alzheimer’s Disease, 3 PD, Parkinson’s Disease.

Cyanobacteria and microalgae synthesize significant quantities of toxins that can
act via multiple molecular mechanisms [29,30]. Recent studies showing the presence of
the neurotoxin β-N-methylamino-L-alanine (L-BMAA), produced by cyanobacteria and
algal species, in the brain and cerebro-spinal fluid samples from patients with AD and
ALS suggest that exposure to cyanotoxins may contribute to the development of human
neurodegenerative diseases [27,31,32]. However, understanding the neurotoxic effects of
L-BMAA and other microalgal neurotoxins and identification of pharmacological strategies
to attenuate these harmful effects is needed.

Harmful algal blooms (HABs) represent a natural phenomenon caused by the growth
of single or more species of phytoplankton at the same time. The harmful algal species
(HAS) may belong to two different kingdoms of life, prokaryotic cyanobacteria and eukary-
otic microalgae in waterbodies. In the last decades, HABs have had an evident increase in
connection to human impacts such as eutrophication, aquaculture, hydrodynamic mod-
ifications in coastal systems, and global climate change [33]. Part of this observed HAB
expansion reflects a better assessment of the current and past scale of the phenomenon,
long obscured by scarce monitoring [34].

Over recent decades, it has been demonstrated that increasing anthropogenic activities,
such as intensive agriculture and farming, industrialization, and urbanization, have led to
the widespread eutrophication of inland and coastal ecosystems, resulting in a range of en-
vironmental, social, and economic issues due to the degradation of water resources [35,36].
Eutrophication causes shifts in the aquatic ecosystem’s state, leading to a loss of ecosystem
goods and services [37]. In fact, the quantity and quality of nutrient inputs to a water
body can have profound effects upon its ecosystem processes and structure, e.g., acting on
its biogeochemistry and biodiversity and altering the water quality. Eutrophication has
many negative effects, among which one of the most worrying is the increased growth of
microalgae [38] and cyanobacteria [39,40] that interfere with the use of waters [41]. Their
blooms contribute to a range of problems, including fish kills, foul odors, unpalatability of
drinking water, and hazards for human health [40].
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The nutrient supplies to water bodies originate from different sources, such as external
inputs, including catchment drainage, groundwater, and the atmosphere, and internal in-
puts, such as release from sediments. Strong relationships have been demonstrated between
total phosphorus inputs and phytoplankton production in freshwaters [42–44], where N2-
fixing cyanobacteria often dominate, compensating for any deficit in nitrogen [45,46], as
well for the intake of total nitrogen in estuarine [47] and marine waters [48,49], on a world-
wide scale. Changes in nutrient supply ratios, particularly for mineral (N:P or N:Si) and
organic forms (DOC:DON), are responsible for the rearrangement of phytoplankton assem-
blages in favor of dominant species, which can lead to the formation of blooms [50–52].
Despite progress in our knowledge of the mechanisms by which nutrients are supplied
to ecosystems and the pathways by which different species absorb them, the connections
between nutrient supply and bloom growth, as well as their potential toxicity or dam-
age, remain poorly understood [53]. The increase in the abundance of algal prey is also
responsible for the widespread heterotrophic and mixotrophic species among HAB [54,55].
The ecological success of a microalgae or cyanobacteria species is influenced by biological
factors, such as the presence and abundance of other species, grazers [56], and abiotic
factors, such as the flushing rate or water residence time, weather conditions, water mixing,
and stratification. The overall impact of nutrient overabundance on hazardous algal species
is strongly species-specific. Control and reductions of nutrients have been demonstrated as
the only effective and structural solution to preventing phytoplankton biomass or HAB
incidence [57].

The HAS, mainly represented by dinoflagellates, diatoms, and cyanobacteria, produce
significant environmental impacts due to high biomass and/or toxin production (Figure 1).

Figure 1. Evidence of intense cyano-HABs in Mediterranean artificial lakes (Sardinia; Lake Bidighinzu, on the left; Lake
Posada, on the right). Cyanobacterial cell accumulation along shorelines, especially due to winds action, provokes blue-green
colored waters.

Collectively, cyanotoxins and algal toxins have been implicated in an array of human
diseases. In particular, the consumption of food contaminated by algal toxins results in var-
ious pathological conditions including seafood poisoning syndromes (diarrhetic shellfish
poisoning—DSP, paralytic shellfish poisoning—PSP, neurotoxic shellfish poisoning—NSP,
ciguatera fish poisoning—CFP, due to dinoflagellates; amnesic shellfish poisoning—ASP,
due to diatoms). Human contact with aerosol or waterborne toxins can also have other
minor deleterious impacts, such as dermatological or respiratory irritation [58]. Moreover,
there is increasing epidemiological evidence of relationships between environmental toxins
and neurodegenerative diseases, including ALS, AD, and PD [27,59,60].

