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Abstract: Piezoelectric actuators (PEAs), as a smart material with excellent characteristics, are in-
creasingly used in high-precision and high-speed nano-positioning systems. Different from the
usual positioning control or fixed frequency tracking control, the more accurate rate-dependent
PEA nonlinear model is needed in random signal dynamic tracking control systems such as active
vibration control. In response to this problem, this paper proposes a Hammerstein model based on
fractional order rate correlation. The improved Bouc-Wen model is used to describe the asymmetric
hysteresis characteristics of PEA, and the fractional order model is used to describe the dynamic char-
acteristics of PEA. The nonlinear rate-dependent hysteresis model can be used to accurately describe
the dynamic characteristics of PEA. Compared with the integer order model or linear autoregressive
model to describe the dynamic characteristics of the PEA Hammerstein model, the modeling accuracy
is higher. Moreover, an artificial bee colony algorithm (DE-ABC) based on differential evolution
was proposed to identify model parameters. By adding the mutation strategy and chaos search of
the genetic algorithm into the previous ABC, the convergence speed of the algorithm is faster and
the identification accuracy is higher, and the simultaneous identification of order and coefficient
of the fractional model is realized. Finally, by comparing the simulation and experimental data of
multiple sets of sinusoidal excitation with different frequencies, the effectiveness of the proposed
modeling method and the accuracy and rapidity of the identification algorithm are verified. The
results show that, in the wide frequency range of 1–100 Hz, the proposed method can obtain more
accurate rate-correlation models than the Bouc-Wen model, the Hammerstein model based on integer
order or the linear autoregressive model to describe dynamic characteristics. The maximum error
(Max error) is 0.0915 µm, and the maximum mean square error (RMSE) is 0.0244.

Keywords: hammerstein model; bouc-wen model; fractional model; rate correlation; artificial bee
colony algorithm

1. Introduction

PEA is a smart material with excellent performance. It has outstanding advantages
such as large force, high rigidity, high control accuracy, low power consumption, and fast
response speed. Therefore, it has been widely used, such as in micro-manipulation [1],
a micro-mechanical arm [2], active optical components [3], active vibration control [4],
biomedical engineering [5], etc. In the application of PEA for active vibration control, it is
mainly aimed at the low-frequency vibration with a frequency below 100 Hz, at which time
the traditional passive vibration isolation method is difficult to work [6]. PEA is adopted
to produce motion with the same size and opposite direction as the vibration wave, thus
weakening the vibration amplitude. In this process, PEA is required to accurately track
the reference signal with random and continuous changes in amplitude and frequency.
Therefore, the modeling accuracy of its nonlinear characteristics such as hysteresis and
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creep, as well as the variation rule of these nonlinear characteristics following the motion
frequency, will significantly affect the performance of the control method based on inverse
model compensation. In the existing literature, although some research results are given
for the modeling and control methods of rate dependent nonlinear characteristics of PEA
at different frequency points. The existing modeling methods still have great shortcomings
for the description of nonlinear characteristics of continuous random variation in tracking
frequency. Therefore, it is of important research value to carry out more accurate modeling
methods for the rate-dependent nonlinear characteristics of PEA [7].

