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Optical coherence tomography (OCT) has enabled objective measurement of the total retinal thickness in diabetic macular edema
(DME). The central retinal thickness is correlated modestly with visual impairment and changes paradoxically after treatments
compared to the visual acuity. This suggests the clinical relevance of the central retinal thickness in DME and the presence of
other factors that affect visual disturbance. Recent advances in spectral-domain (SD) OCT have provided better delineation of the
structural changes and fine lesions in the individual retinal layers. Cystoid spaces in the inner nuclear layer and outer plexiform
layer are related to quantitative and qualitative parameters in fluorescein angiography. OCT often shows vitreoretinal interface
abnormalities in eyes with sponge-like retinal swelling. Serous retinal detachment is sometimes accompanied by hyperreflective
foci in the subretinal fluid, which exacerbates the pathogenesis at the interface of the photoreceptors and retinal pigment epithelium.
Photoreceptor damage at the fovea is thought to be represented by disruption of the external limiting membrane or the junction
between the inner and outer segment lines and is correlated with visual impairment. Hyperreflective foci in the outer retinal layers
on SD-OCT images, another marker of visual disturbance, are associated with foveal photoreceptor damage.

1. Introduction

Diabetic macular edema (DME), a leading cause of visual
impairment in individuals of working age, is mediated
by multiple and complex mechanisms in its pathogenesis
[1–4]. Pathophysiology, that is, vascular hyperpermeability
and ischemia, is represented by clinical findings seen on
fluorescein angiography (FA) images [5–8]. Basic research
has elucidated the molecular mechanisms including vascular
endothelial growth factor in DME and proliferative diabetic
retinopathy (PDR) [9–18]. Using biomicroscopy, clinical
ophthalmologists observe thickening of the sensory retina
and vascular lesions in DME. However, it is difficult to
objectively evaluate the neuroglial changes in the retina.
In contrast, histologic studies have reported that cystoid
spaces are present mainly in the inner nuclear layer (INL)
and the outer plexiform layer (OPL) and contribute partly
to macular thickening [19–21]. Electron microscopy showed
that, in addition to the accumulation of the extracellular

fluids, intracytoplasmic swelling of the Müller cells might be
a pathophysiologic mechanism in DME.

Optical coherence tomography (OCT) provides retinal
sectional images as in histology study (Figure 1) and is useful
for qualitative and quantitative evaluation of pathological
retinal changes [22]. The original instrument, time-domain
OCT, has been replaced with spectral-domain OCT (SD-
OCT), which has higher resolution and reduced speckle
noise. Clinicians can appreciate the improved delineation of
the fine pathological lesions and the clearer borders between
the individual retinal layers.

This review summarizes the current understanding of
the retinal thickness, pathomorphologies, and photoreceptor
damage in DME that can be seen on OCT.

2. Retinal Thickening on OCT Images

Biomicroscopy allows ophthalmologists to subjectively eval-
uate retinal thickening, whereas OCT has enabled objective
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Figure 1: (a) Retinal sections of the physiologic macula dissecting along the green line on fundus photography using SD-OCT. (b) The
magnified image at the fovea shows three lines over the retinal pigment epithelium (RPE), that is, the external limiting membrane (ELM),
the junction between inner and outer segments (IS/OS), and the cone outer segment tips (COST). (c) A magnified parafoveal image shows
the individual retinal layers. NFL: nerve fiber layer; GCL: ganglion cell layer; IPL: inner plexiform layer; INL: inner nuclear layer; OPL: outer
plexiform layer; ONL: outer nuclear layer.

quantification of the total retinal thickness (Figure 2). The
diabetic retinopathy clinical research network (DRCRnet)
especially defined an increase in the mean central thickness
of 1mm as center-involved DME [23, 24], which is the new
standard for applying treatments and a surrogate marker for
evaluating treatment efficacy [25]. It is widely accepted that
the central thickness is correlatedmodestly with visual acuity
(VA) in DME [26]. In addition, the DRCRnet reported that
paradoxical VA changes are observed after intervention, that
is, VA reduction despite resolution ofMEorVA improvement
with increased retinal thickening [26]. These data suggest
the importance of identifying unknownmechanisms and the
magnitude of edematous changes. Despite these issues, an
increasing number of studies have reported the relevance of
measuring the retinal thickness after treatment for DME as a
surrogate marker [27–29].

