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Abstract: Prostate cancer (PCa) is one of the most commonly diagnosed cancers worldwide,
accounting for almost 1 in 5 new cancer diagnoses in the US alone. The current non-invasive
biomarker prostate specific antigen (PSA) has lately been presented with many limitations, such as
low specificity and often associated with over-diagnosis. The dysregulation of miRNAs in cancer
has been widely reported and it has often been shown to be specific, sensitive and stable, suggesting
miRNAs could be a potential specific biomarker for the disease. Previously, we identified four
miRNAs that are significantly upregulated in plasma from PCa patients when compared to healthy
controls: miR-98-5p, miR-152-3p, miR-326 and miR-4289. This panel showed high specificity and
sensitivity in detecting PCa (area under the curve (AUC) = 0.88). To investigate the specificity of
these miRNAs as biomarkers for PCa, we undertook an in depth analysis on these miRNAs in cancer
from the existing literature and data. Additionally, we explored their prognostic value found in the
literature when available. Most studies showed these miRNAs are downregulated in cancer and this
is often associated with cancer progression and poorer overall survival rate. These results suggest our
four miRNA signatures could potentially become a specific PCa diagnostic tool of which prognostic
potential should also be explored.

Keywords: miRNAs; biomarker; prostate cancer; diagnosis; prognosis

1. Introduction

Prostate cancer (PCa) is the second most commonly diagnosed cancer worldwide with more than
1.1 million new cancer cases each year, accounting for 15% of all cancers diagnosed [1]. Despite this
high incidence, the most commonly used molecular method of detection and monitoring of the disease
recurrence is the prostate specific antigen (PSA) test, discovered 40 years ago [2]. Although this method
was initially thought to improve the early diagnosis of the disease [3], it has been criticized over the
last decade due to its lack of specificity, giving false positives and often leading to over-diagnoses [4,5].
Notably, the American Urological Association recommended against PSA screening for PCa and
encouraged the identification of novel markers that can identify men at greater risk of developing
and progressing on the disease [6]. Furthermore, the U.S. Preventative Services Task force also
recommended against PSA screening in men over 70 years old [7] and, in Australia, the Cancer Council
Australia has recently reported that some men with PCa have normal PSA levels while only one in
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three men with higher PSA levels has the significant disease [8]. In this light, novel and more specific
diagnostic biomarkers are required for this disease. Highly specific and sensitive biomarkers will not
only improve the quality of life of many men worldwide by reducing unnecessary over-diagnosis
related anxiety and depression [9] but they could also alleviate some of the economic burden from
unnecessarily high cost treatments [10].

MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules. They bind to their
target mRNAs to regulate gene expression [11] and some in silico and functional analysis estimated
that over half of the genes that code for human proteins are regulated by miRNAs [12]. Cancer
development involves normal cells experiencing genetic instability [13] and this genomic instability
has a great impact on the miRNAs’ expression profile by affecting their genomic loci or processing
and, in consequence, by altering the critical cellular pathways that they regulate such as cell
proliferation, differentiation and apoptosis, contributing to cancer initiation and progression [14].
Indeed, dysregulation of miRNAs has been reported in many cancers [15–21] and the so-called miRNA
signatures have proved to be accurate tools not only to detect different cancer types [19,22,23] but also
for cancer staging [24,25]. This is highly relevant to allow for an accurate diagnosis, early detection and
implementation of the most appropriate treatment, all of which can potentially improve prognosis.

We have recently identified a panel of four miRNAs: miR-98-5p, miR-152-3p, miR-326 and
miR-4289 [26] with elevated levels in plasma samples from PCa patients when compared to healthy
controls. This signature was validated in two independent cohorts. Furthermore, when combined, the
diagnostic power of our signature as represented by the area under the curve (AUC) = 0.88, proved
to be greater than that previously reported for PSA [27,28]. To further determine the potential of this
novel signature in PCa and its specificity in this disease, an in depth systematic analysis was carried
out, where more than 200 research articles on these four miRNAs in cancers in the last decade have
been revisited. Expression dysregulation in cancer, survival data and disease association analysis have
been gathered for the four miRNAs. We have summarised the most recent reported dysregulation data
for these four miRNAs in cancer and determined whether the upregulation observed by us in PCa is
specific for this disease. Additionally, we also considered their prognosis significance when available
in the literature.

2. Results

2.1. Literature Retrieval

More than 300 abstracts were retrieved initially from PubMed. These included information for
the four miRNAs of interest related to their dysregulation in cancer and/or survival. Those studies
with less than 20 patients were discarded, leaving ~200 abstracts for further inspection. Papers with no
clinical and pathological data and those that focused on the basic biology of the miRNA were excluded.
This left 78 studies to be examined in further detail to extract potential data. Of these, 38 research
articles reported significant results for the miRNAs of interest for their association with one or more
forms of cancer, from which data was subsequently extracted and presented in this article.

2.2. Dysregulation of miR-98-5p, miR-152-3p, miR-326 and miR-4289 in Cancer Patient Samples

The main focus of this section was to compile recent reported dysregulation expression data for
our miRNA signature in all cancers and assess its specificity for PCa. Cancer-related dysregulation
that met our selection criteria was found for three of the miRNAs, with no reported data for miR-4289.
However, two examples have been included at the end of this section to get a preliminary appreciation
of what is available for miR-4289 (Table 1). Additionally, survival data was also collected when
available. Some studies reported hazard ratios (HR) values while others associated miRNA expression
levels with survival rate (Table 2).
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Table 1. Dysregulation of miR-98, miR-152, miR-326 and miR-4289 in prostate cancer (PCa) when compared to cancer-free samples (tissue, serum or plasma).