Most of these pathological conditions are caused by neurotoxins, which show highly
specific effects on the nervous system of animals, including humans, by interfering with
nerve impulse transmission. Neurotoxins are a varied group of compounds, both chem-
ically and pharmacologically. They vary in both chemical structure and mechanism of
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action and produce very distinct biological effects, which provide a potential application of
these toxins in pharmacology and toxicology.

Whereas dinoflagellates and diatoms are found primarily in marine environments,
cyanobacteria are usually considered the major HAS in freshwater ecosystems. Actu-
ally, their impacts on transitional aquatic ecosystems may increase due to global climatic
change [61]. Cyanobacteria produce an impressive range of toxic secondary metabolites,
the cyanotoxins, whose presence and concentration in the waters is both a relevant threat to
human health and the environment and a substantial economic cost [62,63]. Cyanobacteria
are ancient, cosmopolitan inhabitants of terrestrial environments and fresh, transitional,
and marine ecosystems; they are photosynthetic and prokaryotic organisms, classified in
150 genera, over 40 of which include species that produce cyanotoxins [64]. Cyanobacteria
are fundamental components of phytoplankton, and their competitiveness, which depends
on both biological traits and environmental conditions, allows them to dominate the phyto-
plankton of eutrophic and hypereutrophic water bodies. Interestingly, cyanobacteria have
been globally growing due to the increase of the geographical distribution, including in the
Mediterranean region, frequency, and extent of their harmful blooms (cyano-HABs), which
are expected to further increase due to climate change [65,66]. Exposure to cyanotoxins,
responsible for acute or (sub)chronic poisonings of wild/domestic animals and humans,
can follow multiple routes: i) orally, via drinking water or via consumption of health food
tablets or other organisms that have accumulated the cyanotoxins along the food chains; ii)
in labour or recreational water environments dermally; or iii) by inhalation exposure [67].

Cyanotoxins are grouped, according to the physiological systems, organs, tissues, or
cells that are primarily affected, in neurotoxins, hepatotoxins, cytotoxins, irritants, and
gastrointestinal toxins. Many cyanotoxins are also tumor promoters, with carcinogenic
activity, and are the causative agents of serious health threats for humans [68].

The purpose of this review is to summarize the scientific information on the relation-
ship between neurodegenerative disorders and cyanobacterial/dinoflagellates neurotoxins,
classified according to [69], focusing on the experimental models used to test CTX toxicity.

2. Cyanobacterial and Dinoflagellates Neurotoxins

According to [28,70], cyanobacterial and dinoflagellates neurotoxins can be divided in
four main classes, based on their mode of action:

saxitoxins (carbamate compounds, N-sulfocarbonyl compunds, decarbamyl compunds);
ciguatoxins;
anatoxins (anatoxin-a, homoanatoxin-a, guanitoxin);
β-N-methylamino-L-alanine (L-BMAA) and its isomers (2,4-diaminobutyric acid,

2,4-DAB and aminoethylglycine, AEG);

3. Saxitoxins and the Paralytic Shellfish Poisoning

Saxitoxin (STX) and its 57 analogues, collectively indicated as paralytic shellfish
toxins (PSTs), are a family of molecules consisting of a tetrahydropurine group and two
guanidinium moieties, produced by both cyanobacteria and dinoflagellates [70,71].

The most well-known and researched source of the PSTs is marine dinoflagellates
(e.g., Alexandrium), which are filtered by invertebrates such as shellfish, crustaceans, and
molluscs without being affected by the toxins. The toxins become concentrated in the
invertebrates and are then ingested by human consumers, causing paralytic shellfish
poisoning (PSP). There are strict safety guidelines for commercially produced seafood that
establish a shellfish harvesting prohibition if toxin levels exceed a maximum of 800 µg STX
eqv/1000 g edible tissue [72].

