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How to deal with the early GWAS data when imputing
and combining different arrays is necessary

Hae-Won Uh*,1,2, Joris Deelen2,3, Marian Beekman3, Quinta Helmer1, Fernando Rivadeneira2,4,5,
Jouke-Jan Hottenga6, Dorret I Boomsma6, Albert Hofman2,4,5, André G Uitterlinden2,4,5, PE Slagboom2,3,
Stefan Böhringer1 and Jeanine J Houwing-Duistermaat1

Genotype imputation has become an essential tool in the analysis of genome-wide association scans. This technique allows

investigators to test association at ungenotyped genetic markers, and to combine results across studies that rely on different

genotyping platforms. In addition, imputation is used within long-running studies to reuse genotypes produced across

generations of platforms. Typically, genotypes of controls are reused and cases are genotyped on more novel platforms yielding a

case–control study that is not matched for genotyping platforms. In this study, we scrutinize such a situation and validate GWAS

results by actually retyping top-ranking SNPs with the Sequenom MassArray platform. We discuss the needed quality controls

(QCs). In doing so, we report a considerable discrepancy between the results from imputed and retyped data when applying

recommended QCs from the literature. These discrepancies appear to be caused by extrapolating differences between arrays by

the process of imputation. To avoid false positive results, we recommend that more stringent QCs should be applied. We also

advocate reporting the imputation quality measure (RT
2) for the post-imputation QCs in publications.
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INTRODUCTION

Imputation-based association methods provide a powerful framework
for testing ungenotyped variants for association with phenotypes.
Genotype imputation is particularly useful for combining results
across studies that use different genotyping platforms, because a
meta-analysis of several studies with relatively modest findings can
result in a number of strongly associated loci that were not previously
indicated. Many successes of such meta-analysis have been reported.1,2

Here, we consider the use of imputation to pool subjects genotyped
with different platforms within studies. For example, when the data of
control groups such as the Wellcome Trust Case Control Consortium3

are reused, the cases are typically not matched regarding genotyping
platforms or arrays.4 Another example concerns combining expression
quantitative trait loci studies with data being generated at very
different time points from different platforms, thereby requiring
genotype imputation.5 Although reusing such existing data seems to
be an efficient approach, it may increase chances of observing spurious
associations due to chip differences. In this paper, we discuss whether
more stringent quality controls (QCs) should be applied.

In general, the following QCs are performed at the preimputation
stage: minor allele frequency (MAF) Z1–5%, Hardy–Weinberg equi-
librium (HWE) P-value 410�4–10�6, SNP call rate Z90–99%,
sample call rate Z90–98%, and other checks such as sex mismatch
and Mendelian errors. For the details of QCs in GWAS, we refer to
Anderson et al.6 Imputation software such as MACH7 or IMPUTE8

can be used to impute SNPs based on the HapMap CEU-phased
haplotypes. There seems to be no consensus yet on the QCs after
imputation, and on reporting the quality of imputed genotypes in
publications. In the tutorial of MACH an inclusion threshold r2 of 0.3
is recommended. In addition to the preanalysis information measures,
such as r2 of MACH and info of IMPUTE, which are the information
measures about the population allele frequency, SNPTEST8 provides a
post-analysis information measure about the association parameter
for unrelated samples. Here we propose a similar post-analysis
information measure to test related samples, called RT

2.
As in a meta-analysis, the focus is on combining estimates of

association parameters, it seems prudent to base QC on post-analysis
information measures that also cover the strength of association, such
as SNPTEST info or RT

2. These measures can be used to obtain
homogeneity and to increase the comparability between the studies.9

Marchini et al10 showed that based on a simulated data set of 1000
cases and 1000 controls the MACH and IMPUTE preanalysis infor-
mation measures were highly correlated, and that there was a good
agreement between the IMPUTE preanalysis information measure and
the SNPTEST post-analysis information measure when testing an
additive genetic model. In this paper we investigate whether good
agreement holds for strongly associated SNPs between the pre- and
postanalysis information measures, and whether the post-analysis
information measures such as SNPTEST info and RT

2 can have an
important role as an inclusion criterion of candidate SNPs.
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MATERIALS AND METHODS
In 2007 we performed a GWAS for the Leiden Longevity Study (LLS)11 with an

affected sibling pair (ASP) and control design. One sibling from each of 420

long-lived sibling pairs was genotyped with the first generation Affymetrix Gene

Chip Human Mapping 500K Array (Affy500, Perlegen Sciences, Mountain View,

CA, USA). This Affy500 data set was discarded for the analysis that was eventually

published.12 To illustrate the situation in which data obtained by an early platform

are combined with data generated on more recent platforms, we have here included

the Affy500 data yet again. The remaining siblings were genotyped with Illumina

Infinium HD Human660W-Quad BeadChips (Illumina660, San Diego, CA, USA).

