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Perineuronal nets (PNNs) are specialized extracellular matrix structures that surround
specific neurons in the brain and spinal cord, appear during critical periods of
development, and restrict plasticity during adulthood. Removal of PNNs can reinstate
juvenile-like plasticity or, in cases of PNN removal during early developmental stages,
PNN removal extends the critical plasticity period. PNNs surround mainly parvalbumin
(PV)-containing, fast-spiking GABAergic interneurons in several brain regions. These
inhibitory interneurons profoundly inhibit the network of surrounding neurons via their
elaborate contacts with local pyramidal neurons, and they are key contributors to
gamma oscillations generated across several brain regions. Among other functions,
these gamma oscillations regulate plasticity associated with learning, decision making,
attention, cognitive flexibility, and working memory. The detailed mechanisms by which
PNN removal increases plasticity are only beginning to be understood. Here, we review
the impact of PNN removal on several electrophysiological features of their underlying
PV interneurons and nearby pyramidal neurons, including changes in intrinsic and
synaptic membrane properties, brain oscillations, and how these changes may alter
the integration of memory-related information. Additionally, we review how PNN removal
affects plasticity-associated phenomena such as long-term potentiation (LTP), long-term
depression (LTD), and paired-pulse ratio (PPR). The results are discussed in the context
of the role of PV interneurons in circuit function and how PNN removal alters this function.
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INTRODUCTION

Perineuronal nets (PNNs) are specialized extracellular matrix structures surrounding specific
neurons in the brain and spinal cord that appear during development in an experience–dependent
manner (Dityatev et al., 2007; Balmer et al., 2009; Carulli et al., 2010) and restrict plasticity in
adulthood. Although PNNs have been described as part of the extracellular reticulum for over
100 years by Golgi (see Celio et al., 1998), the seminal study that re-launched a precipitous increase
in research on PNNs was a collaboration between Dr. James Fawcett, whose research focus was
on the repair of spinal cord injury, and Dr. Tomasso Pizzorusso, whose focus was on critical
period plasticity in the visual system. Their study revealed a major role for PNNs in the closure of
the critical period for ocular dominance plasticity, and crucially, that this experience–dependent
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plasticity could be re-opened in adulthood by removing PNNs
enzymatically (Pizzorusso et al., 2002). PNNs have now been
shown to contribute to critical period plasticity within the visual,
motor, and somatosensory systems (Pizzorusso et al., 2002;
Barritt et al., 2006; Massey et al., 2006).

PNNs are found primarily around fast-spiking, parvalbumin
(PV)-containing GABAergic interneurons within many brain
regions (Härtig et al., 1992; Schüppel et al., 2002; Dityatev et al.,
2007). However, PNNs also surround glutamatergic neurons
(Wegner et al., 2003; Mészár et al., 2012; Horii-Hayashi et al.,
2015; Vazquez-Sanroman et al., 2015; Yamada et al., 2015),
which can be both PV positive or negative (Mészár et al., 2012;
Horii-Hayashi et al., 2015), and other neurons involved in fast
transmission, such as glycinergic output neurons in the medial
nucleus of the trapezoid body (MNTB) at the calyx of Held
synapse (Blosa et al., 2015; Balmer, 2016) and excitatory neurons
in the deep cerebellar nucleus (DCN; Edamatsu et al., 2018;
Hirono et al., 2018; Carulli et al., 2020).

Research from numerous laboratories demonstrate a central
role for PNN-surrounded PV interneurons in plasticity, not
only during the critical period, but also during learning
and memory and repair of the damaged brain and spinal
cord. Their dysfunction may contribute to a range of brain
diseases/disorders, including schizophrenia, bipolar disorder,
Alzheimer’s disease, autism spectrum disorder, epilepsy, and
disorders associated with drugs of abuse and fear (Goldman-
Rakic, 1994; Gogolla et al., 2009; Lewis, 2014; Rankin-Gee
et al., 2015; Miyata and Kitagawa, 2016; Pantazopoulos and
Berretta, 2016; Foscarin et al., 2017; Steullet et al., 2017;
Fawcett et al., 2019; Testa et al., 2019). Removal of PNNs with
the enzyme chondroitinase ABC (Ch-ABC) enhances reversal
learning in the auditory cortex (Happel et al., 2014), promotes
recovery of motor learning after spinal cord injury (Zhao and
Fawcett, 2013) or cortical ischemia (Gherardini et al., 2015), and
influences extinction of fear conditioning (Gogolla et al., 2009).
Degradation of PNNs also modifies plasticity by strong stimuli:
PNN degradation in the hippocampus, mPFC, or anterior
cingulate cortex impairs reinstatement of fear conditioning
(Hylin et al., 2013; Shi et al., 2019), and plasticity induced
by cocaine or alcohol is impaired after PNN removal from
the basolateral amygdala (BLA), insula, or mPFC (Xue et al.,
2014; Slaker et al., 2015; Chen and Lasek, 2019). Removal of
PNNs and/or the loose extracellular matrix thus provides an
opportunity to alter plasticity for CNS repair after injury and to
facilitate learning and memory in ageing and CNS disorders.

Although the past 20 years have brought about increased
interest in research on PNNs and how they mediate brain
plasticity, very little is still known about what form(s)
this plasticity takes. How PNN removal impacts Hebbian
activity-dependent plasticity mechanisms such as excitatory
and inhibitory forms of spike-timing-dependent long-term
potentiation (LTP) and long-term depression (LTD) on different
cell types has also received relatively little investigation. PNN
removal may also alter the intrinsic activity of neurons in
addition to these other mechanisms. Perineuronal nets (PNNs)
play such a critical role in PV interneuron function that recent
cell-type specific manipulations have focused on manipulating

PV interneurons alone to alter cortical plasticity (Cisneros-
Franco and de Villers-Sidani, 2019). Therefore, we concentrate
the first part of this review on the general properties and the
wide range of circuit functions of PV interneurons, which are
fast-spiking interneurons (Kawaguchi and Kubota, 1993) and
make up the largest population of inhibitory interneurons in
the cortex (Markram et al., 2004). We then discuss studies
that examined the impact of removing PNNs or modifying
PNN components on PV interneurons (Supplementary Table
1) and principal neurons that are generally, but not exclusively,
glutamatergic pyramidal neurons (Supplementary Table 2). We
then review findings from several studies that examine the impact
of PNN removal on brain plasticity, including LTP, LTD, and
paired-pulse ratio (PPR; Supplementary Table 3) followed by
a discussion of how PNN removal or modifications impact
brain oscillations, most notably gamma oscillations, in which PV
interneurons play an integral role (Cardin et al., 2009; Sohal et al.,
2009; Buzsaki andWang, 2012; Supplementary Table 4). Finally,
to bring together the broader implications of PNN removal on
PV interneuron function, we discuss how PNN removal alters PV
cell functionality in ways that may mediate changes in plasticity
and memory-related phenomena. We have defined several terms
in Box 1, which are presented in bold font. The reader is also
referred to several additional reviews on PNNs (Sorg et al., 2016;
Song andDityatev, 2018; Bosiacki et al., 2019; Fawcett et al., 2019;
Testa et al., 2019).

The vast majority of studies examining functional
changes produced by PNN depletion have used Ch-ABC
to degrade PNNs. Ch-ABC degrades chondroitin sulfate
glycosaminoglycans on chondroitin sulfate proteoglycans
(CSPGs; Yamagata et al., 1968) and hyaluronic acid (Galtrey
et al., 2007). Some studies have used hyaluronidase, which
degrades the hyaluronin backbone of PNNs, and a few studies
have employed both Ch-ABC and hyaluronidase simultaneously.
We also included studies in which key PNN components were
genetically altered by knockout (KO) or knockdown strategies.
We review studies mainly in mice and rats, in which most of the
work has been conducted. With a few exceptions in which visual
system critical period plasticity is included as a portion of the
reviewed work (e.g., monocular deprivation studies), we have
not focused on this literature and refer the reader to excellent
primary literature and reviews of visual plasticity after PNN
removal (Pizzorusso et al., 2002; Carulli et al., 2010; Beurdeley
et al., 2012; Bernard and Prochiantz, 2016; Hensch and Quinlan,
2018; Reh et al., 2020).

PARVALBUMIN INTERNEURONS:
CIRCUITS AND CONNECTIVITY

Role of PV Interneurons in Circuit Function
Parvalbumin interneurons are critical to neural circuit function.
Recent advancements, including large neural population
recording techniques and cell-type specific labeling and
manipulation, have shown that PV interneurons play a
major role in more complex neural circuit functions such
as modulation, sparse encoding (or sparse coding), pattern

Frontiers in Synaptic Neuroscience | www.frontiersin.org 2 May 2021 | Volume 13 | Article 673210

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


Wingert and Sorg Electrophysiological Impact of Perineuronal Nets

BOX 1 | Definitions

• Chondroitinase ABC (Ch-ABC): A bacterial enzyme derived from Proteus vulgaris that degrades chondroitin sulfates A, B, C, chondroitin sulfate, and
hyaluronic acid (Yamagata et al., 1968).

Inhibition:
• Blanket inhibition: Inhibition resulting from the dense, non-specific connectivity of inhibitory neurons to the majority of the surrounding cell population

(Karnani et al., 2014). Blanket inhibition does not posit that the strength of inhibitory contacts made by a cell are equal.

• Feedback/recurrent inhibition: Condition in which an excitatory cell activates an inhibitory cell that projects back to the initiating cell and inhibits it.
Consequently, the pyramidal cell receives inhibitory feedback about the action potential it sent.

• Feedforward inhibition: Condition in which an excitatory input excites both an excitatory cell and an inhibitory cell (which inhibits the downstream
excitatory cell) so that the compound signal is a monosynaptic excitatory input and a disynaptic inhibitory input with a delay.

• Lateral inhibition: Condition in a neuronal circuit in which an excitatory cell recruits an inhibitory cell that inhibits other nearby excitatory cells that may
compete with other neurons to be the active members of the circuit.

• Normalizing inhibition: In its simplest form, normalizing inhibition is an extension of blanket inhibition but moves a step further by suggesting a functional
role for interneurons to be recruited in a manner that is scalable with increases in circuit drive. As the number of active neurons in a cortical region increases,
so, too, will the level of inhibition being provided to the neurons within that population (Murayama et al., 2009; Pouille et al., 2009).