STX is one of the strongest natural neurotoxins, and it is also the most studied among
PSTs [71]. STX is a reversible voltage-gated sodium channel blocker (Figure 2A) [73].
It crosses the blood–brain barrier and acts by blocking sodium channels in the central
nervous system (CNS), therefore leading to paralytic effects [74]. A critical issue related to
low-dose extended exposure of coastal communities who rely heavily on a seafood diet
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is the study of the molecular mechanisms underlying STX toxicity. Exposure to STXs of
cultured primary murine motoneurons as well neuronal cell lines (PC12 and SH-SY5Y
cell lines) induces a reduction in axonal growth that is dependent on the presence of
voltage-gated sodium channel isoform Nav1.9 [66,75]. Interestingly, the pharmacological
activation to increase the opening probability of NaV1.9 could be a way to stimulate axon
regeneration and maintenance in human neurodegenerative pathology such as spinal
muscular atrophy (SMA), in which a defect in synapse maintenance appears as a central
pathophysiological mechanism.

Figure 2. (A)Voltage-gated sodium channel (NaV) is the target of both saxitoxins (STXs) and ciguatoxins (CTXs). STX
binding induces a block in Na+ conduction, while CTX binding slows down NaV inactivation. (B) Anatoxins act on the
nicotinic acetylcholine receptor (nAchR): anatoxin-a is a nAChR receptor agonist, mimicking the binding of its natural
ligand, acetylcholine (Ach), while guanatoxin inhibits acetylcoline esterase (AChE), inducing ACh accumulation at the
neuromuscular junction.

A low dose of STXs induces an altered redox status that results in oxidative stress in
different experimental paradigms, as reported in Table 2.

Recently, a proteomic study on murine neuroblastoma N2A cells identified differ-
ent proteins altered upon low-dose saxitoxin exposure. The identified proteins are key
regulators of cell apoptotic pathways, cell skeleton maintenance, membrane potentials,
and mitochondrial functions [31]. Notably low doses of saxitoxins induce a decrease
in voltage-dependent anion-selective channel 1 (VDAC1). VDAC1 is a multifunctional
protein, expressed in the mitochondria and other cell compartments, that regulates the
main metabolic and energetic functions of the cell (Ca2+ homeostasis, oxidative stress,
and mitochondria-mediated apoptosis) [32]. Notably, VDAC1 represents the main mito-
chondrial docking site of many misfolded proteins, such as amyloid β and Tau in AD,
α-synuclein in PD and several SOD1 mutants in ALS [33]. In AD post-mortem brains as
well as in APP1 transgenic mouse models, VDAC1 was found to be over expressed in
patients, and the possibility of decreasing it by using low doses of STX can be a fascinating
therapeutic option [33].
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Table 2. Saxitoxins treatment in different experimental models.

Experimental
Model Saxitoxins Exposure Protocol Effects Reference

primary neuron culture from
tropical freshwater fish 0.3–3.0 mg L−1 24h

oxidative stress, neurotoxicity,
genotoxicity and apoptosis [76]

murine neuroblastoma N2A 0–256 nM 24–48 h high levels of ROS generation
mild cytotoxic or apoptotic effects [77]

rainbow trout fish cell line
RTG-2 0–256 nM 24–48 h mild cytotoxic or apoptotic effects [77]

human primary astrocytes high levels of ROS generation reduced
cell survival [78]

zebrafish embryos 0.05–0.1 µM
adverse effect on development of

zebrafish embryos, oxidative
stress-induced apoptosis

[79]

mouse neonate brain single intraperitoneal 7.5 µg kg−1

body weight in pregnant mice
increased proliferation of OPCs, but not

maturation process of these cells [80]

4. Ciguatoxins

Ciguatoxins (CTXs) are polyether marine toxins known to activate voltage-gated
sodium channels (NaV) and to cause one of the most widespread forms of nonbacterial food
poisoning, named ciguatera. They are produced by dinoflagellates (i.e., Gambierdiscus)
and reach humans via the food chain, with the consumption of fish that graze on reef
macroalgae, including dinoflagellates that produce CTXs.

CTX-caused food poisoning was endemic only in tropical and subtropical areas, but
it is spreading in Europe and Australia. Despite the high number of cases, estimated
at around 50,000–500,000 cases per year, the prognosis is usually benign. In humans,
more than 170 non-specific symptoms have been reported, although the most characteristic
manifestations of ciguatera fish poisoning, found in all patients, are neurological symptoms,
including paraesthesia and headache [81].

At present, more than 29 different CTX analogues have been identified, and they have
been classified into three main groups that differ slightly in chemical structure according to the
origin of the toxin: P for Pacific, C for the Caribbean, and I for Indian ciguatoxins [82] (Table 3).