Using the following per-individual QC6 of GWA data, we excluded individuals with

discordant sex information, individuals with sample call rate o0.95, and duplicated

individuals. Per-marker QC was carried out for including SNPs with the following

criteria: SNP call rate 40.95, MAF 40.01, and HWE P-value 410�4. After QC,

517K SNPs remained on the Illumina and 350K SNPs remained on the Affy500

arrays. Of these, only 60K SNPs of Affy500 overlapped with Illumina660. To reuse

the genotypes we used MACH for imputation of missing 457K SNPs in Affy500

based on HapMap CEU individuals. To guarantee the quality of imputation, we

set the inclusion threshold to r2¼0.3 as recommended. For 1670 (younger

unrelated) controls from the Rotterdam Study, genotypes were generated with

Illumina Infinium II HumanHap 550K and HumanHap550-Duo BeadChips

(Illumina550).12,13 Our data, therefore, differs from the usual simulation setting

in the following way: the sib of each sibship genotyped with Affy500 was

imputed to match the SNPs of other siblings and controls. The description of

the study design and the different arrays used is given in Figure 1 and Table 1.

An additional check of the imputation accuracy was performed; 10% of the

SNPs were randomly masked, and correctness of imputation was determined

by comparing imputed genotypes with the masked ones. More than 99% of

masked SNPs passed the default imputation threshold of r2¼0.3, so that our

data passed this additional QC. For validation of the GWAS results, the 89 top-

ranking SNPs were re-genotyped with the Sequenom MassArray platform.

Here, we compare imputed and measured genotypes of these top-ranking

SNPs.

Methods
Score test. Modeling the LLS data needs to account for (1) ascertainment,

that is, cases were long-lived sibling pairs (ASPs), and (2) the fact that one of

the sibs in each pair had most markers imputed because it belonged to the

Affy500 data. On the basis of the argument that the ascertainment event

depends on the phenotype but is conditionally independent of the genotype

given a phenotype, we use the score statistic corresponding to the retrospective

likelihood for testing.

We let X¼(X1, y, Xn) be the n�1 vector of genotype data. We code each

genotype as 0, 1, or 2, corresponding to the number of minor alleles present at

that locus. For n individuals, we let Y¼(Y1, y, Yn) be the n�1 vector of the

case–control status, which is coded 0 for control subjects and 1 for case

subjects. Further, Ȳ denotes the proportion of cases. The score statistic for

testing for an additive effect of a diallelic locus on phenotype is given as

Ux¼(Y�Ȳ)X. Under the null hypothesis of no association between genotype

and disease, the score test U2
x/Var(UX) is asymptotically distributed as w2 with 1

degree of freedom. To account for relatedness of cases we used the kinship

coefficients matrix when computing the variance of the score statistic.14

Imputation is dealt with by accounting for loss of information due to genotype

uncertainty. A detailed derivation of the score test is given in the Appendix.

Post-analysis information measures. Let the posterior probability of

imputed genotypes be pi¼(pi0, pi1, pi2) for subject i, and the expected dosage

for the genotype counts of the ith individual be E(Xi)¼pi1+2pi2. Further,

let p denote the population minor allele frequency. Assuming HWE, the

MACH r2 is defined by

r2 ¼

Pn
i¼1

X2
i =n�

Pn
i¼1

Xi=n

� �2

2p̂ð1� p̂Þ ; ð1:1Þ

so that this preanalysis information measure depends only on the allele

frequency and imputed genotypes. When data are genotyped, r2 equals one.