• Selective inhibition: In contrast to blanket and normalizing inhibition, selective inhibition suggests that inhibitory cells receive specific input and will respond
only to certain stimuli or input. Many studies suggest that inhibitory neurons often respond selectively to stimuli (Maurer et al., 2006; Runyan et al., 2010;
Moore and Wehr, 2013; Lovett-Barron et al., 2014; Pinto and Dan, 2015; Allen et al., 2017; Najafi et al., 2020).

• Shunting inhibition: Local inhibition by GABA release onto a neuron whose membrane potential is near the inhibitory reversal potential. The result is a
reduced magnitude of membrane potential change induced by nearby excitatory input.

• Modulation: Modulation describes a wide range of observations that suggest a neuron can change its responsiveness to inputs (responding with either more
actions potential or fewer) without altering its selectivity to a particular stimulus. Common factors that impact modulation are movement, attention,
neuromodulators, and other brain state changes (for an extensive review see Ferguson and Cardin, 2020).

• Oscillations: Neural population activity that has a stable rhythmic pattern of excitation and inhibition with a consistent temporal dynamic. Oscillations are
typically measured with electrodes that record the summation of local neural activity.

• Orthogonalization: A form of pattern separation in which similar inputs are turned into near-mutually exclusive outputs (Wick et al., 2010). Feedforward
excitation, feedforward inhibition, feedback inhibition, and lateral inhibition may support this in biological networks (Srivastava et al., 2008, 2014).

• Pattern separation: Pattern separation is the process of transforming inputs that may be highly similar into more distinct output patterns that would facilitate
discrimination between similar events (for review see Cayco-Gajic and Silver, 2019).

• Sparse encoding: Sparse encoding simply posits that information is not being encoded by either a linear code (separate outputs for each relationship,
i.e., grandmother cells where one cell represents each stimulus) or a dense code (every cell is active to some degree and the stimulus is represented by the whole
population). In a sparse code, some number of cells (more than one cell and less than 100% of the population) may be active during any given stimulus.

• Tuning (neuronal): When a neuron shows a specific response to a narrow range of presented stimuli. It is typically investigated in sensory modalities such as
vision or hearing in which neurons respond to sweeps of stimuli, such as when black-and-white bars of varying orientations are presented to the eyes or tones of
different frequencies are presented.

separation, and interregional communication (for a more
complete review of PV interneurons see Hu et al., 2014).
How PNN removal impacts these circuit operations is largely
unknown, although a growing body of literature suggests
alterations in electrophysiological properties after their removal,
which is expected to alter circuit properties. Thus, a fuller
understanding of how PNN removal alters circuit functions
would be highly informative for explaining plasticity events
underlying behavioral changes.

Inhibitory circuit motifs, including feedforward inhibition,
feedback (recurrent) inhibition, and lateral inhibition can
greatly shape circuit responses to input. Parvalbumin neurons
are involved in all of these types of inhibition, although
the contribution of each of these types may be different
depending on the region and/or cortical layer investigated
(Pouille and Scanziani, 2001; Pouille et al., 2009; Espinoza
et al., 2018). Parvalbumin neurons in both the cortex and
the hippocampus form synapses primarily on the soma,
axon initial segment, and distal dendrites, which allow these
inhibitory neurons to effectively shunt their downstream
targets and thereby control pyramidal cell output (Hu et al.,
2014). Jouhanneau et al. (2018) found that single evoked or

spontaneous action potentials in pyramidal cells can trigger
unitary excitatory postsynaptic potentials (EPSPs) that reliably
produce an action potential in a connected PV interneuron,
which is not seen in monosynaptically connected somatosatin-
expressing interneurons or pyramidal cells. This suggests that
PV interneurons are particularly excitable during cortical Up
states, such as during awake sensory processing, and that a single
action potential efficiently recruits PV cell-mediated feedback
inhibition, which reduces the probability of neighboring
pyramidal cell activity for ∼30 ms following the first pyramidal
cell firing. Parvalbumin cells are highly excitable compared with
other inhibitory neurons or principal cells, and they have higher
mean firing rates (Avermann et al., 2012; Pala and Petersen,
2015). These properties suggest that PV interneurons may allow
for synchronization of principal neuron output into neural
assemblies, which are groups of neurons activated spatially and
temporally to provide meaningful information (Badin et al.,
2016). These properties also provide competitive inhibition to
ensure that only the output cells receiving high enough drive can
respond during states of inhibition.

To understand the role of PV interneurons at the circuit
level, it is necessary to understand the typical inputs and
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outputs to and from these cells that might be indicative of their
function. PV interneurons have long branching and radially
projecting axons that form en-passant synapses, allowing for
a large number of connections (Kisvárday et al., 2002; Packer
and Yuste, 2011). Packer and Yuste (2011) used glutamate
uncaging to activate specific PV interneurons while recording
from pyramidal neurons. They tested the connectivity of an
astounding 2,002 PV interneuron-to-pyramidal cell pairs in the
mouse sensory and frontal cortex. Their results suggested that PV
interneurons may form synapses non-specifically on nearly every
principal cell within a 200 µm region (Packer and Yuste, 2011).
High PV-to-pyramidal cell connection rates have been found in
several other studies (Holmgren et al., 2003; Hofer et al., 2011;
Espinoza et al., 2018; Jouhanneau et al., 2018). This widespread,
non-specific inhibition is termed blanket inhibition (Karnani
et al., 2014). In summary, PV interneurons are connected in
all manners—associated with feedforward, feedback, and lateral
inhibitory circuits. They have a high probability of connection
with the cells in the neighboring 200 µm from their soma. This
suggests that whether the input is coming locally or from a
projection, PV interneurons will inhibit a large proportion of
the local population. We discuss below what this excitability and
connectivity suggest about functional roles for PV interneurons.

Do PV Interneurons Produce Blanket
Inhibition or Selective Inhibition?
Relevant to understanding PV cell function is the delineation
of their inputs. Many investigators have suggested that PV
interneurons represent a pool of inhibitory neurons that scale the
amount of inhibition proportional to the amount of excitation
(blanket inhibition). Thus, these neurons do not execute the
complex computations as pyramidal cells do but instead sample
cortical activity and linearly provide scalable blanket inhibition,
termed normalizing inhibition, that dampens the response
of pyramidal cells without altering their response properties
(Atallah et al., 2012; Spanne and Jörntell, 2015; Trachtenberg,
2015). This suggests a high amount of convergence for PV cells
to accurately sample and scale cortical inhibition.

The visual cortex is widely used to study neural connectivity,
given the tuning properties of the neurons and the ability to
map many features with different visual presentations in the
same preparation. Many studies have looked at the tuning of
visual cortex neurons to black-and-white gratings presented in
various orientations in which many neurons increase their firing
rate for specific orientations (orientation-selective neurons).
In the rodent visual cortex, pyramidal neurons that show
orientation tuning to different directions are scattered randomly
across the cortex in what is described as a salt-and-pepper-
like distribution (Ohki et al., 2005). In the visual cortex, PV
interneurons have broad tuning where they fire similar numbers
of action potentials for most orientations presented (Sohya et al.,
2007; Niell and Stryker, 2008; Liu et al., 2009; Kerlin et al.,
2010; Runyan et al., 2010; Hofer et al., 2011; Atallah et al.,
2012; Wilson et al., 2012; Chen et al., 2013). One insightful
study used serial electron microscopy in combination with
two-photon in vivo calcium imaging to map pyramidal cell
orientation responses and trace their proximal targets (Bock

et al., 2011). They found a convergence of different orientation-
selective neurons onto single inhibitory neurons in the mouse
visual cortex. The broad tuning of many PV interneurons is
therefore thought to reflect their local integration of pyramidal
cell activity. This idea is further supported by a recent study
on ocular dominance disparity in the binocular region of the
mouse visual cortex (V1), where PV interneuron responses
appear to be reflective of local aggregate population activity
within a 100 µm area (Scholl et al., 2015). PV interneurons
in the auditory cortex also appear to show a broad range of
tuning to different frequencies (Moore and Wehr, 2013). The
broad tuning of PV interneurons is also supported by a study
in mouse visual cortex suggesting that PV interneurons lose
direction selectivity in an activity-dependent manner following
eye opening, suggesting that broad tuning is part of circuit
maturation during development (Kuhlman et al., 2011). These
studies provide evidence that PV interneurons often show broad
tuning profiles due to nonselective input, and that, given their
convergence onto many proximal excitatory cells, may indeed
provide a blanket of inhibition based on the local integration of
nearby activity.

However, all PV interneurons may not meet this function
of broad selectivity. Many of the same studies that argue that
PV interneurons have broad tuning profiles also showed narrow
tuning profiles of PV interneurons in both the visual cortex
and auditory cortex (Runyan et al., 2010; Wilson et al., 2012;
Moore and Wehr, 2013). PV interneurons that show narrow
tuning, likely tuning inherited from principal cells that have the
same preference, would appear to be receiving specific input that
would provide selective inhibition. These narrowly tuned PV
interneurons suggest there are functional differences in subsets
of PV interneurons in the visual system. One of these studies
used calcium imaging to show that PV interneurons with narrow
tuning in rodents do indeed have more neighboring pyramidal
cells that share the same directional selectivity (Kerlin et al.,
2010). Further support for this is suggested by hippocampal
interneurons that showed spatial selectivity, which they appear
to inherit from monosynaptically connected excitatory neurons
(Maurer et al., 2006). English et al. (2017) also discovered that
in the hippocampus, some fast-spiking neurons received a large
number of presynaptic connections, making them suitable for
scalable inhibition, while others showed fewer or more selective
inputs, making them likely to be more selective. In the mouse
posterior parietal cortex, inhibitory neurons are selective for
choice, and their specificity is enhanced with learning alongside
excitatory cells (Najafi et al., 2020). Classification of fast-spiking
cells (PV-containing) in the cat visual system have yielded
similar results, suggesting a distinction between narrowly tuned
inhibitory cells vs. broadly tuned inhibitory cells and also suggest
that there are differences in tuning selectivity between layers
(Hirsch et al., 2003; Cardin et al., 2007; Nowak et al., 2008).
Overall, it appears that many PV interneurons are involved in
local integration and a scaling of inhibition based on local circuit
activity, with some exceptions. Some PV interneurons do appear
to be selective, although this may be due to anatomical location.
Whether there are different roles for PV cells that are feature-
selective vs. active over a broad range of inputs has yet to be seen.
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More work will be needed to determine if all PV interneurons
play a role in blanket inhibition or if there are more complex
computational roles played by inhibition.