Several lines of evidence suggest that chronic exposure to P-CTX-1 is associated with
severe neurological manifestations in the peripheral nervous system (PNS) of some pa-
tients, suggesting that P-CTX-1 neurotoxicity, similar to other peripheral neuropathologies,
primarily affects the PNS. In line with this hypothesis, it has been demonstrated, in mouse
models, that the persistence of P-CTX-1 in peripheral nerves reduces the intrinsic growth
capacity of peripheral neurons, resulting in delayed functional recovery after injury [83].
Moreover, P-CTX-1 has been shown to be a relatively non-selective activator of human
NaVs subtypes (Figure 2A, displaying different functional effects on the different NaV
subtypes, differentially expressed in peripheral sensory neurons [84]. It has been recently
demonstrated that local application of 1 nM P-CTX-1 into the skin of human subjects
induces a long-lasting, painful axon reflex flare and that CTXs are particularly effective
in releasing calcitonin-gene related peptide (CGRP) from nerve terminals [85]. Significant
alteration in CGRP expression has been also observed in the anterior horn of the spinal cord
of familial ALS patients as well as in the transgenic mice expressing mutated human SOD1,
one of the most-used ALS mice models [86]. In this ALS mouse model, the genetic deletion
of CGRP accelerates muscle denervation and reduces cytotoxic neuroinflammation [87].
Interestingly, in the spinal cord of wobbler mice, a well-established model of motor neuron
loss, an increase in mRNA of CGRP and its receptor, has been observed [88].

Additionally, CNS neuron physiology is altered upon CTXs exposure since synthetic
ciguatoxin P-CTX-3C has been shown to have a profound effect on neuronal transmission
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in mice primary cortical neurons [89]. The transcriptomic analysis of cortical neurons
exposed for different time points to P-CTX-3C led to the identification of different signaling
pathways activated downstream to the activating NaVs [90].

P-CTX-3C induces cytotoxicity in SHSY5Y human neuronal cells, only in the presence
of the Na+ channel activator (veratridine) and of the inhibitor of the Na+/K+ ATPase
(ouabain), mimicking a realistic human in vivo situation [91].

Interesting results were obtained using a tetracyclic analogue of ciguatoxin-like toxin,
gambierol, in cellular and animal models for AD. In fact, although gambierol exhibits
a potent acute lethal toxicity in mice (minimal lethal dose: 50 µg/kg, ip), its tetracyclic
truncated analogue in a mouse model for AD induces a decrease of amyloid β1−42 level, a
reduction of tau phosphorylation, and a reduction in the N2A subunit of the N-methyl-D-
aspartate (NMDA) receptor level [92].

Table 3. Ciguatoxins treatment in different experimental models.

Experimental
Model

Ciguatoxins Exposure
Protocol Molecular Target effects Reference

SH-SY5Y
25 pM–100 nM P-CTX-3C

short-(4–24 h) and long-term
exposure (10 days)

cytotoxic effect, alterations of
the mitochondrial metabolism,
cell morphology, and [Ca2+]i

[91]

primary cortical
neurons

5 nM CTX3C 6-24-
72 h

gene expression alteration
mediated by voltage-gated

sodium channel
[90]

C57BL/6
mice

shallow intraplantar (i.pl.)
injection of P-CTX-1 (1–10 nM)

Nav 1.8 and TTXs Nav
subtypes are effectors
of ciguatoxin-induced

cold allodynia

spontaneous pain [93]

transgenic mice and
rat

0.01–31 nM P-CTX-1 (>95%
purity) isolated from moray eel
(Gymnothorax javanicus) liver

NaV1.9

release of calcitonin-gene
related peptide (CGRP) from

nerve
terminals

[85]

C57BL/6
mice

(0.26 ng/g body weight)
intraperitoneally on day 0

followed by second exposure
on day 3 P-CTX-1 (isolated and

purified from moray eels)

irreversible motor deficit in
4-month pre-exposed mice
following peripheral nerve

injury
astrogliosis and excitotoxic
neuronal cell death via the
activation of caspase 3 in

motor cortex

[94]

5. Anatoxins

Anatoxins are water-soluble cyanotoxins (produced by different cyanobacterial genera,
e.g., Anabaena, Dolichospermum, Aphanizomenon; Figure 3), lethal neurotoxins that can be
classified into three main categories: anatoxin-a, its structural homologue homoanatoxin-a,
and the unrelated guanitoxin, previously named anatoxin-a(s) [95].