miRNA Prostate HCC ESCC Glioma Lung Breast CRC Bladder Ovarian Cervical Gastric Melanoma NPC OSC

miR-98 ↑P [26,29]◦ ↓T [30,31] ↓T [32] ↓T [33] ↓T [34]
↓S [35] ↓T [36] ↓T [37]

miR-152
↑P [26]
↓T [38]#

↓T [39,40]
↓T [41,42] ↓T [43]

↓T [44]
↓P [45]
↑P [46]

↓T [47,48]
↑P [46]

↓T [49–51]
↑P [46]

↑S [52]↓T

[53] ↓T [54] ↓T [50,55]

miR-326 ↑P [26] ↓T [56] ↓T [57] ↓T

[58,59] ↓T [60] ↓T/S

[61]
miR-4289 ↑P [26]

HCC: hepatocellular carcinoma, ESCC: esophageal cancer, CRC: colorectal cancer, NPC: nasopharyngeal Cancer, OSC: osteosarcoma, Kristen et al.: # downregulation in benign prostatic
hyperplasia PCa tissue. S: serum, T: tissue, P: plasma, ◦Pashaei et al.: recurrent vs. non-recurrent after radical prostatectomy patients, ↑: upregulated, ↓: downregulated.

Table 2. Dysregulation of miR-98-5p, miR-152-3p, miR-326 and miR-4289 associated with cancer prognosis.

miRNA Cancer Sample Type Number of
Samples

Hazard Ratio (HR) (95%
Confidence Interval CI) High %Survival Mets. vs.

No-Mets Tissue Reference

miR-98-5p Lung Tissue 26 - ↑ ↓ [35]

Melanoma Tissue 15 - ↑ ↓ [36]

HCC Tissue 144 - ↑ ↓ [30]

ESCC Tissue 40 - - ↓ [32]

miR-152-3p HCC Serum 76 0.39 (0.19–0.82) ◦ ↑ - [42]

Prostate Tissue 13 - ↑* ↓ [40]

miR-326 Prostate Tissue 126 1.1 (1.01–1.2) ◦ ,γ ↓γ - [38]

Prostate Tissue 110 1.1 (1.01–1.2) ◦ ,γ ↓γ - [38]

CRC Tissue 114 0.58 (0.3–0.8) ↑ ↓ [61]

GBM Tissue 458 0.7 (0.5–0.9) ↑ - [62]

Glioma Tissue 108 0.15 (0.05–0.8) ◦ ↑ - [63]

OSC Serum 60 0.25 (0.1–0.9) ◦ ↑ ↓ [61]

Gastric Tissue 136 0.7 (0.4–0.9) ◦ ↑ ↓ [60]

Lung Tissue 39 - ↑ - [56]

HCC: hepatocellular carcinoma, ESCC: esophageal cancer, CRC: colorectal cancer, GBM: glioblastoma, OSC: osteosarcoma, Mets: metastatic, *: biochemical recurrence-free survival, ◦: for
those studies that HR values were reported for low miRNA, the inverse HR has been calculated, γ: not validated in a third cohort and early biochemical recurrence (two cohorts), #: not
validated in a multivariate analysis, ↑: upregulated, ↓: downregulated.
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2.2.1. Dysregulation of miR-98-5p in Cancer

Our analysis showed a higher plasma expression of miR-98-5p is associated with an increase
in the likelihood of developing PCa (cohort 1: β = 1.75, 95% confidence interval (CI) = 0.36–3.14,
P = 0.056 and cohort 2: β = 1.80, 95% CI = 1.20–2.40, P = 1.47 × 10−8) [26]. In a recent meta-analysis
conducted by Pashaei et al. on six independent datasets that identified miRNAs associated with
PCa, a significant (P < 0.05) upregulation of miR-98-5p in recurrent vs. non-recurrent PCa patients
after radical prostatectomy surgery was observed [29]. These two studies suggest that miR-98-5p
upregulation in plasma and/or in prostate tissue could be a diagnostic biomarker for this disease and
also it could serve as a recurrence biomarker (Table 1).

By contrast, miR-98-5p was downregulated in lung cancer tissue when compared to adjacent
cancer-free tissue (N = 26, P < 0.01) [34] and in the serum of lung cancer patients (N = 127) when
compared to controls (N = 60, P < 0.05) [35]. Additionally, Wang et al. observed this downregulation
was positively correlated with lymph node metastasis, worse TNM (Tumor, Nodes and Metastasis)
stage and decrease in the overall survival of patients [35] (Table 1). Similarly, miR-98-5p was reported to
be downregulated in melanoma patient tissue samples (N = 24) when compared to cancer-free controls
(N = 24, P < 0.01) [36] and in metastatic melanoma (N = 15) when compared with primary tissue
(N = 15, P < 0.001) [36]. A lower expression was associated with a later T staging and a worse prognosis
(P < 0.001) [36] (Table 1). The downregulation of miR-98-5p was also observed in hepatocellular
carcinoma (HCC) tissue when compared to adjacent cancer-free cells in two studies carried out by
Zhou et al. (N = 144, P < 0.001) [30] and Wang et al. (N = 30, P < 0.05) [31]. This downregulation was
significantly associated with larger tumour size (P = 0.025), lower percentage survival (P = 0.0125) and
metastasis (P = 0.016) [30].

In addition, miR-98-5p was also observed to be downregulated in esophageal squamous cell
carcinoma (ESCC) by Huang et al. They reported a significant downregulation of miR-98-5p in ESCC
tumor tissue when compared to adjacent cancer-free cells (N = 40, P < 0.01) [32] and this lower
expression was significantly correlated with a higher pathological grade (P = 0.004), later tumor stage
(P = 0.003) and lymph node metastasis (P = 0.004) (Table 1). Furthermore, Liu et al. also observed
a consistent downregulation of miR-98-5p in nasopharyngeal carcinoma (NPC) tumor tissue when
compared to adjacent cancer-free cells (N = 30, P < 0.05) (Table 1). Finally, Chen et al. found miR-98-5p
expression was significantly lower in brain cancerous tissue when compared to adjacent non-cancerous
tissue (N = 26, P = 0.0165) [33] (Table 1).