SD-OCT with higher resolution and reduced speckle
noises has enabled segmentation of the individual retinal
layers, and several kinds of OCT instruments provide
automated segmentation. This feature has encouraged
quantification of the thickness of the retinal layers and
qualitative evaluation of lesions in the individual layers.
Interestingly, the thickness in the inner retinal layers is
correlated positively with visual impairment, whereas
the outer retinal thickness is associated negatively with
poor visual prognosis after vitrectomy for DME [30]. This
suggests that thinning of the outer retinal layers is related

to photoreceptor degeneration (or atrophy) concomitantly
contributes to visual disturbance at least partly, and supports
the paradoxical VA changes reported by the DRCRnet [26].
Further analyses of retinal thicknesses with segmentation
would improve the understanding of the association between
clinical findings and pathogenesis in DME.

3. Pathomorphology in Individual
Retinal Layers

Numerous pathological mechanisms have been reported
regarding diabetic retinopathy (DR), compared to the simple
criteria of diabetes per se [1–4]. OCT subjectively shows
several types of foveal morphologies in DME, that is, cystoid
macular edema (CME), serous retinal detachment (SRD),
and sponge-like retinal swelling [31], which might be among
other factors that modulate visual function, dependently or
independently of retinal thickening. Individual lesions have
been delineated in the individual retinal layers. OCT showed
cystoid spaces mainly in the INL and OPL, which has been
supported by histologic reports [20, 32, 33]. Extracellular
fluids pool between the outer segments and retinal pigment
epithelium (RPE) in eyes with SRD. Sponge-like retinal
swelling at the fovea occurs in the OPL.

Regarding the types of CME, OCT has documented
several findings (Figure 3). The cystoid spaces in the INL
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Figure 2: Quantification of the total retinal thickness using OCT. The retinal thickness can be measured semiautomatically (b) or manually
using calipers (a). (c) A two-dimensional map of the retinal thickness can be constructed from the automatically measured retinal thickness.
(d) The average thickness in each subfield of Early Treatment Diabetic Retinopathy Study grid is shown. (e) The average thickness in the
central subfield is correlated modestly with the logarithm of the minimum angle of resolution VA in center-involved DME.
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Figure 3: Characteristics of cystoid spaces in DME. ((a), (b)) Early-phase FA shows an enlarged foveal avascular zone and surrounding
microaneurysms (arrowheads). (c) A late-phase image shows fluorescein pooling at the fovea. (d) Cystoid spaces (arrows) are accompanied
by microaneurysms (arrowhead). (e) A late-phase FA image shows petalloid- (e) or honeycomb-pattern (f) fluorescein pooling, which
is considered to correspond to cystoid spaces in OPL (arrow) or INL (arrowhead), respectively, on OCT image. Foveal cystoid spaces
(arrowheads) have higher OCT reflectivity and its heterogeneity (g) or lower and homogeneous reflectivity (h).
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have a honeycomb pattern of fluorescein pooling, whereas
petalloid-shaped pooling corresponds to cystoid spaces in the
OPL [32, 33]. Further study of an FA/OCT correlation found
that the foveal cystoid spaces on OCT images were associated
with enlarged foveal avascular zones and microaneurysms
around the perifoveal capillary network [8]. This suggested
that ischemia and leakage from microaneurysms contribute
to the development ormaintenance of cystoid spaces inDME.
A recent publication reported that OCT reflectivity in the
cystoid spaces was correlated negatively with the intensity of
the fluorescein pooling [34] and implicated several types of
vascular hyperpermeability regarding the pathogenesis in the
cystoid spaces.

SD-OCT has shown the fine structures of the microa-
neurysms in patients with DR [35–37]. Among the capsular
structure patterns, the “incomplete” and “absent” types, in
contrast to the “complete” type, often were accompanied by
fluorescein leakage and cystoid spaces [36, 37]. Recently,
using SD-OCT, clinicians have confirmed that the number
of microaneurysms decrease after focal photocoagulation,
which suggested that in the future FA would be replaced with
noninvasive OCT to evaluate treatment efficacy [38, 39].

Vitreomacular traction sometimes modulates macular
thickening in DME [40–43]. Eliminating the vitreoretinal
traction during vitrectomy is suggested to be an effective
strategy for eyes with DME, and DRCRnet has reported
the greater VA improvement in eyes with preoperative ERM
and the greater reduction of central subfield thickness in
eyes with vitreoretinal abnormalities [44–46]. Ocriplasmin,
a recombinant protease with activity against components
of the vitreoretinal interface, has recently been reported to
be effective for the diseases with vitreomacular interface
abnormalities [47]. It remains to be elucidated how ocriplas-
min modulates retinal thickening without the removal of the
vitreous gel which contains growth factors and cytokines.