Role of PV Interneurons in Modulation of
Principal Neuron Responses
Modulation is the change in the response profile of a
neuron to input and is present in many circuits across the
brain. Modulation shapes how neurons respond to stimuli
depending on attention, arousal, stimulus characteristics, and
neuromodulators (for an in-depth review on mechanisms of
gain modulation in the cortex see Ferguson and Cardin, 2020).
The role of GABAergic inhibition on modulation is complex, as
this modulation alters the response profiles and activity levels
of neurons under different behavioral states across the brain.
Most of the studies discussed here have been done in the
visual system, as neurons in the visual cortex show many forms
of modulation, and the role of specific interneuron subtypes
has been extensively studied. For example, a neuron in the
visual cortex may respond maximally to a specific orientation
of moving black-and-white patterned bars presented in front
of the eyes, yet under certain situations, such as state of
arousal or if a second stimulus is presented to a nearby part
of the animal’s field of vision, the firing rate of the neuron
responding to the same stimulus may increase or decrease.
Modulation is typically investigated by generating input-output
curves for a neuron (input = presynaptic neuron firing rate,
injected current, stimulus intensity; output = firing rate). This
is done under different conditions to determine the impact of
those conditions on the new input-output curve. Modulation
can be either multiplicative/divisive, called gain modulation or
additive/subtractive. For gain modulation, the input or output
axis of the response is transformed nonlinearly, changing the
slope of the input/output curve; in other words, the magnitude of
the modulation increases or decreases as a function of the input.
For additive/subtractive modulation, the slope of the input-
output curve is maintained but is shifted up, down, left, or right.
These effects on input-output relationships likely depend on the
complex interactions between different forms of inhibition and
the statistics of the input, such as the degree of stochasticity.

Here, we will focus on the evidence that PV interneurons
modulate the input-output relationship of principal neurons.
Modeling suggests that shunting inhibition, typically attributed
to PV interneurons given their synaptic inputs to the soma and
proximal dendrites, would lead to subtractive modulation, which
is best described by shifting the input-output response curve
down the output axis (Ayaz and Chance, 2009). Optogenetic
activation of PV interneurons in the visual cortex altered firing
rate-current curves in a subtractive manner, while somatostatin
cell activation led to a divisive modulation of principal neurons
(Lee et al., 2012). These authors also found that PV interneuron
activation decreased the tuning width (reduced the range
of orientations near the preferred orientation that a neuron
responds to) and increased the direction selectivity index (the
responsiveness of the neuron to a drifting grating of a particular
orientation was larger when the grating moved in a particular
direction). This is in conflict with other reports suggesting that

PV interneuron activation has a divisive gain modulation and
that somatostatin neurons have a subtractive modulation on
principal cell firing rate (Wilson et al., 2012). Ayaz and Chance
(2009) reported that it may be difficult to discern the differences
between these forms of modulation depending on stimulus
parameters, noisy synaptic inputs near threshold, changes in
response threshold, and response saturation. Indeed, in trying
to reconcile the differences in outcomes of the above-mentioned
studies, Lee et al. (2014) tested a wide range of laser stimulation
protocols and found that varying levels of PV interneuron
activation changed input-output curves and tuning width, with
the strength of PV activation correlating with a sharpening of
tuning selectivity. The authors concluded that PV interneuron
activation results in subtractive modulation, fitting with models
of PV shunting inhibition, but that the effect can appear to be
divisive depending on the degree of PV activation. These studies
suggest that PV interneuron activation can alter the input-output
relationship of a neuron to the same stimuli and by doing so can
alter the selectivity of that neuron by rendering it responsive to a
narrower range of input.

Role of PV Interneurons in Pattern
Separation and Sparse Encoding
Exactly how information is encoded in the brain is still a matter
of exploration and debate; however, there is evidence for some
level of sparseness of representation (Spanne and Jörntell, 2015).
In other words, at any given moment, the stimuli our brain
receives and how it transforms these stimuli do not require
the activity of the entire population of neurons, but activation
is instead designated to a sparsely distributed population of
neurons. This sparse encoding has many relevant implications
for memory research, in that sparse encoding is a tradeoff
between a local code, which is optimal for rapidly learning input-
output assignments, and dense code, which is well suited to
generalization (for review see Spanne and Jörntell, 2015). Related
to sparse encoding is the concept of orthogonalization, which
is often used to describe how a brain circuit encodes stimuli
into non-overlapping representations. This is a form of pattern
separation, which is the ability for a circuit presented with two
similar yet non-identical inputs to separate these inputs into
different patterns of activity, allowing for their disambiguation.
It is theorized that a winner-take-all-mediated lateral inhibition
potentially implemented by PV interneurons might be how
the brain at least partially executes pattern separation and
orthogonalization. In winner-take-all inhibition, a small number
of principal cells that are preferentially recruited by the incoming
input rapidly recruit inhibitory neurons that laterally project to
and inhibit a separate competing assembly.

Parvalbumin interneurons appear to mediate the number of
neurons that are allocated to a memory, and any deficits in either
feedforward, feedback, or lateral inhibition would lead to a larger
number of neurons incorporated into a memory (Morrison et al.,
2016; Josselyn and Frankland, 2018). One example of this was
demonstrated in a study in which optogenetic suppression of
PV interneurons reduced the sparseness of neural activity in
response to videos showing natural images in mouse V1 (Zhu
et al., 2015). In this study, the authors showed that, given the
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patterns of cellular activity responding to certain frames of
visual stimuli, it was possible to classify the frame that animals
were being presented with a high degree of accuracy. When PV
interneurons were suppressed, the classifier became less reliable
at detecting the correct frame. This suggests that without PV
interneuron activity, the neural response to dissimilar inputs,
such as different frames, becomes more similar and harder
to accurately decode. Therefore, decreasing PV cell activity
increased the overlap of cellular activity in response to different
inputs, and this overlap of activitymakes it harder to discriminate
what the input is based on neural activity alone. Another
interesting study that illuminated the role of PV interneurons
on neural synchrony and pattern separation used two-photon
calcium imaging combined with optogenetic suppression of PV
interneurons during spontaneous activity or visual orientation
stimuli (Agetsuma et al., 2018). Suppression of PV interneurons
increased activity, but it also increased the cell overlap for two
stimuli that originally had a more separate representation in
the brain (Agetsuma et al., 2018). PV interneuron-mediated
winner-take-all lateral inhibition also appears to be supported
as a mechanism for pattern separation in the dentate gyrus
(Espinoza et al., 2018; Guzman et al., 2019; Braganza et al., 2020).
Importantly, Braganza et al. (2020) suggested that a mechanism
of pattern separation occurred in the dentate gyrus similar to
that found in the cortex. They used a biologically constrained
model of the dentate gyrus, wherein pattern separation can
be precisely studied by examining the output of a network
to many different patterns of input with varying degrees of
overlap. Removing feedforward fast-spiking basket cell-mediated
inhibition decreased pattern separation in their model. The
higher probability of lateral inhibitory motifs in the dentate
gyrus is thought to make it particularly important for pattern
separation compared to other brain areas (Espinoza et al., 2018).
It is clear that both feedforward and lateral inhibition indeed
play roles in pattern separation (for a more complete review
on pattern separation see Cayco-Gajic and Silver, 2019). In the
ventral CA1, a subregion of the hippocampus important for
social recognition, PV interneuron suppression decreased the
ability of animals to discriminate between familiar and new
animals (Deng et al., 2019). Altogether, these studies highlight
a role for PV interneuron-mediated inhibition that allows for
circuits to separate inputs and thus promote the successful
encoding and retrieval of different stimuli.

Pattern separation is also dependent on the frequency of the
input. For example, Braganza et al. (2020) found an enhanced
degree of pattern separation for input coming in at the gamma
vs. theta frequency range (discussed in more detail below). In
addition, Jang et al. (2020) recently found that the activity of
PV interneurons can gate the timing synchrony or coherence
of cortical neurons. In this study, the authors recorded neural
responses across all the layers of the barrel cortex and measured
the level of synchrony across layers. By inhibiting or stimulating
PV or somatostatin neurons optogenetically during whisker
stimulation, they found that when whisker stimulation drove
low firing rate responses in L4 input cells, PV interneurons
synchronized activity across layers preferentially, but when
whisker stimulation drove high firing rate responses in L4 input

cells, PV interneurons desynchronized activity, producing
sparser pyramidal cell activity. This finding suggests that
PV interneuron-mediated feedforward inhibition preferentially
synchronizes lower frequency input but desynchronizes higher
frequency input. This desynchronization of activity is thought
to be crucial to pattern separation (Cayco-Gajic and Silver,
2019). This suggests that PV-mediated desynchronization of
principal cell activity is dependent on input frequency, and
pattern separation may be optimal when input is in the high
frequency range.

Role of PV Interneurons in Brain
Oscillations
Given their location around mainly fast-spiking interneurons,
PNNs are in a prime position to alter the excitatory/inhibitory
balance and thus regulate output. Several recent studies have
focused on the role of PV interneurons in the generation of
brain oscillations, including their role in generating the exquisite
timing needed to fire action potentials during a specific phase
of brain oscillations (Engel et al., 2001; Uhlhaas et al., 2010).
PV interneurons may participate in many oscillations in the
brain including theta, gamma, and sharp wave ripple activity
(Klausberger et al., 2003; Cardin et al., 2009; Sohal et al.,
2009; Stark et al., 2013; Schlingloff et al., 2014). For theta
and gamma activity, this involvement in rhythmogenesis is
further highlighted by both cellular and circuit-level resonant
activity of PV interneurons at these frequencies (Pike et al.,
2000; Cardin et al., 2009; Sohal et al., 2009; Sciamanna and
Wilson, 2011; Stark et al., 2013; Moca et al., 2014; Ozawa
et al., 2020). Fast oscillatory activity slowly increases in peak
frequency during development and stabilizes in the gamma
frequency range (30–80 Hz) during the fourth postnatal week in
the mPFC, coinciding with the maturation of PV interneurons
(Bitzenhofer et al., 2020). This entrainment of firing may also
be further refined into adulthood; thus, a more finely tuned
coupling occurs with PV cell maturation (de Almeida et al.,
2013). Gamma, theta, and sharp-wave ripple activity all reflect
rhythmic patterns of excitation and inhibition at different
timescales (Fries et al., 2007; Buzsaki and Wang, 2012; Cardin,
2016; Sohal, 2016). In summary, PV interneurons have high
excitability, provide widespread inhibition, and form circuit
motifs that appear to be relevant in complex network activities
such as circuit normalization, modulation, optimizing response
profiles, and creating sparse network activity that may support
pattern separation.