Scholars at home and abroad have done a lot of research on the hysteresis modeling of
piezoelectric actuators. At present, based on the classic hysteresis model and the develop-
ment of computational intelligence, the modeling methods of hysteresis characteristics can
generally be divided into three types. (1) Proceeding from the physical principles and based
on the physical mechanism, give obvious physical models, such as the Maxwell model [8],
Duhem model [9], Jiles-Atherton model [10], Stoner Wohlfarth model [11], and finite el-
ement model [12], etc. For example, in literature [13,14], the authors obtained the finite
element model with specific physical mechanism by analyzing the piezoelectric effect and
constitutive model of PEA, so the description of hysteresis nonlinearity is more accurate.
However, for the hysteresis nonlinear system of different objects, a model corresponds to a
physical mechanism. So, it can usually only describe a specific object, and the generality
is not strong, and the parameters of the model depend on the physical parameters of the
object, which is not easy to identify online. (2) Consider the establishment of the model
from the actual input and output, without considering the actual physical meaning of the
phenomenological model, such as the Preisach model [15], Pradtl-Ishlinskii model [16],
Krasnoselskii-Pokrovskii model, [17] and so on. The phenomenological model relies on the
input and output relationship of the system to perform hysteresis modeling, and describes
the entire system as a black box. Among them, the core idea of the Pradtl-Ishlinskii model
in literature [15] is the weighted superposition of PI operators. The literature [17] points
out that the KP operator is an extension of the PI operator, and the Krasnoselskii-Pokrovskii
model is also a weighted superposition of the KP operator. This type of model is relatively
simple, but it requires a large number of experiments as a basis, and it is difficult to adjust
the parameters online. And it is difficult to apply. (3) Models that describe input and
output based on intelligent computing, such as the artificial neural network model, support
the vector machine model, etc. The intelligent model uses the good approximation per-
formance of intelligent algorithms to model some nonlinear systems with high modeling
accuracy. But the neural network modeling method [18] does not have a general standard
to determine the optimal structure of the neural network, such as the number of hidden
layers, the number of neurons in each layer, etc., and the neural network can easily fall into
a local optimum. The hysteresis modeling method of support vector machine [19], which
has the advantages of global optimization and versatility. But this method is limited to
offline identification.

The Hammerstein model, as a class of nonlinear dynamic models composed of non-
linear static modules and linear dynamic modules, has been proven to describe a large
class of nonlinear systems [20,21]. Many studies realize the static inverse compensation or
dynamic inverse compensation of hysteresis nonlinearity based on this method. However,
when identifying the parameters of the model, different identification algorithms will also
have an impact on the accuracy of the model. At present, most Hammerstein models adopt
a combination of traditional hysteresis models and integer-order or linear autoregressive
models to model PEA, and traditional identification algorithms are usually used for model
parameter identification. Zhou, M. and Wang, J. applied a recursive least squares algo-
rithm and gradient correction algorithm in the identification of Duhem model [22]. Yu,
S., Feng, Y. and Yang, X. used particle swarm optimization (PSO) in the identification of
Bouc-Wen model [23]. Wang, Z. and Zhen, Z. et al. used PSO [24] in the Hammerstein
model composed of Bouc-Wen model and linear autoregressive model (ARX). Wang, G. and
Chen, G. et al. apply the differential evolution algorithm (DE) in the identification of the
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Bouc-Wen model [25]. Although the single identification algorithm mentioned above can
identify the parameters of the model, its premature phenomenon, which fast convergence
to the local optimal solution rather than the global optimal solution, swing near the optimal
solution when approaching the optimal solution, and slow convergence speed, will affect
the identification accuracy of the model, and then the accurate model cannot be obtained.

In response to the above problems, the main research content and contributions of this
article can be summarized as follows:

1. In terms of PEA rate-dependent modeling, this paper proposes a modeling method
based on the improved Bouc-Wen model and fractional-order model consisting of
a separate Hammerstein model, which achieves a more accurate description of the
dynamic characteristics of PEA rate-dependent hysteresis. At present, most Hammer-
stein models adopt a combination of traditional hysteresis models and integer-order
or linear autoregressive models to model PEA. When using integer-order or linear
autoregressive models to describe the dynamic characteristics of PEA, the accuracy
is far inferior to that of fractional-order models. Compared with the integer-order
or linear autoregressive models, it is more in line with engineering reality and can
contain richer amplitude-frequency information.

2. In terms of model parameter identification, this paper proposes an artificial bee colony
algorithm based on differential evolution (DE-ABC), and uses it for the first time for
the parameter identification of the fractional Hammerstein model. By adding the
mutation strategy and chaos search for genetic algorithm into the previous ABC, the
convergence speed of the algorithm is faster and the identification accuracy is higher,
and the simultaneous identification of order and coefficient of fractional model is
realized.

3. Through experimental data collection and analysis, the proposed model has a good
frequency generalization ability within 1–100 Hz, and can better reflect the true
characteristics of piezoelectric ceramic actuators than the traditional static hysteresis
model.

The paper’s structure is arranged as follows. Section 2 depicts the model structure,
consisting of an improved Bouc-Wen model, a fractional-order model, and a rate-dependent
Hammerstein model. Section 3 proposes to use the artificial bee colony algorithm based
on differential evolution for the identification of the improved Bouc-Wen static hysteresis
nonlinear model and the fractional dynamic model. Finally, Section 4 introduces the
experimental design, compares the identification results with different algorithms, and
validates the Hammerstein model and piezoelectric actuator. The staple conclusions are
summed up in Section 5.