As in the Appendix, let K denote the genetic correlation matrix. The

genotypic variance of the sample is denoted by S, and Sloss is the loss of

information due to uncertainty. The relative efficiency measure for case–control

design of Uh et al15 can be used as an information measure about the

association parameter:

R2
T ¼
ðY � �YÞ K � S� Slossð Þ½ �ðY � �YÞ
ðY � �YÞ K � S½ �ðY � �YÞ ; ð1:2Þ

where 1 denotes the (Hadamard) term-wise product. Consequently with

genotyped data Sloss¼0, hence, RT
2 equals to 1. In contrast to the preanalysis

Figure 1 Study samples and arrays used. Affy500 stands for the first genera-

tion Affymetrix Gene Chip Human Mapping 500K Array, Illumina660 for

Illumina Infinium HD Human660W-Quad BeadChips, and Illumina550 for

Illumina Infinium II HumanHap 550K and HumanHap550-Duo BeadChips.

Sib 2 and controls were all genotyped, and for Sib1 in addition to the over-

lapping genotyped 60K SNPs, the remaining 457K SNPs were imputed. After

post-imputation QC, 451K SNPs were analyzed using ASP–control design.

Table 1 Study designs and arrays used in Figure 3

Figure 3 Study design Sample No. of SNPsa Overlap Imputed SNPs QC passed and tested SNPs Genomic control lGC

a ASP–control Sib 2 and control

Sib 1

517K

350K

60K 457K 451K 1.16

b Case–control Sib 2 and control 517K 517K 517K 1.03

c ASP–control Sib 2 and control

Sib 1

517K

350K

60K 60K 1.06

d ASP–control Sib 2 and control

Sib 1

517K

350K

60K 97Kb 157K2 1.05

aNo. of SNPs that passed QC at the pre-imputation stage.
bNo. of SNPs with Rr

2
X0.98.
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information measure r2, this post-analysis information measure RT
2 assigns

more weight to associated SNPs.

An executable C++ program for the score test and RT
2 is available (http://

www.msbi.nl/uh).

RESULTS

The difference between the pre- and postanalysis information
measures, MACH r2 and RT

2, is shown in Figure 2. Using Sib 1 and
controls data, we randomly selected 1000 SNPs each from three classes
of SNPs: P-values 4greater than 0.05, P-values smaller than 0.001, and
intermediate ones. Although for unassociated SNPs (P-value 40.05)
the two measures show good agreement, they are quite different for
strongly associated SNPs (P-value o0.001). The post-analysis mea-
sure, therefore, can be a useful tool for selecting SNPs for meta-
analysis.

Quantile–quantile (Q–Q) plots in Figure 3 illustrate the GWAS
results using different study designs as described in Table 1. The test
statistics in all Q–Q plots were corrected by their genomic control
inflation factor lGC.16 First we used combined data of ASPs (imputed
Sib 1 and genotyped Sib 2) and genotyped controls. Results
(Figure 3a) show deviation from first diagonal (dashed line), hence,
inflation of test statistics (lGC¼1.16). Next (Figure 3b), we compared
genotyped Sib 2 and controls (Illumina660 for cases and Illumina550
for controls, respectively): lGC¼1.03. One might conjecture that
inflated test statistics in Figure 3a were caused by also considering
imputed sibling data. We then investigated whether this inflation is an
artifact solely from imputation, or due to combining different arrays.
To determine the possibility of a chip (or batch) effect, we conducted
ASP and control analysis only on genotyped overlapping 60K SNPs
with Affy500 (Sib 1), Illumina660 (Sib 2), and Illumina550 (control).
In Figure 3c, the genomic control inflation factor is decreased from
1.16 to 1.06 as compared with Figure 3a and increased from 1.03 to
1.06 as compared with Figure 3b. This may suggest that there is a chip-
effect, which was amplified by the imputation. Figure 3d shows that by
applying a very stringent extra QC (RT

2 40.98, 60K genotyped and
97K imputed SNPs) inflation of test statistic could be dealt with
(lGC¼1.05). Therefore, the significantly biased results (Figure 3a)
seem to be caused by the different chips from one of which is of
low quality.