Anatoxin-containing blooms have been found all over the world. As represented
in Figure 2B, they have different physiological targets: (i) anatoxin-a is an alkaloid and
an agonist of nicotine acetylcholine receptors (nAChRs), which are located both in the
CNS as well as in the postsynaptic terminals of motor neurons, [96]; (ii) guanitoxin is
an organophosphate that acts as an irreversible inhibitor of acetylcholinesterase (AChE,
EC3.1.1.7) [28]. Notably, neuronal nAChRs are considered potential targets for the devel-
opment of new therapeutic agents for the treatment of diverse disorders such as PD and
AD [97,98], while AChE inhibitors have been demonstrated to be effective in slowing the
clinical progression in AD patients [99].
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Anatoxin-a was shown, at least in vitro, to induce inflammation and apoptosis in
immune and brain cells [100], and it has been implicated in numerous animal poisonings
worldwide. Up to date, there is no evidence of its toxic effects on the brain, and more
detailed experiments are needed to find a link, if any, between anatoxin exposure and
neurodegeneration.

Figure 3. Cyanobacteria genera, potentially toxins producers in Mediterranean artificial lakes: (a,b):
different species of Dolichospermum from Lake Bidighinzu; (c,d): different species of Microcystis
from Lake Liscia and Lake Monte Lerno; (e,f): different species of Aphanizomenon, in single tricome
from Lake Temo and in fascicle of tricomes from Lake Liscia. A: heterocyst, B: akinete; C: vegetative
cells; bar 50 µm.

6. Role of L-BMAA in Neurodegenerative Diseases

L-BMAA was isolated for the first time from the seeds of Cycas circinalis L. [54]. L-
BMAA is a non-protein neurotoxic amino acid produced almost from all known groups of
cyanobacteria including cyanobacterial symbionts (e.g., Nostoc) and free-living cyanobac-
teria (e.g., Anabaena, Microcystis; Figure 3), marine diatoms (e.g., Navicula, Skeletonema),
and dinoflagellates (e.g., Gymnodinium) in the most various ecosystems worldwide [101].
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Despite some contradictory opinions [102], an increasingly large body of experimental
outcomes provides significant evidence that L-BMAA plays an important role in slow-
developing neurodegenerative diseases, including ALS/Parkinsonism Dementia Complex
(ALS/PDC) found on Guam islands, ALS, AD, and PD (review [32,59]).

ALS/PDC, specific to Guam and certain other Marianas islands of the Western Pacific,
with symptoms of all three diseases, came to the attention of the scientific community
during and after World War II. In the 1950s, for Chamorro residents of Guam and Rota,
ALS, ALS-like conditions, and their death rates were estimated to be 50–100 times higher
than in the United States and in other developed countries. From the late 1960s to the early
1980s, the incidence of both disorders had decreased. The main causes responsible for the
decreasing incidence appeared to be ethnographic, social, and ecological changes, brought
about by the rapid westernization of Guam. This change suggests that the cause of the
ALS/PDC was not genetic but rather environmental [103].

Since the indigenous Chamorro people consumed cycad seed flour in food and in tra-
ditional medicine, Spencer et al. [104] first proposed the connection between the etiopatho-
genesis of ALS/PDC and the neurotoxin L-BMAA produced by the cyanobacteria of the
genus Nostoc, which are symbiont of coralloid roots cycads. In a preliminary study, Spencer
et al. showed that repeated oral administration of L-BMAA (0–81 mmol/kg daily) to
Macaca fascicularis monkeys was able to induce a degenerative motor-system disease with
features of ALS and parkinsonism. Pyramidal dysfunction, limb weakness, atrophy, upper-
extremity tremors and wrist drop, bradykinesia, behavioral changes, and degeneration of
lower motor neurons were observed [104].

A significant finding in the primate study of Spencer et al. was that, while early signs
of motor-neuron dysfunction were observed in animal models fed with high doses of
L-BMAA, extrapyramidal damage developed slowly with lower doses of L-BMAA. This
led the authors to propose that chronic toxicity might be separate from acute toxicity [60].
Interestingly, L-BMAA is then biomagnified up the food chain from symbiotic cyanobacteria
to cycads to flying fox of the genus Pteropus mariannus. Cox et al. [105] observed a 10,000-fold
biomagnification of free L-BMAA and 50-fold biomagnification in total L-BMAA. These
data suggested a mechanism that could produce sufficiently high doses of toxins to induce
neurological disease in humans [106–108].

Biomagnification of L-BMAA may not be unique to Guam; indeed, Cox and col-
leagues [109] detected L-BMAA not only in the brain tissue of Chamorros who died from
ALS-PDC but also in Alzheimer’s patients from Canada due to the capability of the neu-
rotoxin to cross the blood–brain barrier through an active transport mechanism [110,111].
This finding suggests various ecological pathways for the bioaccumulation of L-BMAA in
aquatic or terrestrial ecosystems.