2. Fractional Hammerstein Model of PEA

The rate-dependent hysteresis system refers to a system whose output is related to the
current and previous inputted signals and their frequency. As shown in Figure 1, PEA have
rate-dependent hysteresis nonlinearity, that is, when the piezoelectric actuator changes
greatly in the frequency of the input voltage, the relationship between its input and output
changes greatly.

At present, there is no unified mathematical model for nonlinear systems. As a
nonlinear model based on module connection, the Hammerstein model can more precisely
depict the rate-dependent characteristics of PEA. The classic Hammerstein model [24,26]
contains static nonlinearity and linear dynamic model [27,28]. Its structure diagram is
shown in Figure 2.
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Experiments show that when the frequency of the drive signal is low, the hysteresis
curve of the PEA shows rate-independence; when the frequency is high, the hysteresis
curve shows rate-dependence. So as to bewrite the rate-dependent hysteresis nonlinearity
of PEA, this paper proposes a rate-dependent hysteresis nonlinear model based on the
Bouc-Wen model and fractional-order model. Among them, the linear dynamic part of the
Hammerstein model is described by the fractional-order model, and the static nonlinear
part is described by the Bouc-Wen model. The structure is shown in Figure 3.
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2.1. The Improved Bouc-Wen Model

The classic Bouc-Wen model was introduced by Bouc [29], and Wen [30] extended
it. The Bouc-Wen model contains fewer parameters and can be recognized by less data
than other models depicting hysteresis characteristics. But in reality, the PEA input has
an inherently multi-value memory dependent hysteresis loop asymmetry. Therefore, the
improved Bouc-Wen model is adopted in this paper. By defining l[u(t)] as a generalized
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input function, that is, the function of input voltage u(t), it is used to describe the asymmet-
ric property of PEA input and output about origin asymmetry. The improved Bouc-Wen
model expression is:

x(t) = l[u(t)]− z(t) =
[
xu2(t) + yu(t)

]
− z(t)

.
z(t) = α

.
u(t)− β

∣∣ .
u(t)

∣∣z(t)|z(t)|n−1 − γ
.
u(t)|z(t)|n (1)

In the formula, x(t) is the output displacement; l[u(t)] is a nonsingular input function;
z(t) is the hysteresis displacement component;

.
z(t) is the derivative of z(t) with respect to

time; u(t) represents the input voltage;
.
u(t) is the derivative of u(t) with respect to time; x

and y control the asymmetry of input signals; α controls the size of the hysteresis loop; β
and γ respectively control the shape of the hysteresis loop; n represents the smoothness of
the transition from the elastic part to the sculpted part. By appropriately selecting model
parameters, it can express various hysteresis in various shapes.

However, The improved Bouc-Wen model still does not have the rate-independent
features. Considering these limitations, modelling errors cannot be ignored in practical
applications [31].

2.2. Fractional Dynamic Model

Most Hammerstein models use integer-order calculus models or linear autoregressive
model (ARX) models to describe the dynamic characteristics of PEA, which often overlook
some real phenomena and properties with fractional-order characteristics. While using the
ARX model to describe dynamic characteristics, the output at the current moment is not
only determined by the input at the current moment, but also by the input and output at
all previous moments. The fractional-order model can be a good substitute for the ARX
model due to its long memory characteristics. When using an integer-order model to
describe the dynamic characteristics, it is necessary to analyze the dynamic characteristics
of the PEA and to estimate the redundant parameters that affect the robustness of the
control application. However, the fractional-order system is considered to have improved
robustness in the control design. Moreover, due to the mathematical characteristics of
fractional globality and long memory, it not only has the advantages of the ARX model
but also can use fewer parameters to model complex systems. It has been widely used in
physics and control [32,33]. The fractional Hammerstein model avoids complicated internal
mechanism analysis on the basis of obtaining good modelling accuracy.