Survival data for miR-98-5p was reported for lung, melanoma, HCC and ESCC, where high
miRNA expression levels in tissue significantly (P < 0.05) correlated with higher survival rates for the
first three cancers and a lower metastasis incidence for all of them [30,32,35,36] (Table 2).

In summary, the current reported expression data for miR-98-5p shows this miRNA is
downregulated in lung, melanoma, HCC, osteosarcoma (OSC), and NPC tumor tissue samples when
compared to adjacent non-malignant or healthy tissues. This downregulation may contribute to cancer
progression and development by affecting several pathways and genes such as those summarised
in Table 2. By contrast, an upregulation of miR-98-5p in plasma samples from PCa patients when
compared to controls has been observed [26] and this upregulation has also been reported in recurred
prostate tumors [29]. These results suggest that an upregulation of miR-98-5p is highly specific to PCa.
However, in clinical settings, low levels of miR-98-5p should be interpreted cautiously as that might
indicate malignancy of other organs.

2.2.2. Dysregulation of miR-152-3p in Cancer

Our study significantly correlated higher expression of plasma miR-152-3p in PCa patients
when compared to healthy controls in two cohorts (cohort 1: N = 61, β = 1.89, 95% CI = 0.99–2.79,
P = 1.4 × 10−4 and cohort 2: N = 58, β = 3.38, 95% CI = 2.27−4.49, P = 8.94 × 10−9) [26] (Table 1).
In contrast, miR-152-3p has been described as a possible tumor suppressor in numerous studies
as its downregulation has been reported in several cancer tissues. For example, in PCa, two
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independent studies reported a downregulation of miR-152-3p when comparing PCa tissue (N = 48)
vs. non-malignant tissue (N = 15, P < 0.05) [39] and PCa tissue vs. adjacent cancer-free cells (N = 97,
P < 0.0001) [50] and primary tissue (N = 97) vs. metastatic PCa samples (N = 13, P < 0.001) [50] (Table 1).
Additionally, a lower miR-152-3p expression was associated with higher Gleason scores (>7), a more
advanced pathological T stage [39] and a higher biochemical recurrence-free survival (P = 0.0004) [50].
Similarly, Kristensen et al. also observed a downregulation of miR-152-3p in PCa (N = 134) when
compared to benign prostatic hyperplasia (BPH) patients (N = 13, P = 0.00004) and these results were
validated in their second cohort of patients (N = 138) and BPH controls (N = 19, P = 0.0003). In line
with these studies, our analysis of TCGA (The Cancer Genome Atlas) data revealed that miR-152-3p
expression was significantly (P = 0.0011) lower in prostate tumor tissues (N = 181) when compared to
non-malignant prostate tissues (N = 50) [26] (Table 1).

Similarly, miR-152-3p has been reported to be downregulated in colorectal cancer (CRC) tissue
when compared to adjacent cancer-free cells in three independent studies by Li et al. (N = 28,
P < 0.01) [49], Chen et al. (N = 101, P < 0.01) [50] and Wang et al. (N = 202, P < 0.001) [51]. It was also
observed that a low miR-152-3p expression was significantly correlated with some clinic-pathological
features such as larger tumor size (P = 0.004) and advanced tumor staging (P = 0.002) [50]. Interestingly,
Chen et al. also reported an upregulation of miR-152-3p in CRC plasma samples (N = 31) when
compared to healthy controls (N = 52, P = 0.02) [46] (Table 1), an observation similar to PCa.

Downregulation of miR-152-3p in gastric cancer tissue when compared to normal adjacent tissue
was observed by Zhai et al. (N = 30, P < 0.05) [55] and Chen et al. (N = 101, P = 0.038) [50]. As seen
previously, a low miR-152-3p expression significantly correlated with a larger tumor size (P = 0.023) and
a more advanced stage (P = 0.018) [50] (Table 1). Furthermore, miR-152-3p also showed a significant
(P < 0.05) downregulation in ovarian cancer tissue (N = 78) when compared to healthy ovarian tissue
(N = 17, P < 0.05) [54].

Two independent studies by Xu et al. (N = 22, P < 0.05) [47] and Maimaitiming et al. (N = 32,
P < 0.05) [48] observed a downregulation of miR-152-3p in breast tumor tissue when compared to
adjacent normal breast tissue. Contrary to the observations reported in breast cancer tissue, Chen et al.
observed an upregulation of miR-152 in breast cancer plasma samples (N = 53) when compared to
healthy controls (N = 49, P = 0.003) [46] (Table 1).

In glioma tissue, the miR-152 was also downregulated (N = 20, P < 0.001) when compared to
adjacent normal cells by Zhang et al. [43] (Table 1). Additionally, miR-152-3p was also shown to
be downregulated in HCC in two different analysis: HCC tissue vs. adjacent normal cells (N = 89,
P < 0.01) [41] and HCC tissue (N = 55) vs. healthy controls (N = 76, P < 0.001) [42]. As seen in other
cancers, this downregulation was associated with later cancer staging (P = 0.013) and larger tumor size
(P = 0.037) [42] (Table 1).

Dysregulation of miR-152-3p was reported in lung cancer where two independent studies done
with plasma samples gave opposite results. In the first study by Dou et al., miR-152-3p plasma levels
were reported to be downregulated in lung cancer samples (N = 120) when compared to plasma
from healthy controls (N = 360, P = 0.014) [45]. By contrast, a second study conducted by Chen et al.
reported an upregulation of miR-152-3p in plasma samples from lung cancer patients (N = 55) when
compared to healthy controls (N = 53, P = 0.00015) [46]. In a third study in which lung tissue samples
were analysed, a lower expression of miR-152-3p was observed in lung cancer patient tissue when
compared to adjacent cancer-free cells (N = 36, P < 0.05) [44]. Although none of these studies associated
miR-152-3p dysregulation with a larger tumor size, it correlated with other clinicopathological features
such as poor differentiation status (P = 0.001) and later staging (P < 0.001) [47] (Table 1).