L-BMAA is neurotoxic, and although different and multiple mechanisms of toxicity
have been proposed (Figure 4), its involvement in neurotoxicity and neurodegeneration
remains largely unidentified [112,113]. The neurotoxin is a non-lipophilic, non-essential
amino acid that is present both in free and protein-bound forms. Weiss and Choi discovered
that L-BMAA had activity in vitro only when a physiological concentration (10 mM and
higher) of bicarbonate ions (HCO3-) was co-present in the cell culture media. L-BMAA’s car-
bamate adduct, named β-carbamate, presents structural similarities to glutamate that may
lead to neuronal degeneration via a mechanism regulated by the activation of excitatory
amino acid (EAA) receptors and/or glutamate transporters through a three-fold mech-
anism [114,115]. At a glutamatergic synapse, β-carbamate binds to ionotropic (NMDA
and AMPA/kainate receptors) receptors (iGluR) and metabotropic receptors (mGluR).
Their activation induces a significant increase in intracellular Ca2+, directly via iGluR and
indirectly via mGluR (via phospholipase C signaling) [116], promoting mitochondrial
reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress [113].
This excitotoxicity of postsynaptic neurons typically leads to neuronal death. Besides being
part of the pathogenic mechanism leading to ALS, excitotoxicity could be responsible for
the selective vulnerability of motoneurons during the progression of the disease [117,118].
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Figure 4. Multiple mechanisms of L-BMAA cellular toxicity. L-BMAA in the presence of bicarbonate
ions (HCO3-) forms L-BMAA’s carbamate adduct, named β-carbamate, and binds to ionotropic
(iGluR) and metabotropic (mGluR) receptors. The activation of iGluR and mGluR leads to a significant
increase in intracellular Ca2

+, directly via iGluR and indirectly via mGluR (PLC signaling). This
Ca2

+ increase promotes mitochondrial reactive oxygen species (ROS) generation and endoplasmic
reticulum (ER) stress. L-BMAA inhibits the cystine/glutamate antiporter (system Xc-)-mediated
cystine uptake, which leads to glutathione depletion and increased oxidative stress. Once in the
cytoplasm, the toxin is likely to be inserted into the neosynthesized cellular proteins and to prompt
protein misfolding that often leads to the formation of insoluble aggregates, containing among
other proteins TDP-43. iGluR: ionotropic glu receptors; mGluR: metabotropic glu receptors; PLC:
phospholipase C; TDP-43: TAR DNA-binding protein 43.

Liu et al. in 2009 found that L-BMAA inhibits the cystine/glutamate antiporter (system
Xc−-mediated cystine uptake, which leads to glutathione depletion and increased oxidative
stress. In a cyclical system, L-BMAA seems to drive the release of glutamate through the
Xc-system, which induces toxicity through the activation of the mGluR5 receptor. This
transport may be the cause of L-BMAA accumulation in cells [118].

Once in the cytoplasm, the neurotoxin may probably be misincorporated in place of
serine or alanine in neosynthesized cellular proteins. L-BMAA might also be associated
with proteins through non-covalent bonds. The insertion of L-BMAA and other non-
protein amino acids into proteins may generate protein disfunction, misfolding, and/or
aggregation. Although further research is required concerning L-BMAA incorporation
into proteins, L-BMAA is incorporated into proteins in place of L-serine [119], and a large
portion of L-BMAA is protein-bound (60- to 130-fold greater amount) compared to L-BMAA
detected in the free [119,120].

This incorporated L-BMAA in brain tissues may function as an endogenous neurotoxic
reservoir that can slowly release free L-BMAA, causing neurological damage over years
or even decades, which may explicate the observed long-latency period for neurological
disease onset among the Chamorro people [32].

Protein misfolding often leads to the formation of insoluble aggregates, and anomalous
accumulation of aggregates in the affected tissues is one of the main pathological changes
observed in neurodegenerative diseases. In ALS, this phenomenon involves biological
markers including TDP-43 (TAR DNA-binding protein 43), a protein encoded by the
TARDBP gene, located in the cell nucleus of most tissues. In physiological conditions, TDP-
43 shuttles between the nucleus and cytoplasm, and it is involved in various steps of RNA
biogenesis and processing such as alternative splicing [121,122]. In pathological conditions,
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TDP-43 is hyperphosphorylated, ubiquitinated, and cleaved to generate C-terminal fragments,
and it was identified as the main component of ubiquitinated inclusions in post-mortem tissues
of ALS patients and patients with frontotemporal dementia [122,123].