IMPACT OF PNN DEPLETION ON PV AND
PRINCIPAL NEURONS, PLASTICITY, AND
BRAIN OSCILLATIONS

Impact of PNN Depletion on Fast-Spiking
(PV) Neurons
An early observation was that a key function of PNNs was
to maintain the high frequency of firing in PV interneurons
(Bruckner et al., 1993; Härtig et al., 1999). However, surprisingly
few studies have examined the effects of PNN removal on
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intrinsic or synaptic properties of PNN-surrounded fast-spiking
PV interneurons. Supplementary Table 1 shows a summary
of the effects of PNN removal on fast-spiking interneurons,
which are PV-containing neurons (Kawaguchi and Kubota,
1993). In these studies, PNN depletion was accomplished either
by Ch-ABC treatment or by genetic modification of key PNN
CSPGs via knockout or knockdown strategies. The majority of
studies used mice and examined the hippocampus or visual
cortex, and the most consistent change across all studies was
the inability of fast-spiking (PV) neurons to maintain high firing
frequencies after PNN removal.

Hippocampus
In hippocampal cultures, Ch-ABC decreased the firing threshold
and afterhyperpolarization (AHP) of fast-spiking neurons, with
no change in other intrinsic properties (Dityatev et al., 2007).
Favuzzi et al. (2017) conducted an elaborate set of studies to
examine the impact of manipulating a major PNN component,
brevican (BCAN), on PV interneurons in hippocampal slices.
In general, they found that the absence of BCAN in knockout
(KO) mice or in mice with BCAN knockdown within PV
interneurons had a decrease in the firing threshold, making PV
interneurons more excitable, but with a decrease in the firing
frequency and a decrease in the amplitude of the fast AHP
(fAHP), the latter suggesting a decrease in gain. BCAN KO
mice had a decreased frequency of both spontaneous excitatory
postsynaptic currents (sEPSCs) and inhibitory postsynaptic
currents (sIPSCs) as well as a decrease in mini-EPSCs (mEPSCs),
with no changes in amplitude of sEPSCs, sIPSCs, mEPSCs,
or mIPSCs. In general, these findings were supported by a
decrease in the number of excitatory synaptic inputs apposing
PV interneurons in both BCAN KO and BCAN knockdown
mice, suggesting that BCAN contributes to the maturation of
excitatory inputs. In the same studies, they also compared
properties of PV interneurons surrounded by BCAN with PV
interneurons naturally devoid of BCAN. They found several
similar changes in the intrinsic and synaptic properties as listed
above. The collective intrinsic properties support the ability of
BCAN-surrounded PV interneurons to tune to higher firing
frequencies with faster responses and, consistent with this,
these neurons were surrounded by more excitatory puncta than
were PV interneurons devoid of BCAN. Interestingly, they also
demonstrated that BCAN knockdown decreased the clustering
of Kv3.1b channels, which are critical for the fast-spiking nature
of PV interneurons (Du et al., 1996; Goldberg et al., 2008),
and in both BCAN KO and BCAN knockdown mice, there
was a decrease in clustering of the AMPA receptor subunit
GluA1. Altogether, these studies demonstrated mechanisms by
which BCAN modifies tuning properties of PV interneurons to
regulate cortical network activity. Hayani et al. (2018) examined
the effects of short-term (2 h in vitro) and delayed (7 days
in vivo) effects of Ch-ABC on fast-spiking interneurons in
the mouse hippocampal CA2 region. Although they found
no effects of acute Ch-ABC treatment, longer-term treatment
reduced the firing threshold, decreased the frequency of
sEPSCs and mEPSCs, and increased the frequency of sIPSCs,
suggesting increased excitability of fast-spiking interneurons

in the CA2 region, but possibly compensatory increases in
inhibitory transmission to these neurons. Although a decrease
in glutamatergic transmission is similar to the findings by
Favuzzi et al. (2017) in the CA1 region with decreased synaptic
glutamatergic input, Hayani et al. (2018) did not find an increase
in glutamate puncta onto PV interneurons in the CA2 region.

Cortical Regions
Lensjø et al. (2017b) administered Ch-ABC in the visual cortex
of awake adult rats and measured the activity of putative
inhibitory neurons. Similar to the BCAN knockout discussed
above, PNN removal decreased the mean spiking activity of
fast-spiking interneurons. However, Ch-ABC also increased
the spiking variability of these neurons, mimicking the firing
during critical period plasticity in earlier developmental stages.
They also reported decreased firing rates in inhibitory neurons,
independent of whether the activity was spontaneous vs. visually-
evoked, or whether rats were in an attentive vs. non-attentive
state. Testing in a biologically-realistic network model of
randomly connected excitatory and inhibitory neurons, the
authors tested a range of excitatory and inhibitory synaptic
efficacies and determined that shifts in the excitatory: inhibitory
balance towards decreased inhibitory efficacy increased the
spiking variability in both the excitatory and inhibitory
populations, which supported the variability seen in their in vivo
recordings. The authors concluded that the loss of inhibition
and increased spiking variability represented an immature state
of the excitatory: inhibitory network. This juvenile-like network
state induced by Ch-ABC led to immediate increases in gamma
activity after monocular deprivation (see ‘‘Impact of PNN
Removal on Brain Oscillations’’ section). In a second study
by the same group, and only the second study to examine
in vivo putative inhibitory neurons following PNN removal,
Christensen et al. (2021) found that Ch-ABC treatment in the
medial entorhinal cortex produced a similar decrease in themean
firing rate of putative inhibitory neurons. This matched their
findings in the visual cortex and suggests that PV interneurons
have increased spiking variability and decreased spiking rates
when measured in vivo. They additionally found that grid cell
stability, which inhibitory activity is thought to maintain, is
disrupted following Ch-ABC treatment. They matched their
findings of grid cell instability with a computational model
of grid cell dynamics by decreasing the excitatory drive onto
inhibitory cells (matching the decreased firing rates seen in vivo).
In addition, another study that used pharmacogenetics to
suppress PV interneurons found similar network instability in
the medial entorhinal cortex (Miao et al., 2017). Altogether, these
studies provide strong evidence that PV cell activity is decreased
following PNN removal in vivo.

In contrast to the findings from the rat visual cortex, in
mouse visual cortical slices (V1, layer 4), Ch-ABC treatment
in adults produced no changes in intrinsic properties of PV
interneurons (Faini et al., 2018). However, Ch-ABC treatment
increased the frequency and amplitude of sEPSCs and the
frequency of mEPSCs, suggesting that excitatory thalamic
inputs, which constitute the majority of synapses in layer
4 of the adult V1, are increased onto PV interneurons after
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PNN removal. This is similar to what they found in intact
juvenile mice, indicating that Ch-ABC treatment transforms PV
interneurons to a less mature state. No changes occurred in
synaptic inhibitory inputs onto PV interneurons after Ch-ABC
treatment, and the increase in sIPSC frequency and amplitude
point to greater inhibition of the PV network. The authors
concluded that Ch-ABC increased feed-forward inhibition by
enhancement of glutamate transmission from the thalamus
to PV interneurons, and that this may increase PV synaptic
inhibition onto pyramidal neurons. They also tested changes
in extracellular recorded potential amplitude to stimulation by
black-and-white checkerboard patterns (drifting gratings) over
a range of contrast values and found that Ch-ABC treatment
reduced the amplitude of the response as contrast increased.
Feedforward inhibition may have decreased the response of
output neurons to higher contrast values as a function of gain,
which provides additional evidence that Ch-ABC may indeed
increase L4 feedforward inhibition. Miyata et al. (2018) used
transgenic mice that overexpress chondroitin 6-sulfotransferase-
1 (C6ST-1). The CSPG chains forming principal components
of PNNs are disaccharide units composed of glucuronic acid
and N-acetylgalctosamine (Sugahara and Mikami, 2007). These
chains are sulfated at different positions, and the ratio of sulfation
at the C4 and C6 positions changes in PNNs during development,
with a high C6:C4 ratio in early development replaced by a
low C6:C4 ratio in adulthood (Kitagawa et al., 1997). Thus,
PNN content and, in turn, plasticity, could be reinstated by
upregulating the C6ST-1 enzyme catalyzing C6 sulfation (Miyata
et al., 2012). Transgenic mice overexpressing C6ST-1 showed
reduced PNN formation in the visual cortex and maintained
critical period plasticity into adulthood, which was accompanied
by a decrease in resting membrane potential and an increase in
action potential half-width in fast-spiking interneurons. These
findings are consistent with those from Ch-ABC treatment, in
which there is generally a reduced maturation and high plasticity
state of PV interneurons.

Removal of PNNs by Ch-ABC in adult mouse somatosensory
cortical slices (posterior medial barrel cortex) decreased the
resting membrane potential and input resistance but did not alter
the threshold or firing frequency of fast-spiking interneurons
(Chu et al., 2018). However, this study did not examine
current stimulation above 250 pA, and differences (perhaps
decreased frequency; see above) may have been revealed at
higher stimulation levels. Other measures of action potentials
(half-width, amplitude) were reduced, suggesting a reduced
excitability of these fast-spiking interneurons. Balmer (2016)
treated somatosensory cortical slices of adult mice with Ch-ABC
in vitro and reported no changes in intrinsic properties, but a
decrease in the firing rate, a delay in firing, and lower gain using
white noise current steps, indicating a decrease in the excitability
of these fast-spiking neurons. This decreased excitability of PV
interneurons may in turn impair the ability of their principal
output neurons to appropriately filter incoming signals and in
turn to fire reliably. Additionally, Tewari et al. (2018) found
in the mouse somatosensory cortex that tumor development
led to an increase in endogenous enzymes that remove PNNs.
PV interneurons near the tumor had decreased PNNs that

in turn increased cell capacitance, firing rates, and produced
a more depolarized resting membrane potential. In control
non-tumor slices of somatosensory cortex, pretreatment with
Ch-ABC or infusion of Ch-ABC during recording captured the
same changes. Together these results suggest that PNN removal
may increase capacitance and therefore decrease excitability,
which was further verified with a computational model.