As the inverse dysregulation between plasma/serum and tissue has been previously mentioned
for prostate, CRC, breast and lung cancers, in bladder cancer similar results were reported. Jiang et al.
observed an upregulation of miR-152 in serum of bladder cancer patients (N = 250) when compared to
controls (N = 240, P < 0.05) [52] while a downregulation in tissue samples from patients with bladder
cancer (N = 238) when compared to healthy controls (N = 121, P < 0.00001) [53] was reported (Table 1).
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Reported survival data from HCC serum samples (N = 76) showed lower miR-152 expression
levels correlated with shorter overall survival in a univariate analysis (HR = 2.53, 95% CI = 1.22−5.22,
P = 0.0012) [41]. This result did not, however, reach significance in the multivariate analysis (HR = 1.73,
95% CI = 0.83−3.6, P = 0.141), suggesting miR-152 cannot be used as an independent prognostic marker
in HCC.

Survival analysis in PCa showed that the higher tissue expression levels correlated with a better
prognosis and a lower metastatic incidence [40] (Table 2). This suggests miR-152 has the potential to
be a specific prognosis biomarker for PCa.

In summary, miR-152 has been reported to be downregulated in prostate, CRC, gastric, ovarian,
breast, glioma, and HCC, lung and bladder tissue when compared to adjacent and/or healthy tissue.
This downregulation is often associated with cancer development and progression. By contrast, an
upregulation has been observed in prostate, lung, breast, CRC and bladder serum/plasma patient
samples when compared to healthy samples. Contradictory results have been reported for plasma
breast cancer samples, where both up- and downregulation have been observed. Further studies with
bigger cohorts are required to determine the directionality of such dysregulations. Nevertheless, from
these data, the upregulation of miR-152 expression in plasma was not found to be a specific biomarker
for PCa when analysed alone, but could also suggest lung, breast, CRC or bladder cancers.

2.2.3. Dysregulation of miR-326 in Cancer

In our study, the β values obtained from the regression coefficient analysis showed high miR-326
plasma levels in PCa patients was associated with a higher likelihood of developing this disease
(cohort 1: N = 61, β = 6.18, 95% CI = 4.52–7.83, P = 9.15 × 10−13 and cohort 2: N = 58, β = 10.42, 95%
CI = 8.09–12.76, P = 0.00E +00) [26] (Table 1).

By contrast, miR-326 was reported to be downregulated by Li et al. in gastric cancer [60] when
comparing gastric tumor tissue with adjacent cancer free tissue (N = 136, P < 0.001). This low expression
also significantly correlated with some clinic-pathological characteristics such as advanced clinical
staging (P = 0.003), tumour depth (P = 0.026), both lymph node (P = 0.004) and distant metastasis
(P = 0.037) and a poorer survival rate (P < 0.01) [60] (Table 1).

Downregulation of miR-326 was also reported in lung cancer when cancerous lung tissue was
compared to adjacent healthy cells (N = 39, P < 0.05) and this was significantly associated with a poorer
prognosis (P = 0.0061) [56] (Table 1).

Again, miR-326 was reported to be downregulated in CRC by Wu et al. [61] in CRC tissue when
compared to adjacent normal tissue (N = 114, P < 0.05) and the lower expression was also associated
with an increase in metastasis, disease recurrence (P < 0.05) and a poorer survival rate (P = 0.018)
(Table 1).

Similarly, miR-326 was also observed to be downregulated in OSC by Cao et al. [61], where a
significant downregulation was reported in both OSC tissue patients vs. normal tissue (N = 30, P<0.05)
and OSC tissue vs. adjacent cancer free tissue (N = 6, P < 0.05). In this study a significant decrease in
expression was also observed in patient serum samples when compared to healthy controls (N = 60,
P < 0.05). Additionally, lower miR-326 expression was associated with a poorer survival rate (P < 0.05),
a higher metastatic incidence and a more advanced clinical stage (P < 0.05) without affecting the tumor
size [61] (Table 1).

Finally, both Zhang et al. (N = 25, P = 0.0109) [58] and Wu et al. (N = 30, P < 0.01) [59] observed a
downregulation of miR-326 in cervical cancer tissue when compared to healthy control tissue (Table 1).

The reported survival data found for miR-326 is summarised in Table 2. Data was found for
the following cancers: prostate, CRC, glioma (including glioblastoma, GBM), OSC, gastric and lung
cancers. In PCa, Kristensen et al. observed that low miR-326 expression in patient tissue was associated
with early biochemical recurrence in two cohorts (cohort 1: N = 126, HR = 0.90, 95% CI = 0.82–0.99,
P = 0.032 and cohort 2: N = 110, HR = 0.91, 95% CI = 0.84–0.99, P = 0.023) [38]. However, these results
could not be validated in a third cohort, where an opposite HR directionality was observed and it did
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not reach significance (N = 99, HR = 1.46, 95% CI = 0.76–0.2.83, P = 0.256). Also, it did not remain
significant in their multivariate analysis, suggesting the results observed are not independent of the
covariates tested (PSA, pT stage, Gleason scores and margin status). In CRC, Wu et al. reported a
significant association of high miR-326 CRC tissue expression levels with a better overall survival
(N = 114, HR = 0.58, 95% CI = 0.28–0.79, P = 0.011) and progression-free survival (HR = 0.811, 95%
CI = 0.418–0.951, P = 0.017) and these were independent of clinical and pathological characteristics
such as age, gender, tumor location, TNM stage and differentiation status [57] (Table 2). It was also
associated with a lower metastatic incidence.