For validation, the 89 top-ranking SNPs (MACH r240.3) resulting
from the association analysis using the first design were retyped with
the Sequenom MassArray platform. We checked the quality of
genotyping (of the different platforms) as well as that of imputation.
Figure 4 illustrates the comparison of minor allele frequencies (MAFs)
in the long-lived siblings. In the left panel, the deviation of the points
from first diagonal (dashed line) indicates the poor match of the
Affy500 data and retyped sample. Meanwhile, the retyping of the
Illumina660 data shows better agreement (bottom panel). Visual
inspection of cluster plots of the sole exception (the red filled circle)
confirmed the results of the Sequenom array.

DISCUSSION

Our study illustrates that imputation, whereas combining different
arrays in GWAS using data from the earliest platforms without
sufficiently stringent QCs may produce false positive associations. A
simple remedy to better quality is to choose a stricter threshold for
inclusion at the pre- and postimputation stages. For preimputation
QCs we refer to Anderson et al.6

In addition to the preanalysis measures such as r2 of MACH
and info of IMPUTE, which are the relative information measures
only depending on the population allele frequency and imputation
accuracy, we proposed an additional post-analysis measure RT

2.

r2

R
T2
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Figure 2 Comparison of the pre- and the postanalysis imputation

information measure. The x axis shows the preanalysis information measure

(r2), and the y axis the post-analysis information measure (RT
2). The blue

points indicate the SNPs with no association (P-value 40.05); there is little

effect of case–control status, and two measures agree. The red ones are the

SNPs that show strong association (P-value o0.001), and the green ones

are intermediate cases.
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Figure 3 Quantile–quantile plots obtained from LLS GWAS analyses. The

triangles indicate the SNPs at which the test statistic exceeds 30

(corresponding P-value o5�10�8). The 95% concentration bands (shaded

gray) are included. (a) ASP–control design: combined data of imputed

Affy500 (Sib 1), typed Illumina660 (Sib 2), and typed Illumina550

(control). Deviation form the dashed line indicates inflation of test statistics.

(b) Case–control design: genotyped with Illumina660 (Sib 2) and
Illumina550 (control). (c) ASP–control design: 60K overlap using combined

typed data of Affy500 (Sib 1), Illumina660 (Sib 2), and Illumina550

(control). (d) ASP–control design: as in (a), but only SNPs with RT
240.98.

Details are provided in Table 1.
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Our measure is an information measure that assesses the above
information but also includes strength of association. When testing
independent samples, this is equivalent to the information measure
of SNPTEST. For a recessive or dominant model, Marchini et al10

showed that the post-analysis measures are quite different from the
preanalysis information measure r2. For strongly associated SNPs
under an additive model we showed that RT

2 and r2 could be quite
different (Figure 2). For example, meta-analyses aim to combine
estimates of association parameters, which argues for the use of
post-analysis QC measures such as RT

2 and SNPTEST info. In
situations such as ours, filtering on RT

2 leads to a reduction in
heterogeneity between studies, making the studies more comparable
and meta-analysis more powerful. To interpret the results of meta-
analysis properly, it also is important to report the difference between
the studies, such as the quality of both genotyping and imputation.

All information measures need to be carefully considered in further
analysis. In our study, by re-genotyping strongly associated SNPs, we
found that an extremely tight inclusion threshold of our imputation
quality measure RT

2 greater than 0.98 was needed to achieve reliable
results as shown in Figures 3 and 4; only 18 from the 89 top-ranking
SNPs passed the post-analysis QC. These plots suggest that false
positive findings are caused by imputation based on arrays of inferior
quality, when cases and controls are not matched for genotyping
platforms. Actually, in our GWAS for longevity we discarded the
Affy500 data set because of the small number of reliable SNPs. It
should be noted that 97K imputed SNPs remained in the analysis even
for this stringent cutoff (Table 1). We also retyped the Affy500 cases
with the Illumina 660K platform and recently published our GWAS.12

In Figure 3c one may ask whether the Q–Q plot using only 60K
overlapping SNPs is comparable to Q–Q plots using larger number of
SNPs. We compared the distribution of association P-values using 60K
cases and controls and 350K cases and controls, and both distributions
were quite similar (data not shown).