Overall, it is apparent from these relatively few studies that
PNN degradation produces a variety of electrophysiological
responses in fast-spiking PV interneurons, but in most cases,
PNN removal appears to reduce the function of PV interneurons
and return them to a juvenile-like, less mature state. In particular,
one-third to more than half the studies found: (1) an increase
in resting membrane potential; (2) a decrease in the firing
threshold; (3) a decrease in firing rate; (4) an increase in action
potential half-width; (5) a decrease in AHP amplitude; and (6) an
increase in AHP duration (Figures 1A–C). However, both local
effects and network effects need to be considered, given that
PV interneurons in different layers receive different levels of
thalamic input (L4 vs. L2/3/5) and, as a result, may vary in their
response properties and serve different functions across circuits
(Cardin et al., 2007; Faini et al., 2018). The response to PNN
removal is likely to depend on the brain region and circuit-
level differences as well as the interval over which Ch-ABC- or
hyaluronidase-induced circuit changes occur before examining
electrophysiological properties. Moreover, some differences may
depend on whether PNNs are allowed to develop normally until
adulthood and whether PNN removal is conducted in vitro vs.
in vivo. In summary, due to the limited number of studies that
directly tested the impact of PNN removal on fast-spiking PV
interneurons, it is difficult to construct a fully cohesive picture
of the mechanisms by which PV interneuron function is altered
or transitioned to a less mature state. Future studies focused on
assessing in vivo functioning of PV interneurons would greatly
help delineate unitary and network properties in intact systems.

Impact of PNN Depletion on Principal
Neurons
Supplementary Table 2 shows a summary of the findings from
PNN depletion on principal output neurons, most of which have
measured glutamatergic neurons in either the hippocampus or
cortex. However, other studies have examined output neurons
that themselves are surrounded by PNNs and are involved in fast
signaling, such as glycinergic neurons in the medial nucleus of
the trapezoid body (MNTB) at the calyx of Held synapse and
glutamateric neurons in the deep cerebellar nuclei (DCN) onto
which cerebellar Purkinje cells form synapses. In general, PNN
removal produced few changes in electrophysiological properties
of principal neurons, especially those neurons not surrounded
by PNNs.

Hippocampal Cultures
Several studies have examined the effect of PNN depletion
in vitro on cultured hippocampal neurons or neurons co-cultured
with astrocytes (Dityatev et al., 2007; Frischknecht et al.,
2009; Pyka et al., 2011; Orlando et al., 2012; Geissler
et al., 2013). Dityatev et al. (2007) found that treatment
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FIGURE 1 | (A) List of perineuronal net (PNN) removal-mediated changes in parvalbumin (PV) interneuron intrinsic properties that one-third or more of the
experiments agreed upon (see Supplementary Table 1 for a complete list of studies). (B) Graphical representation from table shown in (A) of changes in PV
interneuron intrinsic properties following PNN removal. (C) Experimentally agreed upon firing rate changes to PV interneurons following PNN removal, indicating
deficits in firing rate at high stimulation levels. Created with BioRender.com.

of cultures with Ch-ABC for 48 h did not alter intrinsic
properties of principal (pyramidal) neurons and, consistent
with this finding, Frischknecht et al. (2009) used cultured
hippocampal neurons, in which pyramidal neurons become
surrounded by BCAN after 3 weeks. They reported that
treatment with hyaluronidase for 24 h produced no changes in
intrinsic properties of principal neurons or altered excitatory
synaptic input (mEPSCs). However, hyaluronidase increased the
diffusion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor (AMPARs). Interestingly, a follow-up study did
not find an effect of hyaluronidase in AMPAR diffusion in
aspiny interneurons (Klueva et al., 2014). Pyka et al. (2011)
measured principal neurons in hippocampal cultures that were
exposed to Ch-ABC for 13 days. They observed no differences
in sodium-or potassium-activated currents or in mIPSCs but
did find a decrease in the amplitude of mEPSCs, consistent
with the idea that AMPARs diffuse laterally in the absence
of PNNs (Frischknecht et al., 2009). Orlando et al. (2012)
recorded mEPSCs in CA1 neurons after Ch-ABC treatment in
culture; these were not altered despite an increased remodeling
of synaptic spines. Importantly, however this spine remodeling
was examined far from where PNNs were located (cell body
and proximal dendrites), indicating that CSPG removal by
Ch-ABC was sufficient for this remodeling to occur. Geissler
et al. (2013) tested the impact of quadruple knockout of
ECM proteins that serve as major components of the PNN
during development and/or adulthood. Knockout mice lacking
tenascin-C (TN-C), tenascin-R (TN-R), BCAN, and neurocan
within neurons, astrocytes, or both, had reduced PNNs as
expected and reduced excitatory and inhibitory inputs by 3 weeks
in culture. These inputs were reflected in decreases in the
frequency of mIPSCs and mEPSCs. It is difficult to draw
definitive overall conclusions from these studies in cultured
cells, given the heterogeneity of treatments and preparations.
Nonetheless, PNN removal alters synaptic changes to cultured
neurons, and in some cases, their postsynaptic responsiveness to
inputs. Also important to bear in mind is that several changes

mediated by the loss of PNN components by Ch-ABC treatment
may be attributed to loss of the diffuse ECM present throughout
dendritic arbors.

Hippocampal Slices: CA1, CA2, Ventral Hippocampus
Studies in slices of hippocampal CA1 neurons have tested the
effects of PNN alterations on properties of principal neurons
using in vitro Ch-ABC (Khoo et al., 2019) in vivo Ch-ABC, an
shRNA to decrease BCAN levels in the CA1 region (Shi et al.,
2019), TN-R KOmice (Saghatelyan et al., 2001), BCAN KOmice
(Brakebusch et al., 2002), or hyaluronidase (Kochlamazashvili
et al., 2010). Khoo et al. (2019) found no changes in the firing rate
of CA1 neurons but that the ratio of EPSPs to IPSPs increased
in CA1 principal neurons, and this increase was attributed to a
decrease in stimulated IPSP amplitude. The increased excitatory:
inhibitory ratio was possibly produced by decreased GABA
transmission from PV interneurons, as mIPSC frequency was
also reduced after Ch-ABC treatment. Shi et al. (2019) delivered
Ch-ABC into the mouse CA1 region for 24 h and found increases
in the frequency and amplitude of sIPSCs and amplitude of
mIPSCs. In the same set of studies, brevican shRNA in the
CA1 produced some similar effects, and overexpression of a key
link protein in PNNs, HAPLN-1, had opposing effects on the
frequency of sIPSCs and mIPSCs, overall suggesting that PNN
removal increased GABAergic transmission in the CA1. This
result is opposite to the decreased GABA transmission reported
by Khoo et al. (2019) and may be attributed to the time and
route of Ch-ABC treatment (2 h in vitro vs. 24 h in vivo), but the
mechanisms mediating these opposing effects on CA1 pyramidal
neurons remains unknown. Genetic knockout of BCAN did
not alter sIPSCs, unlike the increases in sIPSC amplitude
and frequency in mice given BCAN shRNA, suggesting that
compensatory effects may have occurred during development in
these KO mice. Genetic knockout of TN-R produced an increase
in the frequency of mEPSCs and mIPSCs, and increased the
amplitude of the periosomatic unitary current, suggesting that
there was decreased inhibition of pyramidal neurons in TN-RKO
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mice. Hyaluronidase treatment did not affect intrinsic properties
of CA1 neurons (Kochlamazashvili et al., 2010).

Degradation of PNNs in vivo has also been examined in the
CA2 region in hippocampal slices from juvenile mice (Carstens
et al., 2016) and young adults (Hayani et al., 2018). The mouse
CA2 region is enveloped in a dense meshwork of PNNs and
ECM that binds to Wisteria floribunda agglutinin (WFA), a
marker for PNNs. While many of the PNNs surround inhibitory
neurons in the CA2 of mouse [and fewer in the rat (Lensjø
et al., 2017a)], PNNs also surround excitatory neurons in this
region (Celio, 1993; Carstens et al., 2016; Lensjø et al., 2017a).
In contrast to the CA1 region, synaptic plasticity is relatively
low in projections from the CA3 to the CA2 (Zhao et al., 2007;
Chevaleyre and Siegelbaum, 2010). Carstens et al. (2016) found
that Ch-ABC treatment for 2 h did not alter intrinsic properties
of CA2 neurons, with exception of a decrease in input resistance.
However, in contrast to the inhibitory effects of Ch-ABC on LTP
in the CA1 region discussed above, Ch-ABC exposure increased
LTP in the CA2 region. Thus, PNNs appear to play a role in
preventing plasticity of the CA3 to CA2 pathway. A second
study examined both acute (2 h) and longer-term (7 days),
Ch-ABC treatment in the CA2 region of 3–5 week old mice
(Hayani et al., 2018) and found only minor changes in principal
neurons. There were no acute effects of Ch-ABC on intrinsic or
synaptic properties, but longer-termCh-ABC treatment rendered
principal CA2 neurons more excitable by decreasing the latency
of action potential firing and increasing the decay time of
sIPSCs, consistent with decreased GABA input or responses to
inhibitory input. This study in particular reveals the importance
of examining time-dependent modifications in the plasticity of
synaptic and network properties after PNN degradation. Shah
and Lodge (2013) conducted in vivo electrophysiology in the
ventral hippocampus of anesthetized adult mice to assess the
impact of longer-term Ch-ABC treatment (7 days) on pyramidal
neurons. They found an increase in the firing frequency of
pyramidal neurons, which is consistent with the reduced function
of PNN-surrounded interneurons after Ch-ABC treatment.