Qiu et al. showed higher expression of miR-326 in GBM tissue was associated with a better
prognostic and this was independent of other factors such as age, gender and recurrence (N = 458,
HR = 0.70, 95% CI = 0.54–0.90, P = 0.006) [62] (Table 2).

Similarly, low miR-326 expression in glioma tissue showed to be an independent marker of poor
overall survival prognosis (N = 108, HR = 6.5, 95% CI = 1.20–19.70, P < 0.001) [63]. Table 2. Furthermore,
low miR-326 glioma tissue expression was also significantly associated with poor overall survival in
patients with high pathological grades (III–IV: P < 0.001), but significance was not reached when the
grades were low (I–II: P = 0.07) [63]. In OSC a lower miR-326 serum expression was associated with
a lower metastasis incidence and it was an independent overall survival prognostic marker (N = 60,
HR = 3.9, 95% CI = 1.13–12.35, P = 0.001) [61] (Table 2). In gastric cancer, low miR-326 expression was
also significantly associated with an overall poorer prognostic (N = 136, HR = 1.51, 95% CI = 1.08–2.76,
P = 0.02) [60] and their inverse are shown in Table 2. A higher miR-326 expression tissue level was also
associated with a lower metastatic rate. Finally, in lung cancer tissue higher miR-326 tissue expression
levels were associated with a higher survival rate [56] (Table 2).

To summarise, miR-326 has been shown to be downregulated in gastric, lung, CRC, ESCC and
cervical tumor tissue when compared to adjacent/healthy tissue and this is often associated with
cancer progression, disease recurrence and poorer prognosis. This downregulation was also observed
in serum ESCC patient samples when compared to controls. By contrast, we have observed an
upregulation of this miRNA in PCa plasma samples when compared to controls. Additionally, tumor
miR-326 overexpression is associated with a better overall survival in prostate, CRC, GBM, glioma,
OSC, gastric and lung cancers and a lower metastasis incidence. High levels of miR-326 in PCa tissue
samples when compared to healthy controls also showed to be associated with disease recurrence
although it was not independent from other clinical factors such as PSA, staging and Gleason score.
Overall, all these results suggest this miRNA is also a good specific candidate biomarker for PCa at the
diagnostic and prognostic levels.

2.2.4. Dysregulation of miR-4289 in Cancer

Higher plasma levels were observed in PCa patient samples when compared to controls in our two
cohorts as shown by univariate analysis (Table 1) [26]. The first cohort associated higher plasma levels
with an increased risk of PCa as determined by B (N = 61, β = 0.83, 95% CI = 0.5–1.16, P = 3.11 × 10−6).
Similarly, the second cohort also associated elevated plasma expression levels with a higher risk of
developing the disease (N = 58, β = 5.71, 95%CI = 4.18–7.24, P = 8.80 × 10−13) [26].

The research done on miR-4289 is currently very limited, with only a few studies reporting its
role in cancer. Because of this availability shortage, two studies are here mentioned despite of not
fitting the search criteria applied. Dong et al. undertook miRNA profiling in three samples only
to detect differentially expressed miRNAs between GBM patients and healthy controls. From the
752 miRNAs analysed, 115 miRNAs were found to be upregulated being miR-4289 one of them
(P = 0.0002) [64]. The second study, used a stratified cohort based on the expression of two particular
genes, the serine-threonine protein kinase AKT1 and AKT2 [65]. This study investigated the role
of miRNAs as effectors of increasing the AKT1 and AKT2 gene numbers within lung carcinomas.
miR-4289 was found to be upregulated in two of the stratified lung tissue cancer cohorts (AKT1+
and AKT2+).
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No reported survival data in cancer was found for the miR-4289.

2.3. Differential Expression of the miRNA Signature in Cancerous Samples when Compared to Non-Cancerous
Samples from Microarray Dataset

Differential expression data reported in dbDEMC 2.0 was found for three out of the four miRNAs
(Figure 1) and all the miRNAs were significantly (P < 0.05) dysregulated in cancer samples when
compared to controls. Some experiments had few of the miRNAs duplicated and these were discarded,
leaving only one value. Differential expression values were found in many datasets for miR-98-5p
(N = 48), miR-152-3p (N = 49) and miR-326 (N = 49) and are presented in Figure 1. Data for miR-4289
was found only for three cancers (biliary tract, CRC and gastric cancers) from two different experiments.
In the three cases, miR-4289 was significantly downregulated.
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Figure 1. Differential expression of miR-98-5p, miR-152-3p and miR-326 in cancer tissue. Data sourced
from dbDEMC [66]. Logarithmic fold changed plotted (GraphPad Prism 7.00) showing min to max
values and median. Dark grey shade and dashed rectangular highlight PCa only. P values obtained
from one-way analysis of variance (ANOVA).

Additional information such as the experiment ID, Gene Expression Omnibus (GEO)/TCGA
information, cancer subtypes, T values, P values and β values and adjusted P values are all summarised
in Supplementary Table S1. For those cancers with a limited number of values, a grouping system
was followed. Head and neck included: head and neck, NSP, tonsil, thyroid, oral squamous and
ESCC cancers. Liver is comprised of both liver and HCC cancers. Colon and colorectal cancers were
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combined. Sarcoma included both sarcomas synovial and liposarcoma, and endometrial was grouped
alongside uterus cancer. From this data, none of the miRNAs showed to be a specific biomarker for
any cancer studied (Figure 1). Non-parametric, univariate analysis of variance (ANOVA) revealed
significant differences in between cancers (P = 0.035) only for miR-326.