Sponge-like retinal swelling especially often is accom-
panied by pathological findings in the vitreomacular inter-
face on OCT images (Figure 4), and vitreomacular inter-
face abnormalities contribute to thickening of the retinal
parenchyma in the OPL at the fovea, as in the case of idio-
pathic epiretinal membrane (ERM). It also was reported that
vitreomacular interface abnormalities alsomight induce SRD
in DME [40], and OCT sometimes shows cystoid spaces with
vitreoretinal abnormalities as with idiopathic macular holes
[48, 49]. Fibrovascular proliferation in PDR progresses along
the posterior hyaloid membrane and induces contraction.
Tangential tractional forces increase the retinal thickness and
concomitantly contribute to macular edema, and horizontal
forces result in macular heterotopia (traction maculopathy)
in PDR. Several patterns of vitreomacular interface abnor-
malities seen on SD-OCT images were reported recently, that
is, vitreomacular tractionwith no or partial posterior vitreous
detachment, posterior vitreous separation, ERM, and their
combinations. These findings would help surgeons to com-
pletely remove the pathological changes of the vitreoretinal
interface [43].

It is not well knownhow SRDdevelops inDME compared
to the pathogenesis in eyes with CME or sponge-like retinal
swelling. Marmor reported numerous clinical and basic

data regarding the development of retinal detachment that
depended on the osmotic or oncotic pressure of intraocular
fluids [50]. In eyes with DME, vascular hyperpermeability
might increase such pressures, resulting in SRD. High-
resolutionOCThas enabled observation of the cystoid spaces
in the OPL that sometimes rupture toward the SRD, suggest-
ing that extravasated blood components pour directly into
the SRD [51]. Regarding visual function, no association was
found between VA and foveal thickness in eyes with foveal
SRD [52], whereas these eyes oftenhave a poor prognosis after
treatment [51, 53]. OCT often delineates hyperreflective foci
in subretinal fluids (Figure 5). In most such cases, subfoveal
hard exudates develop after resolution of the macular edema
(ME) that correspond to the confluent hyperreflective foci
with concomitant impaired visual function [51], as reported
in the Early Treatment Diabetic Retinopathy Study [54, 55].

4. Photoreceptor Layers

The superior delineation of the fine structures on SD-
OCT images encouraged us to evaluate photoreceptor mark-
ers, external limiting membrane (ELM), and the junction
between the inner and outer segments (IS/OS) (Figure 6).
Sandberg and associates reported that the IS/OS line, to
which they referred as the third high-reflectance band in
their original manuscript, is associated with visual function
in retinitis pigmentosa [56], suggesting that the IS/OS line
represents the photoreceptor structure and function in vivo
[57]. A few years later, disruption of the IS/OS line at the
fovea was reported to be associated with a poor visual
prognosis in resolved ME associated with branch retinal vein
occlusion [58]. Many later cross-sectional or longitudinal
studies have shown the clinical relevance of the IS/OS line in
DME [59–67]. Histologic publications have reported “cystoid
degeneration” in the photoreceptors at the fovea [68], which
supports the disruption of the IS/OS line on OCT images.
The thickness of the photoreceptor outer segments was
quantified and found to be associated with visual function in
DME [62]. The transverse length of the disrupted or absent
IS/OS line also has been related to visual impairment [63,
66]. In the future, quantification of photoreceptor damage
would improve the understanding of visual impairment in
DME.

Despite the relevance, it is unknown whether the IS/OS
line seen on OCT images truly corresponds to the histologic
junction of the inner and outer segments. Spaide and Curcio
speculated that this highly reflective band was located at the
ellipsoid in the inner segments, considering the correlation
between the microstructure on the SD-OCT images and the
histologic findings [69].TheOCT reflectivity changed around
the line after light exposure, which suggested that the linemay
represent photoreceptor function per se [70, 71].