Visual Cortex
Faini et al. (2018) conducted slice electrophysiology in the
mouse adult visual cortex (V1) to measure the effect of Ch-ABC
(2–3 days) treatment on principal neurons. They measured
L4 neurons, the majority of which receive glutamatergic input
from the thalamus. Similar to other studies, there were no
changes in intrinsic properties and no changes in sEPSCs or
sIPSCs. However, they found an increase in the amplitude
of visual stimulus-evoked IPSCs in principal neurons when
stimulating at above-threshold levels the thalamic inputs that
synapse onto PV interneurons, indicating higher inhibition of
principal neurons. Monocular deprivation reduced this effect
of Ch-ABC, showing that Ch-ABC effects were dependent
on incoming visual stimuli. Overall, they found enhanced
feedforward inhibition after Ch-ABC, but the effects of
Ch-ABC were less impactful on principal neurons than on PV
interneurons. Lensjø et al. (2017b) used in vivo electrophysiology
in the visual cortex (V1) of awake adult rats to examine how
Ch-ABC given 3–14 days earlier affected putative excitatory

neurons. They found no change in the firing rate of excitatory
output neurons, but, similar to their findings in inhibitory
neurons, there was increased spiking variability. This variability
in both excitatory and inhibitory neurons suggested to the
authors that Ch-ABC decreased the stability of the excitatory:
inhibitory network, which they attributed to a decrease in
inhibition by fast-spiking PV interneurons (see above).

Medial Nucleus of the Trapezoid Body (MNTB)
Two studies examined the impact of reducing PNNs on the
principal (glycinergic) medial nucleus of the trapezoid body
(MNTB) neurons. Blosa et al. (2015) used in vivo recordings in
BCAN KO mice and found decreases in the firing rate evoked
by sound, with a broader presynaptic action potential and a
broader post-synaptic EPSP. Together with reduced vGlut1 in
calyx terminals in the MNTB, these findings suggested a decrease
in glutamate release at the calyx of Held synapse in BCAN KO
mice. Consistent with the decreased response to sound in BCAN
KO mice, Balmer (2016) delivered Ch-ABC in slices containing
MNTB neurons and also found that these neurons fired less to
white noise current, with no changes in intrinsic properties. In
addition, Ch-ABC increased the amount of current needed for
MNTB neurons to fire an action potential. The voltage threshold
was more depolarized, but spike amplitude and acceleration of
membrane potential changes after stimulation were lower. The
authors concluded that intact PNNs allowed for an increased gain
of MNTB neurons in response to incoming stimuli.

Cerebellum
In the cerebellum, Edamatsu et al. (2018) reduced PNNs by
knockout of HAPLN2 (BRAL2), one of the main link proteins
contributing to PNN development in the cerebellum (Carulli
et al., 2010; Bekku et al., 2012). They examined two main
synapses: those from inhibitory Purkinje neurons to deep
cerebellar nuclei (DCN) principal neurons, and those from
excitatory neurons originating from mossy and climbing fibers.
They found a decrease in IPSCs evoked from Purkinje cell
stimulation without changes in amplitude, suggesting that the
absence of PNNs reduced the number of GABA terminals.
Hirono et al. (2018) used Ch-ABC in acute slices containingDCN
neurons and found a decrease in sIPSCs and mIPSCs, suggesting
that these changes may mediate the greater learning (eyeblink
conditioning) they observed in mice treated with Ch-ABC;
this learning is dependent on Purkinje outputs to large DCN
neurons. Consistent with their findings supporting decreased
inhibitory transmission on DCN neurons, using a lentivirus
approach to chronically release Ch-ABC into the DCN, Carulli
et al. (2020) demonstrated a reduction in spontaneous activity
of DCN neurons after Ch-ABC treatment. They speculated that
this reduction was due to increased inhibitory and decreased
excitatory input onto these neurons and could underlie their
observation of enhanced plasticity during the acquisition of
eyeblink conditioning but poorer retention of this memory.

Somatosensory Cortex and Medial Prefrontal Cortex
In barrel field cortical slices, Chu et al. (2018) treated slices
from the somatosensory cortex (post barrel medial subfield)
with Ch-ABC in juvenile mice, and reported no changes in
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intrinsic properties or in sEPSCs of regular-spiking neurons.
Slaker et al. (2015) examined in vivo Ch-ABC treatment
effects on excitatory output neurons in slices from the rat
medial prefrontal cortex (mPFC) 9 days later. They found an
increase in the firing rate of these neurons, with a decrease in
mIPSC frequency and no changes in mIPSC amplitude. The
mIPSC frequency trended toward a decrease when examined
3 days later (unpublished observations), indicating that the
outcome on synaptic properties likely depended on the interval
of time after Ch-ABC treatment. Overall, the findings in
the mPFC are in accordance with others demonstrating a
decrease in inhibitory input onto these neurons after Ch-ABC
treatment. Tewari et al. (2018) measured the impact of PNN
removal by the endogenous release of enzymes following tumor
development in the somatosensory cortex and measured changes
in pyramidal cells. They also measured changes due to acute
PNN removal by Ch-ABC in control slices of the somatosensory
cortex. They found that PNN removal due to endogenous
enzymes near the tumor depolarized the resting membrane
potential and lowered the current threshold for AP initiation.
This increased the firing frequency of pyramidal cells. Acute
PNN removal caused only a slight increase in firing rate,
leaving other intrinsic properties unaltered. This adds evidence
suggesting that, overall, many intrinsic properties of pyramidal
neurons are unchanged following acute PNN removal but,
in some cases, these output neurons show slightly increased
firing rates.

In general, an impact of PNN removal on electrophysiological
properties is most often found within the cells enwrapped
by PNNs, whether they are fast-spiking, PV-containing
interneurons or principal neurons (the latter being MNTB
glycinergic or hippocampal CA2 glutamatergic neurons).
However, it must be kept in mind that the majority of studies
have examined the influence of PNN removal after short
intervals, whereas a reorganization of the network in addition
to intrinsic and synaptic consequences may require days rather
than hours (Hayani et al., 2018).

Impact of PNN Removal on Synaptic
Plasticity
Several studies focused on the effects of PNN removal on
plasticity events within principal neurons, including LTP, LTD,
and PPR, and these are separately grouped in Supplementary
Table 3 and include some of the studies briefly discussed above.
The majority of studies examining how PNNs altered brain
plasticity in adults tested the impact of either Ch-ABC or the
genetic knockout of key PNN components on LTP or LTD in the
hippocampus.

LTP
Seven studies examined LTP in hippocampal CA1 slices after
stimulation of Schaffer collaterals. Six of these found a decrease
in LTP after Ch-ABC or hyaluronidase (Bukalo et al., 2001;
Kochlamazashvili et al., 2010; Shi et al., 2019), after shBCAN
treatment (Shi et al., 2019), or in BCAN, TN-R, or neurocan KO
mice (Bukalo et al., 2001; Saghatelyan et al., 2001; Zhou et al.,
2001; Brakebusch et al., 2002). Importantly, one study found

that Ch-ABC treatment did not further alter LTP in TN-R KO
mice (Bukalo et al., 2001). In another study (Shi et al., 2019), the
effect of Ch-ABC was blocked by picrotoxin and, interestingly,
Ch-ABC treatment in the CA1 caused an LTD induced by
theta burst stimulation in the presence of glutamate receptor
antagonists to switch to LTP. Contrary to the findings of reduced
inhibition after Ch-ABC removal (e.g., Lensjø et al., 2017b),
the authors suggested that PNNs limited feedback inhibition
by PV interneurons onto CA1 principal neurons, whereas PNN
removal produced greater inhibition to these neurons to prevent
LTP maintenance. In contrast to the findings above showing
a decrease in LTP after PNN removal, Riga et al. (2017) did
not find that Ch-ABC altered LTP in the CA1, but this was
tested 12–24 days after in vivo Ch-ABC treatment, a time when
PNNs appeared to be partially or largely restored. Bikbaev et al.
(2015) used hippocampal cultures grown on microelectrode
arrays to examine the effect of hyaluronidase on network activity.
They first determined that the bursting activity of populations
(multiple neurons measured simultaneously) correlated with
maturation of the ECM. Acute hyaluronidase added to matured
cultured neurons (4 weeks) increased the spiking and bursting
rate, thus disinhibiting the network.

Jansen et al. (2017) used quadruple knockout mice deficient
in TN-C, TN-R, BCAN, and neurocan to examine LTP in the
dentate gyrus of awake mice. They found a bidirectional impact
on LTP, wherein high-frequency stimulation produced an initial
decrease in field EPSPs (fEPSPs) followed by a delayed LTP,
with no differences when a weak stimulation was used, but the
resulting LTP was NMDA dependent only in control mice. A
follow-up study by this group examined in mouse hippocampal
multielectrode arrays how the quadruple knockout within either
neurons or astrocytes altered the spontaneous activity of the
network (Gottschling et al., 2019). Their studies revealed an
enhanced network activity, consistent with their previous work
demonstrating enhanced LTD in the dentate gyrus of awake KO
mice discussed above (Jansen et al., 2017). It is not apparent how
the increased network activity is in accordance with their studies
demonstrating a decrease in bothmIPSCs andmEPSCs; however,
it is important to keep in mind that several genes are altered
in quadruple knockout mice (Jansen et al., 2017; Gottschling
et al., 2019), and thus the mechanisms underlying LTP may be
different. Overall, the majority of studies show that PNN removal
decreases LTP, while no studies showed an increase in LTP. This
decrease in LTP is depicted in Figures 2A,B.