2.4. Functional Role of the miRNA Signature in Cancer

The literature research previously presented also provided a number of validated targets for
the different miRNAs that compose the signature. The method of validation, gene target effect and
involved pathway or molecular function are summarised in Table 3. Briefly, five target genes and one
positive regulator were reported for miR-98 in lung, melanoma, HCC, brain and NPC cancers. Six
target genes were validated for miR-152 in gastric, ovarian, breast and lung cancers and five target
genes, plus two negative regulators, were confirmed for miR-326 in gastric, lung, glioma, OSC and
cervical cancers (Table 3). Our previous in silico analysis of miRNA target genes generated 1055
targets of these four miRNAs implicating them in over 250 pathways [26]. The maximum number
of targets were found to be involved in cancer pathways including viral carcinogenesis, bladder
cancer, chronic myeloid leukemia, PCa, non-small cell lung cancer, basal cell carcinoma, and glioma
(P ≤ 0.05). Identifying miRNA target genes and pathways to understand the molecular basis of cancer
pathogenesis is challenging because there are several direct and indirect targets and pathways that
drive cancer. For example, the insulin signalling pathway consisting of insulin growth factor receptors
(IGFRs) are important mediators of cancer. Similarly, cyclin dependent kinases (CDKs) targeted by our
identified miRNAs play a vital role in cell cycle progression which, in turn, is an important pathway
in cancer.
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Table 3. Functional role of the miRNA signature in cancer.

miRNA Cancer Target Gene/Regulator Method of Validation Binding Target Effect Pathway or Molecular Function Reference

miR-98

Lung

Integrin Subunit Beta 3 (ITGB3) Cancer cell line transfection
and mouse injection model

Cancer cell proliferation suppression and
tumor growth reduction in vivo

Cell adhesion and cell-surface mediated
signalling [34]

Serine/threonine-protein kinase (PAK1) Cancer cell line transfection
and mouse injection model

Cancer cell proliferation, colony formation,
migration and invasion inhibition

Cytoskeleton reorganization and nuclear
signalling [67]

Melanoma Interleukin 6 (IL-6) Mouse injection model Tumor metastasis and growth inhibition
in vivo Stat and NF-κB signalling [36]

HCC Collagen Triple Helix Repeat Containing
1 (CTHRC1) Western blot Protein expression inhibition after mimics

transfection
Tissue remodelling, vascularity and

bone formation [31]

Brain Raf-1 kinase inhibitor protein (RKIP) Cancer cell line transfection miR-98 positive regulator: tumor
repressor

Inhibition of the Raf-1-MEK1/2, ERK1/2
and NF-kappaB signalling pathways [33]

NPC Signal transducer and activator of
transcription 3 (STAT3) Western Blot Protein expression inhibition after mimics

transfection Transcription factor [37]

miR-152

Gastric CD151 Cancer cell line transfection Cancer cell proliferation, migration and
invasion suppression

Tetraspasin member (cell development,
growth and motility regulation) [55]

Ovarian SERPINE1 In silico transcriptome
analysis Tumorigenesis and metastasis suppression tPA/uPA fibrinolysis inhibitor [68]

Breast

Insulin-like growth factor 1 (IGF-IR) Cancer cell line transfection Cancer cell proliferation, colony formation
and tumor angiogenesis inhibition PI3K/AKT and MAPK/ERK cascades [47]

Insulin receptor substrate 1 (IRS1) Cancer cell line transfection Cancer cell proliferation, colony formation,
and tumor angiogenesis inhibition PI3K/AKT and MAPK/ERK cascades [47]

Rho-Associated Coiled-Coil Containing
Protein Kinase 1 (ROCK1) Cancer cell line transfection Cancer cell proliferation, migration and

invasion suppression
GTPase RhoA multiple signalling

cascade [48]

Lung Neuropilin-1 mediated receptor Cancer cell line transfection Cancer cell migration and invasion
suppression VEGF-A, VEGF-165 [54]

miR-326

Gastric Fascin (FSCN1) Cancer cell line transfection Cancer cell growth and metastasis
suppression

Formation of actin-based cellular
protrusions [60]

Lung

Cyclin D1 (CCND1) Cancer cell line transfection
Cancer cell proliferation, migration,

invasion and colony formation inhibition
and promotion of apoptosis

CDK kinases regulator coordination of
each mitotic event [56]

Paired-like homeobox 2a (phox2a) Cancer cell line transfection Cancer cell proliferation, migration and
invasion suppression

Development of the autonomic nervous
system [69]

LncRNA-HOTAIR Cancer cell line transfection miR-326 negative regulator: promotion of
cancer cells proliferation and migration LSD1/PRC2 epigenetic regulator [69]
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Table 3. Cont.

miRNA Cancer Target Gene/Regulator Method of Validation Binding Target Effect Pathway or Molecular Function Reference

miR-326

Glioma Nin one binding protein (NOB1) Cancer cell line transfection Cancer cell proliferation and colony
formation inhibition

Pre-rRNA processing and MAPK
signalling [70]

OSC B-cell lymphoma 2 (Bcl-2) Cancer cell line transfection Cancer cell apoptosis reduction Caspase activity regulator [61]

Cervical LncRNA-HOTAIR Cancer cell line transfection miR-326 negative regulator: promotion of
cancer cells proliferation and migration LSD1/PRC2 epigenetic regulator [59]

HCC: hepatocellular carcinoma, NPC: nasopharyngeal carcinoma, OSC: osteosarcoma, tPA: tissue plasminogen activator, uPA: urokinase, phosphatidylinositol-3 kinase (PI3K)/AKT and
mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases (ERK) cascades, RhoA: Ras homolog gene family, member A, VEGF: vascular endothelial growth factor,
CDK: cyclin-dependent kinases, LSD1: lysine specific demethylase 1, PRC2: polycomb repressive complex 2, Lnc: long non-coding, MAPK: mitogen-activated protein kinases.
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3. Discussion