The results presented here, were based on an early scan data with a
small sample size. When combining modern arrays within studies, less
bias may be expected due to better genotyping quality. On the other
hand, the enormous sample size of pooled studies may amplify even
the small individual effects, for example, due to platform effects,
population strata, or genotyping batch effects, resulting in false
positive findings, as heterogeneity between studies is amplified by
imputation. Imputation of genotypes while combining different data
sets can be a very powerful method, and has identified susceptibility
loci using early scan data.17,18 However, our findings stress that when
combining newer data sets with early scan data rigorous QCs should
be applied to ensure reproducible findings including pre- and post-
analysis stages. Moreover, we recommend that post-analysis QC
measures should be reported in publications as they give the most
direct insight into influence of imputation on association.
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APPENDIX

We first address the ascertainment of the independent cases. Let
Y¼(Y1,y,Yn) be the phenotype, X¼(X1,y,Xn) denotes genotype
dosage 0, 1, or 2. Further, Ȳ is the mean of Y in the whole sample,
or the proportion of cases in case–control studies. As the ascertain-
ment event S depends on the phenotype but is conditionally
independent of the genotype given Y, P(X|Y,S)¼P(X|Y). Therefore,
the retrospective likelihood based on P(X|Y) is appropriate under
selection. On the basis of retrospective likelihood, the score statistic for
testing for an additive effect of a genotyped locus on phenotype is as
follows. The score is,

UX ¼ ðY � �YÞgX; ð1Þ
and the variance of UX

Var UX ¼ ðY � �YÞgðY � �YÞs2
X ; ð2Þ

where s2
X is the genotypic variance. Under HWE assumption, s2

X can
be estimated by 2p̂ð1� p̂Þ with the MAF estimate p̂. Under H0, the
test statistic U2

X/VarUX is asymptotically distributed as w2 with 1
degree of freedom.

When using multiplex cases from the same pedigree, we need to
take into account correlations. We define the correlation matrix K for
n subjects as follows:

K ¼

1 r12 � � � r1n

r12 1 � � � r1n

..

.
� � � � � � ..

.

r1n r2n � � � 1

0
BBB@

1
CCCA

The off-diagonal entries, rijs, are twice the kinship coefficient between
individuals i and j(iaj). Then, the expression of the denominator of
the score statistic is replaced by

Var UX ¼ ðY � �YÞgKðY � �YÞs2
X :

1

To deal with imputed genotypes, the uncertainty caused by imputa-
tion needs to be considered. On the basis of the statistical theory for
missing data, the genotype data can be partitioned into two parts

Xcomp ¼ Xobs;Xmis½ �:2

The log likelihoods for the complete data (lcomp) and observed
(incomplete) data (lobs) are given by

lcompðyÞ ¼ log P Xobs;Xmisjyð Þ;

lobsðyÞ ¼ log

Z
P Xobs;Xmisjyð Þd;Xmis

Let U(y) be the complete data score qlcomp/qy , and I(y) the complete
data information �ql2comp/q2y, respectively.

Instead of observing X, for imputed genotypes the posterior
probability pi¼(pi0, pi1, pi2) is given for subject i¼1,y,n. Let the
expected dosage for the genotype counts of the ith individual be
X̃I¼EXi¼pi1+2pi2. Then we replace the genotype counts X by

U ~X ¼ ðY � �YÞg ~X

in the score statistic (1).
Let S¼s2

X1 1T be n�n matrix with the genotypic variance s2
X

where 1 represents a vector of ones of length n. And, the n�n matrix
Sloss denotes the loss of information.

Then, the score and information for the observed data likelihood
are given by

UobsðyÞ ¼ EXmisjXobsUðyÞ;

IobsðyÞ ¼ EXmisjXobsIðyÞ � VarXmisjXobs
UðyÞ ¼

X
�
X
loss

Here, the term VarXmis|Xobs(�) represents the loss of information due
to imputation uncertainty. The elements of Sloss are defined by the
outer product of the square root of individual loss li,

li ¼ pi1ð1� pi1Þ+4pi2ð1� pi2Þ � 4pi1pi2

Thus, on the diagonal we have Sloss;ii¼li and off the diagonal we have

X
loss;i;j

¼
ffiffiffiffiffi
lilj

q

for i,j¼1,y,n. Then the variance of the score statistic can be
expressed as

VarXobs
U ~X ¼ n�1ðY � �YÞg K � ð

X
�
X
loss

Þ
" #

ðY � �YÞ;

where J denotes the (Hadamard) term-wise product.
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