LTD
Fewer studies have examined the impact of PNN removal
on LTD, and the effects are less consistent than for LTP,
with both increases and decreases found. Khoo et al. (2019)
found that Ch-ABC increased LTD in the CA1 of adult mice,
similar to what they found in young mice prior to PNN
development, and this effect was dependent on NMDA and
GABA receptor-mediated effects. In contrast, Bukalo et al. (2001)
reported that, while short-term depression was not altered after
Ch-ABC treatment, LTD was reduced by this treatment in
the CA1 region (with no change in TN-R KO mice). Khoo
et al. (2019) attributed the differences between these opposing
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FIGURE 2 | Hippocampal long-term potentiation (LTP) in the CA1 following Schaffer collateral stimulation was altered in six of the seven studies following PNN
removal [see Supplementary Table 3 for a complete list of LTP/long-term depression (LTD) and paired-pulse ratio (PPR) studies]. (A) With PNNs intact, Schaffer
collateral stimulation induces LTP. (B) With PNNs removed, Schaffer collateral stimulation-induced LTP is impaired. Created with BioRender.com.

findings to the stimulation parameters used to induce LTD, but
the mechanisms underlying downstream events from different
stimulation parameters leading to LTD remain to be determined.
Ch-ABC blocked a GABA-mediated LTD in the hippocampal
CA1 region (Shi et al., 2019). In the hippocampal dentate gyrus,
Jansen et al. (2017) did not observe LTD but did elicit short-term
depression that was larger and longer-lasting in quadruple KO
mice for TN-C, TN-R, BCAN, and neurocan, suggesting higher
plasticity in the absence of these proteins.

In the perirhinal cortex, Ch-ABC treatment increased object
recognition memory and LTD (Romberg et al., 2013), which
is needed for this memory task (Griffiths et al., 2008). In the
same study, similar effects on LTD and behavior were found in
KO mice deficient in the PNN component Crtl-1 (also known
as HAPLN1). The increase in basal synaptic transmission and
failure to induce paired-pulse facilitation (PPF; see below) in
both Ch-ABC and Crtl-1 KO mice indicated a shift to enhanced
plasticity that mediated the longer-term memory in this task, but
the mechanism remains to be determined.

Paired-Pulse Ratio (PPR)
Supplementary Table 3 also shows the results from several
studies that measured the PPR to assess whether changes in
short-term synaptic plasticity occurred after PNN manipulation.
The majority of studies were conducted in the hippocampus
CA1 or CA2 regions. Most studies demonstrated no change
in PPR after treatment with either Ch-ABC (Bukalo et al.,
2001; Carstens et al., 2016; Khoo et al., 2019; Shi et al., 2019),
hyaluronidase (Kochlamazashvili et al., 2010), after knockdown
of BCAN using an shRNA (Shi et al., 2019), or in BCAN,
neurocan, or TN-R KO mice (Bukalo et al., 2001; Saghatelyan
et al., 2001; Zhou et al., 2001; Brakebusch et al., 2002). Only
one study demonstrated an increase in the PPR [decrease
in hippocampal paired-pulse depression (PPD); Frischknecht
et al., 2009] after hyaluronidase treatment, which was further
shown to be influenced by the ability of glutamate-induced
currents to produce AMPAR diffusion and replace rapidly

desensitized AMPARs. The difference in PPR among studies in
the hippocampus may be attributed to the fact that this latter
study was the only one that employed cultured neurons, and thus,
circuit formation is expected to differ from that in hippocampal
slices. An increase in PPD of evoked IPSCs has also been found
after Ch-ABC treatment in cerebellar DCN neurons (Hirono
et al., 2018), while no change was observed in these neurons in
knockout mice deficient in a major link protein, Bral2 (Edamatsu
et al., 2018). In the perirhinal cortex, both Ch-ABC and link
protein Crlt1 KO mice demonstrated a reduced PPR (Romberg
et al., 2013). Overall, this form of short-term plasticity was
rarely found after PNN manipulation, with only a few regions
demonstrating changes.

Impact of PNN Removal on Brain
Oscillations
Gamma Oscillations
Supplementary Table 4 shows the 11 studies to date that have
investigated synchronous neural activity while manipulating
PNNs. Of these studies, six specifically interrogated spectral
power changes in the gamma frequency range (>30 Hz). Two
studies from the same group, Cabungcal et al. (2013) and Steullet
et al. (2014), found in anterior cingulate cortical slices that
application of a mixture of carbechol, kainate, and quinpirole
increased the power of high-frequency beta and gamma range
oscillatory activity after Ch-ABC treatment. It should be noted
that in these studies, power was measured after high-frequency
oscillations became stable, which is not typical of in vivo
high-frequency oscillations that are only transient in nature.
This work suggests that PNN removal may increase the ability
for a strongly driven circuit to resonate at the high frequency
range, with potentially higher synchrony, given the increase in
power. Gurevicius et al. (2004) also found an increase in both
hippocampal and cortical EEG amplitude for frequencies over
a broad gamma range as well as an increase in the amplitude
of auditory-related event potentials. The authors attributed the
increase in local field potential power to a decrease in perisomatic
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inhibition. In another in vivo study in the rat visual cortex,
Lensjø et al. (2017b) also found increases in spontaneous gamma
power prior to visual stimulus onset, but no differences in
evoked power to drifting grating stimuli in awake, freely-moving
animals treated with Ch-ABC. No changes in the broad or
narrow gamma power, number of gamma events (periods of time
where power exceeded a certain threshold), or mean power of
gamma frequency events, were different during visually evoked
activity. They also noted an increase in gamma power in the hour
following monocular deprivation in Ch-ABC treated animals.
Faini et al. (2018) reported an increase in both spontaneous and
visually evoked power over a broad gamma frequency range.
Carceller et al. (2020) found that anesthetized animals treated
with Ch-ABC 4 days prior had decreased power over a broad
spectrum, with significant decreases in high gamma (70–100 Hz)
and fast gamma (>100 Hz) following tail pinches. They found
no difference after Ch-ABC treatment in phase amplitude
coupling, in this case, modulation of high and fast gamma
power depending on the local theta phase. Differences in task
(spontaneous vs. evoked, anesthetized vs. awake), PNN removal
(Ch-ABC volume and time of treatment vs. specific component
manipulations), and brain regions all make it difficult to define
specific changes in gamma oscillations following PNN removal.

Several studies also examined the impact of direct
manipulation of PV interneurons on gamma oscillations.
Optogenetic activation of PV interneurons is known to create
stable network oscillations in a narrow gamma frequency range
∼40 Hz (Cardin et al., 2009; Sohal et al., 2009; Chen et al., 2017).
Inhibition of PV interneurons has been shown to cause both
increases in spectral power over a broad gamma frequency range
and decreases in narrowband gamma activity (Cho et al., 2015;
Chen et al., 2017; Abbas et al., 2018; Sohal and Rubenstein, 2019;
Guyon et al., 2021). These findings are seemingly contradictory,
as both activation and inhibition of PV interneurons can
cause gamma power activity. Some observed discrepancies are
likely due to differences in recording preparations in which
optogenetic suppression of PV interneurons in anesthetized
animals (Sohal et al., 2009) may decrease gamma power, whereas
PV suppression in awake and behaving animals may show
different changes in the power spectrum that depend on the
behavior. Overall, these results are consistent with the idea that
decreased inhibitory function can lead to broadband increases
in spontaneous gamma power but deficits in narrowband,
evoked gamma oscillatory activity (Cho et al., 2015; Sohal and
Rubenstein, 2019; Guyon et al., 2021). While a few studies show
increases in gamma power after PNN removal, it is still unclear
whether increases are reflective of aberrant network instability
or true oscillations.

Theta Oscillations
As discussed earlier, PV interneurons are linked to theta
frequency oscillations, in which they show a high degree of
phase-locking and provide a source of inhibition that can induce
theta resonant membrane oscillations in pyramidal cells (Stark
et al., 2013). Therefore, like gamma oscillations, disruptions to
PNNs may cause alterations in theta rhythms. Hippocampal
local field potential oscillations in the 4–12 Hz range are

a prominent feature during periods of mobility. Gurevicius
et al. (2004) found that in TN-R knockout mice, the theta
power was not altered during movement, but the peak of the
frequency was shifted lower. They also found that spontaneous
cortical theta power was increased during periods of immobility.
Christensen et al. (2021) found in freely-moving rats that
Ch-ABC treatment decreased the theta peak frequency and
increased theta power in the medial entorhinal cortex, a structure
that, like the hippocampus, shows modulation of theta power
driven by movement. These authors also found an increase in
theta power in the hippocampus, even thoughCh-ABC treatment
was localized to the medial entorhinal cortex. Both of these PNN
manipulations, the TN-R knockout and Ch-ABC treatment, had
a similar impact on the frequency of movement-induced theta
entrainment. What this decrease in theta peak frequency could
mean is unclear. Shi et al. (2019) examined theta activity and
found that hippocampal theta power was increased 1 day after
fear conditioning, but that treatment with Ch-ABC decreased
this fear conditioning-induced theta activity. Consistent with
Ch-ABC effects, when they overexpressed the PNN link protein,
HAPLN1, fear conditioning-induced theta power was increased.
Altogether, these hippocampal studies showed alterations in the
frequency of movement-induced entrainment and deficits in
memory-associated oscillations. Two of the authors, Gurevicius
et al. (2004) and Christensen et al. (2021) attributed PNN
manipulations to deficits in inhibition, while Shi et al. (2019)
suggested that PNN removal may actually facilitate inhibition.
In the visual cortex, Lensjø et al. (2017b) found that PNN
removal by Ch-ABC also increased spontaneous theta power in
the visual cortex. Thompson et al. (2018) found that following
fear conditioning, there was an increase in coherence (phase
alignment) between the theta oscillations in the secondary visual
cortex and the basolateral amygdala, and that Ch-ABC treatment
in the secondary visual cortex caused a decrease in coherence as
well as deficits in memory retrieval. As with gamma oscillations,
deficits in PV cell functioning may cause differences in evoked
vs. spontaneous theta oscillations. A definitive answer as to what
PNN manipulations do to a specific oscillation may be task- and
brain region-specific, but it is clear that PNN removal may alter
certain features of inducible oscillations, such as peak frequency
and deficits in the ability to generate theta power and coherence
necessary for memory recall.