A good usable biomarker has to be selective and objectively measured to evaluate diverse
biological or pathogenic processes, as described by the Biomarker Consortium group [71]. Amongst
others, a biomarker can assist at different levels in managing a certain disease. For instance, it can be
applied to differentiate between disease and healthy status, assist in staging and classifying the extent of
a disease, improve the prognosis and/or monitoring the clinical response to a potential treatment [71].
miRNAs have extensively been reported to be dysregulated in cancer [72–75] and they have been
described as highly specific, sensitive and stable molecules, which makes them potential fingerprint
tools to diagnose a specific cancer and its progression [72]. Recently, some studies have shown this
tumor-specificity in different fluids such as saliva for oral cancer [76], urine for bladder cancer [77] and
plasma for lung, CRC and breast cancers [46]. As mentioned before, the main PCa biomarker used
today, although sensitive, can lead to over-diagnosis due to a relative low specificity [4,5]. We have
recently identified a plasma miRNA signature comprised of four miRNAs (miR-98-p, miR-152-3p,
miR-326 and miR-4289), which has the potential to improve the diagnostic power of the current PSA
biomarker alone [26]. In order to determine if the upregulation in PCa samples observed by us in two
cohorts is specific of this disease, we have carried out a systematic review, where the dysregulation of
these four miRNAs in cancer has been thoroughly looked at in the literature. Additionally, a dedicated
cancer miRNA dysregulation database has also been studied and, finally, information on association of
miRNA expression level with survival has been compiled.

Our own analysis showed significantly higher expression plasma levels of miR-98-5p, miR-152-3p,
miR-326 and miR-4289 in prostate cancer patients when compare to healthy individuals in two cohorts
and this was associated with an increased risk of developing the disease for the first three miRNAs.
Opposite results were obtained for miR-4289 between the two cohorts analysed. From our literature
search, the upregulation of miR-98 and miR-326 in PCa suggests them to be PCa-specific when
compared to other cancers. By contrast, miR-152 lacked specificity for this disease and not enough
data for miR-4289 was available to draw any conclusions. Most studies are on tumor samples in
PCa. Interestingly, the upregulation of miR-98 in recurrent PCa patients after radical prostatectomy
when compared to non-recurrent patients was also reported [29], placing this miRNA not only as a
potential diagnostic marker but also as a prognosis possible tool for this disease. To complement the
information found in the literature, we then looked at the dedicated miRNA cancer dysregulation
database, dbDEMC2, since most of the values reported in here have not been reported in any research
articles. Unexpectedly, our analysis from this database did not show similar results to those observed
in the literature. Instead, none of the miRNAs showed a specific dysregulation in any of the cancers
studied. This could be due to the nature of the miRNA detection assay used (microarray) and small
sample sizes. While the majority of the experimental data obtained from the literature used a specific
amplification method of the miRNA of interest (quantitative reverse transcription polymerase chain
reaction), the data obtained from the aforementioned database used a somewhat more general method
of detection, the microarray approach. In this method, hundreds of probes are used to get an initial
sense of possible expression data patterns. Parameters such as the type and length of the probes, how
these are manufactured, and how many tissues/liquid samples in each study can affect the results.
Survival data consistently showed high levels of miR-98, miR-152 and miR-326 were associated with a
higher survival rate and low aggressive disease for several cancers except PCa, where an upregulation
was associated with a poorer prognosis (HR > 1) and early biochemical recurrence. The research articles
included in this review, also provided information about several validated targets that can explain the
dysregulation of the miRNAs of interest in the cancers studied or the molecular consequences. Some
of these targets are oncogenes, for example, CCND1 and KRAS, or tumour suppressors such as PTEN
and HSP90AA1, and the deregulation of these genes may contribute to cancer pathogenesis.

A potential limitation of this study is the lack of a standardised miRNA extraction protocol
from clinical samples available in the scientific community. As shown recently [78,79], detected
levels of miRNA can significantly vary depending on the extraction methodology applied and the
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internal controls used, particularly in serum samples. Additionally, the pre-extraction steps such as
sample collection, specimen acquisition, handling and storage can further impact the levels detected
downstream [79]. A second limitation is the mixed origin of the samples. While we reported an
upregulation in PCa plasma samples for the four miRNAs, most of the expression data found in both
the literature and the microarray-based database was from tumor tissue samples. Additionally, miRNA
concentration levels in serum than plasma have been observed due to unknown effects of coagulation
process on extracellular miRNAs in blood [79], which makes drawing comparisons regarding miRNA
dysregulations across different samples even more difficult. This could raise some concerns about
how to interpret the data. For example, miR-152 was upregulated in serum from bladder cancer
patients [80] when compared to controls while, in a different study, it was downregulated in bladder
cancer tissue patients when compared to healthy individuals [53]. Also, despite our data, where
an increase of this miRNA expression was observed in plasma samples in PCa patients [26], three
independent studies done by Zhu, Theodore and Kristensen et al. respectively [38–40], observed a
downregulation in PCa patients’ tissue when compared to adjacent or healthy tissue controls. However,
it is important to note that the downregulation reported in the last study by Kristensen et al. compares
PCa tissue with BPH tissue and, therefore, the results should be contrasted with caution. This inverse
relationship in terms of miRNA expression between plasma and tumour may be due to the possibility
of the preferential retaining of oncomirs (miRNAs overexpressed in cancer [81]), and the release of
tumour suppressor miRNAs into the circulation to promote tumourigenesis. It has been previously
proposed that the preferential export of certain microRNAs may occur as hormomirs (circulatory
miRNAs) which may function to modulate expression of genes at a secondary site, thus affecting the
pathology of the disease [82,83]. We could also hypothesise that the downregulation in one sample
type (tissue) and the upregulation in the other (plasma) is due to the cancer physiological conditions,
which causes a leakage of molecules, being this the basis of the PSA blood test for PCa [84]. To explain
some of the downregulation observed in tissue by others, we took special interest in two potential
mechanisms due to the high number of observations reported. It is well known that DNA methylation
is increased during cancer [85,86] and the fact that the miR-152 promoter area is surrounded by a CpG
island [87] makes this miRNA highly vulnerable to an aberrant regulation in this malignancy. In fact,
the hyper-methylation in this region has been associated with a lower expression of miR-152 in cancer
tissue, inhibiting its oncosuppressor properties. In particular, this was observed in prostate, ovarian,
breast and glioma cancers [40,43,47,88]. Interestingly, this effect was shown to be ethnicity-associated in
a PCa study [40], where an African American cohort presented a higher methylation rate in the miR-152
gene than a Caucasian cohort, and this was also associated with a more aggressive form of the disease.
A very recent published study has also significantly associated a lower miR-152-3p expression in PCa
tissue patients (N = 100) when compared to healthy tissue (N = 14) with a highly hyper-methylated
promoter region [89], making this association a very plausible mechanism which should be further
explored. Another interesting possible mechanistic explanation for the reported downregulation of
miR-326 in cancer tissue when compared to healthy controls is the negative regulator long non-coding
RNA HOTAIR (lnc-HOTAIR). Lnc-HOTAIR has been shown to negatively regulate this miRNA in
lung and ovarian cancers [59,68] and its overexpression has been associated with a poor prognosis,
metastasis promotion and carcinogenesis in several cancers [69,90].