Triggers with L-BMAA result in TDP-43 overexpression and aggregation in several
in vitro and in vivo models: SH-SY5Y cell lines [124] and primary neurons (rats [124,125],
mice [126,127], and zebrafish [128]). These specific forms of TDP-43 are present in patients
with neurodegenerative diseases such as ALS and FTD.

The protein misincorporation of L-BMAA could affect protein-folding and successive
accumulation of misfolded proteins into lysosomes [119]. This anomalous protein-synthesis
is also supposed to lead to cell stress at the endoplasmic reticulum, independent of L-
BMAA high concentration effects such as excitotoxicity and oxidative stress, deregulation
of the reduction/oxidation systems, and an activation of some pro-apoptotic caspases like
caspase-12 [129]. The resulting dysregulated protein homeostasis with low non-excitotoxic
concentrations could be a contributing factor in the scenario of chronic L-BMAA exposure
that may lead to late onset and slow progression of neurodegenerative diseases [129].

Moreover, L-BMAA leads to the activation of transcription factors known to be in-
volved in the regulation of oxidative stress and cellular senescence such as X-box binding
protein 1 and nuclear factor 2 erythroid like 2 [130]. Interestingly, the same high levels of
these transcriptional regulators have been detected in the brains of patients with ALS, PD,
AD, and front temporal dementia [131,132].

Numerous investigators used in vitro approaches to assess the potential role of L-
BMAA on mammalian CNS models. It should be noted that most in vitro investigations
needed high L-BMAA concentrations (≥100 µM) to produce cellular damage and toxicity
(Table 4). These concentrations are not physiologically appropriate, and consequently
the results are extremely difficult to interpret compared to in vivo responses. Therefore,
numerous studies identified a possible mechanism of toxicity at a cellular level but are
incomplete in relating the effects to L-BMAA environmental exposures.

Chiu and colleagues [114] reported NMDA receptor-mediated increases in intracellu-
lar calcium ions, ROS production, DNA damage, and neuronal death in primary human
neuronal cells prepared from foetuses following exposure to L-BMAA, with the lowest toxic
concentration in the presence of bicarbonate reported to be 400 µM [133]. The neuron-like
cell lines are frequently chosen for their characteristics. SH-SY5Y, from human metastatic
neuroblastoma, has dopaminergic, cholinergic, glutamatergic, and adenosinergic features;
clonal rat pheochromocytoma cell line PC12, differentiated with nerve growth factor, is
a recurrent model to study receptor-mediated excitotoxicity [134]. In order to investigate
independent excitotoxic mechanisms, non-neuronal cells have also been used, but immor-
talized cells are significantly different from physiological characteristics in neurons; thus,
numerous studies were made on primary neuronal cultures (Table 4).

Table 4. L-BMAA treatment in different experimental models.

Experimental
Model

L-BMAA
Exposure Protocol Molecular Target Reference

SH-SY5Y

3 mM plus antagonist for
kainate/AMPA receptors 5 days

low neurotoxicity of BMAA and weak action at
glutamatergic receptors [135]

0.1 mM 48h
Low non-excitotoxic BMAA concentrations induce

effects on the ubiquitin/proteasome
system not ROS-related

[129]

3–10 mM 48h decrease cell viability in a dose-response manner and
evoke alterations in GSK3β and TDP-43 [136]
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Table 4. Cont.

Experimental
Model

L-BMAA
Exposure Protocol Molecular Target Reference

0.5 mM 24h–48h–72h Increased caspase-3 activity and cathepsins, ER stress [137]

0.05–0.25–1 mM 24 h alterations in alanine, aspartate, and glutamate
metabolism [138]

0.1–1 mM 24–48 h autophagy [139]

3 mM 48h disrupts mitochondrial metabolism [140]

PC12
2 mM 6–12 h apoptosis and mGluR1 increase [141]

0.4–1 mM 48h promoted cell death and axon-like outgrowth [142]

NSC-34 0.1–1 mM 72 h
exposure to BMAA causes protein misfolding, ER stress,
induction of the UPR, disruption of the mitochondrial

function
[130,141]

NIH/3T3 1–3 mM 48–96 h
L-BMAA causes arrest of cell cycle progression at the

G1/S. No evidence of cell membrane damage, apoptosis,
or ROS overproduction

[143]

primary cortical neurons 3 mM 1 h
20 mM HCO3-

L-BMAA activity is dependent on HCO3-, resulting in a
destruction of cortical neuronal population.