The ELM line is another marker of photoreceptor
integrity, and its disruption also is associated with visual
impairment inDME [52, 66, 67]. Shin and associates reported
that ELM disruption predicts poor visual outcomes after
treatment with triamcinolone [67]. Since the ELM is an inter-
cellular junction between the Müller cells and photoreceptor
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Figure 4: Several patterns of vitreomacular interface abnormalities in DME. (a) A posterior hyaloid membrane is sometimes depicted on
OCT images (arrows). (b) ERM often is accompanied by sponge-like retinal swelling (arrows). (c) A perifoveal vitreous separation sometimes
induces vertical traction, as in idiopathic macular holes (arrows). (d) Some eyes have separation of a posterior vitreous membrane (arrows).

cells and has barrier properties against macromolecules [72],
the disrupted ELMmight allow blood components tomigrate
into the outer retinal layers and exacerbate the photoreceptor
damage. Although it remains poorly understood how the
ELM becomes disrupted, a few possible mechanisms are
implicated. Extended cystoid spaces from the INL to the OPL
are accompanied by ELM disruption in DME, suggesting
disturbance of theMüller cells [66]. A tear in the outer retinal
layers also can result in loss of the barrier function in eyes
with SRD [51].

SD-OCT shows dot-like lesions, referred to as hyper-
reflective foci, throughout the retina in DR [35]. Those in the
outer layers especially are correlated cross-sectionally with

poor visual function in patients with DMEwithout SRD [73].
Hyperreflective foci in subretinal fluids accumulate at the
fovea and lead to poor visual prognosis in eyes with SRD
[51]. Bolz and associates speculated that the hyperreflective
foci in DR corresponded to lipid-laden macrophages and
the precursors of hard exudates [35]. The hyperreflective foci
also are considered to be degenerated photoreceptors and
RPE hyperplasia or metaplasia in other diseases [74, 75].
Although it remains undetermined what the hyperreflective
foci are in the outer retinal layers in DME, the disruption of
the ELM or IS/OS line is correlated with the hyperreflective
foci, suggesting that these lesions reciprocally promote the
pathogenesis of photoreceptor degeneration.
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Figure 5: A representative case with hyperreflective foci (arrowheads) in subretinal fluids. The preoperative decimal VA is 0.6. (b) DME is
improving after focal/grid photocoagulation, although hyperreflective foci have accumulated at the fovea (arrowheads).The postoperative VA
is 0.09. (c) OCT sometimes shows that cystoid spaces in the OPL rupture to subretinal fluids (arrow), whichmight modulate the pathogenesis
in SRD.
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Figure 6: Pathological changes in the photoreceptor layers in DME. (a) Both the ELM and IS/OS lines are continuous. (b) The ELM line
seems almost continuous, whereas the IS/OS line is discontinuous on the left (arrow). (c) The ELM line is disrupted, and the IS/OS line is
absent at the fovea, accompanied by hyperreflective foci in the outer retinal layers (arrowheads).
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5. Ganglion Cells and Nerve Fiber Layers

The nerve fiber layer (NFL) is comprised of axons derived
from ganglion cells. The defects in the NFL were clinically
reported [76], and basic research showed ganglion cell
apoptosis in DR [77]. Since swelling of the NFL occurs in
lesions associated with DR, such as cotton-wool spots (soft
exudates), it is difficult to evaluate the decrease in the axons
from the ganglion cells using OCT. In contrast, thinning of
the ganglion cell layer was reported in eyes with ischemic
maculopathy with and without DME [78]. Further, glaucoma
research has focused on the clinical relevance of the ganglion
cell complex (from the inner limiting membrane to the outer
boundary of the inner plexiform layer) [79], which should be
applied to evaluate neovascular glaucoma in advanced PDR.

It was reported that white spots on fundus photography
might correspond to hyperreflective lesions at the level of
NFL [80]. Midena and associates have recently demonstrated
that hyperreflective spots, which might correspond to acti-
vated microglia or Müller cells, were detected in inner retinal
layers, as DR progresses. They were suggested to be a novel
biomarker of glial activation in DR, and further investigation
remains to be planned [81].

6. The Choroid

Disruption of the choroidal circulation in patients with
diabetes had been reported as diabetic choroidopathy [82,
83]. Enhanced-depth imaging using SD-OCT or the latest
version of OCT, swept-source OCT, recently has enabled
measurement of the choroidal thickness. A few publications
have reported alteration of the choroidal thickness [84–86]
and further investigations will clarify how the pathological
choroidal changes contribute to DME.

7. Conclusions

OCT has allowed identification of the morphologic factors
in the pathogenesis in DME. The major OCT parameter,
the central retinal thickness, is correlated modestly with the
VA, and pathomorphologies and photoreceptor damage also
cause visual impairment. Further studies of a structural-
functional correlation will promote a better understanding of
the complex pathogenesis in DME [87].
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