In summary, cancer expression data has been reported for miR-98, miR-152 and miR-326. From
the research articles included, the upregulation of miR-98 and miR-326 in PCa was shown to be
highly specific. In most cases, these three miRNAs were downregulated in cancer and this was often
associated with a poorer prognosis, later staging, increased tumor size, and higher pathological grades.
We have reported an upregulation of the miRNA signature miR-98-5p, miR-152-3p, miR-326 and
miR-4289 in PCa plasma patient samples when compared to healthy controls. Since our signature’s
upregulation has been detected in plasma, and most of the dysregulated expression data comes from
tissue samples, the results presented here should be taken as a summary of what data is available for
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these four miRNAs expressions in cancer to date. Indeed, further studies are needed to clarify their
plasma and serum dysregulations in different cancers and their suitability as specific markers of PCa.

4. Materials and Methods

4.1. Research Data Extraction Strategy: Inclusion and Exclusion Criteria

The literature used within this study was obtained via the PubMed database, utilising studies
conducted in the last 10 years and the strategy followed is summarised in Figure 2. Briefly, studies
included had to be tested on at least 20 patients and involve clinical data such as disease pathological
characteristics or clinical outcome. After an initial search and exclusion following the above criteria,
more than 200 abstracts were pre-viewed. From these, 78 full publications were retrieved for the
systematic review. Only those research articles that reported significant data were finally included.
Thus a total of 38 studies, including our own, were incorporated for the dysregulated miRNA
expression review (Table 1) and/or their prognostic potential (Table 2). Some of the selected studies
presented expression data for >20 samples but their survival data was reported for <20 patients. This
latter data has also been presented in Table 2. Some studies reported exact P values whereas others
reported them as thresholds (re P < 0.05, P < 0.01, etc.) and these have been presented accordingly.
Our own reported data has been reported by the regression coefficient (β value) with a 95% CI.
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4.2. Differential Expression of the miRNA Signature in Cancer: High-Throughput Data

In addition to the reported data in the literature for this signature, we extracted normalised
logarithmic fold change miRNA expression data from the dedicated Differentially Expressed miRNAs
in human Cancers database (dbDEMC version 2.0, http://www.picb.ac.cn/dbDEMC) (data extracted
in March 2018) [66]. This integrated database differs from others since it identifies these differentially
expressed miRNAs from de novo analysis of high-throughput expression data. Additionally, it contains
differential expression of 2,224 miRNAs from 36 cancers curated from 436 experiments. The current
version displays data detected by high-throughput methods from a total of 209 newly published
data sets, collected from GEO/TCGA. Expression values were logarithmically transformed (base 2)
and quantile normalized. When different isoforms were available, dbDEMC selects the one with the
greatest expression value. In Figure 1, cancer vs. normal comparison is represented for the miRNA
signature, where the fold change values for each miRNA were plotted using GraphPad Prism 7.00.
Each panel was subsequently analysed using an unpaired, non-parametric ANOVA test and a P < 0.05
was considered significant.

4.3. Dysregulation of miR-98-5p, miR-152-3p, miR-326 and miR-4289 Associated with Cancer Prognosis

Those studies that reported survival data and/or expression in metastatic tissue when compared
to non-metastatic disease are summarised in Table 2. HR and 95% CI were included when available.
HRs are used to measure survival rates through time when comparing more than one group of
patients [91]. The aim is to determine if the survival outcome is different amongst the groups studied
due to a particular variable that differentiates them such as treatments or, in our case, different levels of
miRNAs. As seen with β values, a HR value >1 is considered to be associated with a poorer prognosis
and shorter overall survival while an HR <1 is associated with a more favourable one. HRs were
calculated by multivariate Cox binary logistic regression with P < 0.05 unless otherwise specified.
Some studies reported their HRs based on the downregulation of the expression of the miRNA of
interest. In order to keep the data homogeneous, in these cases, the inverse of both the ratios and their
95% CI were calculated (1/HR and 1/95% CI), allowing for the different studies to be compared more
easily. These studies are marked using the superscript “α” in Table 2.

5. Conclusions

The upregulation of miR-98 and miR-326 in PCa were shown to be highly specific of prostate
cancer as in the majority of the cases reported these two miRNAs were downregulated in cancer and
they were often associated with a poorer prognosis that included later staging, larger tumor size, and
higher pathological grades. The miRNA signature we have recently reported showed that miR-98-5p,
miR-152-3p, miR-326 and miR-4289 were upregulated in PCa plasma patient samples when compared
to healthy controls. A limitation of our study includes the nature of our samples (plasma) which differs
from most of the samples’ origin found in the literature (tissue). Therefore, here we present a snapshot
of the significant reported dysregulation in cancer of these four miRNAs to date.
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