Sharp-Wave Ripples
Yet another prominent population event that PV interneurons
are tightly involved with is the hippocampal sharp-wave ripple.
PV interneurons appear crucial to the synchronous temporal
pacing of ripples, GABAA receptor blockade abolishes ripples,
and manipulations of PV interneurons alter properties such
as the frequency and amplitude of ripples (Rácz et al., 2009;
Schlingloff et al., 2014; Stark et al., 2014). Two studies
have investigated the role of PNN removal on hippocampal
sharp-wave ripples. Gurevicius et al. (2004) measured the
number of hippocampal sharp-wave ripples that occurred during
periods of immobility in TN-R knockout mice. They reported
no changes in the frequency of ripple events when filtered
between 150 and 200 Hz. It is possible that there may have been
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deficits in the synchronization of the underlying cells, but single
unit activity was not investigated. Sun et al. (2018) found that
hippocampal slices treated with either Ch-ABC or hyaluronidase
had increased spontaneous ripple events that were unaltered
in duration. This suggests that PNN removal may indeed
alter high-frequency ripple-like oscillatory activity, potentially
by decreasing inhibition that would allow for synchronous
excitation to happen more readily; this synchronous excitation
is thought to initiate ripples (Stark et al., 2014). Overall, PNN
removal appears to alter spontaneous and evoked oscillations
across a wide frequency range including theta, gamma, and sharp
wave ripples in which PV interneurons have been shown to play
a role.

IMPACT OF PNN REMOVAL ON CIRCUITS
AND IMPLICATIONS FOR MEMORY AND
BEHAVIOR

PNN removal impacts the gain of PV interneurons, which has
been measured by shifts in the injected current-output firing rate
curves. At higher injected current levels, which PV interneurons
are able to respond to with high firing rates in vivo (Wang
et al., 2016), PNN removal reduced the firing frequency of PV
interneurons (see Supplementary Table 1). What effect might
this impairment at high input current have on PV interneuron
computations? Faini et al. (2018) found that PNN removal in
the visual cortex of mice decreased the magnitude of event-
related potentials at higher contrast levels. This suggests that
PNN removal may increase the gain modulation to contrast
input, enhancing inhibition driven by the level of contrast, which
would result in fewer neurons being responsive to the stimuli
and therefore a smaller amplitudemeasured in the field potential.
Miyata et al. (2012) reported a more depolarized resting
membrane potential, as well as an increase in the action potential
half-width in the visual cortex in animals with upregulated
chondroitin 6-sulfation, the more immature sulfation pattern
found in PNNs. These authors tested the impact of this less
mature PNN network by measuring orientation tuning, optimal
orientation firing rate, spontaneous firing rate, and prolonged
firing following visual stimulation. They reported no change in
several of these parameters but did find an increase in post-visual
stimulation firing rate, which might suggest a slightly reduced
inhibitory state. The results from these two studies are in conflict,
with one study suggesting an increase in inhibition while the
other a decrease, but the network mechanisms that mediate both
may not be similar.

The impact of PNN removal around PV interneurons
produces several alterations in their electrophysiological
properties (Supplementary Table 1). Collectively, 5 of 10 in vitro
studies showed a decrease in firing rate at some injected current
levels, and the only two in vivo reports from putative fast-spiking
cells also reported decreased mean firing rate (Supplementary
Table 1). Together, this provides strong initial evidence to suggest
that PNNs may increase the firing frequency of PV interneurons
(Figures 1A–C). However, there are likely to be regional
differences as well as differences that depend on how PNNs are

removed. PV cell excitability is of particular interest in memory
and plasticity. Decreases in PV-mediated inhibition after PNN
removal could increase the size of neural assemblies, which
suggests that: (1) memory strength and memory generalization
may change; and (2) that PNN removal could lead to failures
in the separation of input, inducing memory interference. One
intriguing new study by Christensen et al. (2021) examined how
PNNs stabilize grid cell activity. They found that, when PNNs
were removed, an originally stable representation by grid cells
in a familiar environment decreased specifically when animals
were exposed to a novel environment before their return to the
familiar environment. This finding suggests that PNN removal
decreased grid cell stability after novel spatial learning and is
highly reminiscent of interference produced by decreases in PV
interneuron activity, leading to overlapping representations. Our
lab has recently made an interesting discovery that rats trained
on a standard cocaine self-administration protocol, in which
they learn the rule that one lever press = one cocaine infusion,
do not show deficits in cue recall following PNN removal in
the mPFC, as long as that rule never changes. However, if rats
are re-exposed one time to a session in which they have to
learn a new rule that is less predictable (average of five lever
presses = one cocaine infusion), PNN removal now severely
decreases cue recall the next day and for several days afterward.
This suggests that exposure to a similar but new rule in the
absence of PNNs degrades the original memory, akin to the
grid cell findings (Christensen et al., 2021). These findings are
consistent with the idea that, if PNN removal reduces the ability
of PV interneurons to fire at higher frequencies that mediate
sparse coding, it follows that suppression of PV interneurons
increases the cell overlap for two stimuli that originally had
separate representation in the brain (Figure 3; Agetsuma et al.,
2018). In addition to altering the neural assemblies that represent
an event or memory, decreased inhibition by PV interneurons
could also lead to increased Hebbian plasticity, which may
cause widespread alterations in overall circuit plasticity. Indeed,
PV interneuron suppression alone increased auditory cortical
plasticity that is similar to that found during the critical period
(Cisneros-Franco and de Villers-Sidani, 2019). This may be
brought about through a spreading of excitation in which
cells that were originally laterally inhibited can now form new
associations, and these new associations dynamically alter
cortical circuits.

IMPACT OF PHYSIOLOGICAL STIMULI ON
PNNs

We have limited discussion of the studies above on the effects
of PNN manipulations on the function of PV interneurons,
principal neurons, and/or network properties. However, it
is important to also recognize the rapidly-growing body of
work supporting changes in PNNs themselves (or their key
components) in response to physiological stimuli, such as stress,
exercise, environmental enrichment, diet, circadian rhythms, and
normal aging processes. Short term and chronic stress lead to
brain region-dependent changes in PV cells and PNNs both in
early life (Castillo-Gómez et al., 2017; Ueno et al., 2018; Murthy
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FIGURE 3 | Circuit state following PV interneuron dysfunction after PNN
removal. Neural assemblies originally representing a stimulus or memory may
overlap when exposed to a similar stimulus or memory if PNNs are removed
between the first and second exposure. Summary is based on PV interneuron
specific manipulations and circuit functions (see “Role of PV Interneurons in
Pattern Separation and Sparse Encoding” section). Created with
BioRender.com.

et al., 2019; Guadagno et al., 2020; Soares et al., 2020; Yu et al.,
2020) and in adults (Pesarico et al., 2019; Yu et al., 2020).
Exercise also alters PNNs, and the effects are dependent on the
brain region examined (Smith et al., 2015; Briones et al., 2021).
Several studies have shown that environmental enrichment either
during early life (Carstens et al., 2016; Stamenkovic et al., 2017;
O’Connor et al., 2019) or adulthood (Foscarin et al., 2011;
Slaker et al., 2016) alters PNNs, as does a high-fat diet during
adolescence (Reichelt et al., 2019, 2021) and adulthood (Dingess
et al., 2018, 2020). Two studies have shown circadian/diurnal
changes, with higher numbers or intensity of PNNs in the dark
phase in rodents (Pantazopoulos et al., 2020; Harkness et al.,
2021). Given that PNNs are altered in many ways throughout
central nervous system development, and their maturation is
brain region-specific and generally coincides with the end of
critical periods of plasticity (for a recent review see Carulli and
Verhaagen, 2021), it is not surprising that numerous studies
have also demonstrated changes in PNNs or their composition
during aging (Tanaka and Mizoguchi, 2009; Karetko-Sysa et al.,
2014; Brewton et al., 2016; Foscarin et al., 2017; Richard et al.,
2018; Ueno et al., 2019; Mafi et al., 2020). Overall, changes
in PNNs and PV neurons after physiological stimuli appear to
be specific to the physiological stimulus, brain region, and the
circuits in which PNN-surrounded neurons are embedded. At
present, it is difficult to make comparisons between the impact
of physiological stimuli and after complete removal of PNNs
because PNN removal produces abnormal circuit function, as
discussed in detail above. Nevertheless, the broad picture that

emerges is that PNN removal confers juvenile-like properties
to PV neuron function and plasticity. However, establishing
how these changes manifest within functioning circuits and in
response to specific task demands need to be systematically
investigated in intact systems to maximize the benefits of PNN
manipulation.

CONCLUSIONS AND FUTURE
DIRECTIONS

PNNs allow for the normal firing of PV interneurons, which
tightly regulate pyramidal cell firing via dense perisomatic
connections and participate in feedforward, feedback, and lateral
inhibition. Removal of PNNs by the Ch-ABC enzyme or other
manipulations appears to reduce the firing frequency of PV
interneurons and increase the variability of PV interneuron
spiking, and several major properties are likely to be altered
after PNN removal. Removal of PNNs has less impact on the
electrophysiological properties of principal neurons that are
not enwrapped in PNNs and generally reduces LTP without
altering short-term plasticity (PPR). PV interneurons coordinate
long-range communication with other brain regions through
the coupling of theta and gamma oscillations, which are altered
when PNNs are removed. Thus, by virtue of PV properties
and circuit connectivity, PNNs allow PV interneurons to
play a vital role in synchronizing the output of pyramidal
neurons into discrete groups of activated neurons (neural
assemblies) thought to represent the coding of separate
events or memories. Inhibiting PV interneuronal firing by
PNN removal would therefore degrade the usually precise
spatiotemporal firing patterns, producing overlapping neuronal
assemblies, leading to less specificity of which assemblies
represent a particular stimulus or memory. Future studies
need to determine the contribution of PNN removal to
PV interneuron-mediated modulation and tuning properties
in other brain areas and under different modulatory states,
such as attention or movement, to understand how PNN
removal impacts inhibitory drive in these systems. To better
understand how PNN removal impacts theta and gamma
activity, future studies should investigate how PNN removal
impacts behavior known to be dependent on narrowband
oscillatory activity. In addition, it is important to investigate
the impact of PNN removal on coherence between brain
regions, phase-locking of single units to ongoing oscillations,
and characterization of oscillations beyond analyzing predefined
frequency ranges, such as burst detection methods, analysis of
individual gamma cycle amplitudes, cycle durations, and cycle
shape. We expect future in vivo studies in awake, behaving
animals to permit a much-needed, detailed understanding
of the mechanisms by which PNNs regulate the ability of
their underlying PV interneurons to shape circuit function.
Such an understanding has vast implications for how PNNs
could be modified to optimize normal physiological functions
such as learning and memory and to alleviate excitatory:
inhibitory imbalances in a wide range of developmental and
neurological disorders.
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