[115]
[144]

primary cerebellar
granule cells colture, rat up to 3 mM 24–48h L-BMAA induced both necrotic- and apoptotic-like cell

death [145]

primary neurons and
astrocytes cortical cell
cultures, fetal mouse

3–10 mM 3–24h
0.1 mM 48h

enhancement death of cortical neurons damaged by other
insults; oxidative stress, Wallerian-Like Degeneration [146–148]

neural stem cells 50 µM–3 mM 24 h apoptosis, cellular differentiation, neurite outgrowth,
and DNA methylation [133]

The production of L-BMAA is not limited to cycad seeds, and the risk to exposure
to this neurotoxin is not confined to Guam. In some locations, cyanobacteria are directly
consumed by people. In the mountains of Peru, Cyanobacteria Nostoc commune Vaucher ex
Bornet and Flahault (with a L-BMAA concentration of 10 µg/g) are collected in the highland
lakes by the indigenous people, who call them llullucha [149]. Indigenous people eat them
directly, sell them in markets, and add them to salads, soups, or meat dishes. Direct dietary
intake is not the only possible mode of exposure to cyanobacterial neurotoxins. Inhalation
as a systemic delivery route has been demonstrated for microcystins in nasal swabs and
blood samples from people at risk of swallowing water or inhaling spray while swimming,
water skiing, jet skiing, or boating during algal blooms [150]. In 2009, a causative link
was hypothesized between the inhalation of L-BMAA, present in soil crusts dominated by
cyanobacteria and detected in desert dust, and the higher incidence of ALS observed in the
Gulf war veterans younger than 45 years old [151], but experiments in rat models observed
significant biochemical responses to L-BMAA only at extremely high (non-physiological)
concentrations [152].

Notably, L-BMAA misincorporation into neuroproteins produces protein misfold-
ing and is inhibited by L-serine [108,139] that was proposed as a potential therapeutic
option for ALS ([153] phase 2 ClinicalTrials.gov Identifier: NCT03580616), AD (Phase 2
ClinicalTrials.gov identifier: NCT03062449) and hereditary sensory autonomic neuropathy
type I (HSAN1) [154]. The molecular mechanism underlying L-serine neuroprotection is
not fully elucidated and can be independent of L-BMAA-mediated neurotoxicity [139].

7. Conclusion

An increasing cyanobacteria abundance is expected due to climate change and eu-
trophication, worsening the cyanotoxins issue and urging quick prevention and mitigation
actions. Cyanobacteria detection in natural water samples with cyanotoxins (CTXs)-level
determination should become a priority to prevent uncontrolled human exposure. Al-
though pathophysiological mechanisms underlying ND is far from being completely un-
derstood, the link between CTX exposure and neurodegeneration is now widely accepted

ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
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by the scientific community. Apart from the well-described via of CTXs exposure (inges-
tion, dermal contact, biomagnification), it could be critical also to evaluate the presence of
cyanobacteria in gut microbiota. In this respect, in the last 10 years, a growing recognition
within the scientific and medical communities points at the “microbiota–gut–brain axis”
as a key element in neurodegenerative process (Table 1 and [155] for a comprehensive
review). Different lines of investigation have suggested that some species of cyanobacteria
are present in small numbers in the gastrointestinal tract, and through the production of
specific CTX, they could be considered potentially responsible for inducing neurodegenera-
tion [155–157]. At present, only in PD patients, a specific decrease in cyanobacteria (Family
Aphanizomenonaceae, Genus Dolichospermum) has been reported [158]. The lack of data
for other neurodegenerative disorders can be linked to the low abundance of Cyanobacte-
ria in biological samples tested. Nevertheless, human beings can be, via dietary sources,
chronically exposed to cyanotoxins and/or other algal toxins, single or in combinations,
which can alter different cellular processes and activate specific immune responses, chronic
mild gut inflammation, and ultimately neurodegenerative processes [59].

The present review aims to emphasize the relationship between the increasing number
of HABs and eutrophication with the molecular evidence linking CTXs to neurodegenera-
tion. A multidisciplinary approach is required to mitigate the human health risks and to fill
different scientific gaps. It is of particular interest to test the hypotheses whether CTXs in
water samples are linked to their trophic state, to cyanobacteria abundance and/or species
composition living there, and finally at the molecular level, to definitively establish the
contribution of CTX chronic exposure to neurodegeneration.
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