Fractional calculus is the generalization of integer order integration and differentiation
to all real numbers. The basic operator t0Dα

t is defined as [34]:

t0Dα
t =


dα

dtα , Re(α) > 0
1, Re(α) = 0∫

0(dτ)−α, Re(α) > 0
(2)

Among them, t0 is the lower limit and t is the upper limit of the integral, α is the
fractional- order, which can be a complex number, and Re(α) is the real part of α.

There are many definitions of fractional calculus, among which the most commonly
used are the Grunwald–Letnikov (G-L) definition. This paper uses the approximate calcu-
lation defined by G-L to carry out the numerical simulation of fractional operators. The
definition of G-L is given as [34]:

t0Dα
t f (t) = lim

h→0
h−α ×

[(t−t0)/h]

∑
j=0

(−1)j Γ(α + 1)
Γ(α− j + 1)Γ(j + 1)

f (t− jh) (3)

Fractional systems can be represented by fractional linear differential equations, which
have the form:

a0Dα0 x(t) + · · ·+ anDαn x(t) = b0Dβ0 u(t) + · · ·+ bnDβn u(t) (4)
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Among them, u(t) and x(t) are system input and system output. Dαx(t) is the α-th
time derivative of x(t).

If the initial condition is zero, the Laplace transform of Dαx(t) is:

L{Dαx(t)} = sαX (5)

Take the Laplace to transform on both ends of the above Equation (4). The fractional-
order linear time-invariant system can be rewritten as the below transfer function form:

G(s) =
X(s)
U(s)

=
b0sβ0 + · · ·+ bmsβm

a0sα0 + · · ·+ ansαn
(6)

where α0 < α1 < · · · < αn, and β0 < β1 < · · · < βm.

3. Artificial Bee Colony Algorithm Based on Differential Evolution (DE-ABC)

Due to the complexity of the fractional systems, the dynamic model using fractional-
order description is not easy to estimate. In addition, due to the existence of multiple
variables in the problem, there are multiple local search optimal solutions in the objective
function, which is effortless to fall into the local optimal solution, and the amount of calcu-
lation is large. Practice results show that the traditional differential evolution algorithm
or artificial bee colony algorithm is prone to problems such as premature maturity or
slow convergence rate [35]. In addition, as the parameters of the model that needs to be
identified increases, the algorithm will deteriorate the search space, and the modal error
will increase with the increase in complexity. Therefore, it is difficult to efficiently and
accurately search for the global optimal solution using traditional general methods. Thus,
to solve this problem, this paper uses an effective artificial bee colony algorithm based on
the differential evolution strategy (DE-ABC).The flowchart of DE-ABC is shown in Figure 4.
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reached

Output the optimal solution, the 
algorithm ends
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No
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Figure 4. Flow chart of DE-ABC.

The calculation process of ABC mainly includes three stages: employed bees, on-
looker bees and scout bees. When using ABC to identify model parameters, each food
source represents a feasible solution to the model parameters, the amount of nectar(fitness)
represents the quality of the solution, and the number of solutions is equal to the number of
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leading bees. In this paper, the root mean square error (RMSE) is introduced as the fitness
function of DE-ABC to reflect the modeling error, as shown in Formula (7):

J(xi) =

√√√√ 1
N

N

∑
i=1

(yexp(i)− y(i))2 (7)

Among them yexp is the sampled value of the experimental data, is the sampled value
of the model data, N is the number of sampling points, each solution xi (I = 1, 2, . . . ) is
represented by a D-dimensional vector xi = (xi1, xi2, . . . , xiD)

T, where D is the number of
model parameters to be identified.

The specific process of DE-ABC identification is as follows:

1. Obtain the input and output data of the experiment.
2. Set the initial conditions and the number of parameters.
3. Parameter identification based on DE-ABC.
4. Verification. If the fitness does not meet the requirements, return to step 2 to continue

identification.

DE-ABC is to introduce the mutation strategy of the differential evolution algorithm
into ABC. In the search of the lead bee, the search of the lead bee is carried out according to
the Formula (8).

x′ij = xbest,j + Fi ×
(

xij − xkj

)
(8)

Here, xbest,j is the best individual of the previous generation, j ∈ {1, 2, . . . , D},
k ∈ {1, 2, . . . , N}, j and k are selected randomly, but k 6= j, Fi is no longer a constant
used in traditional ABC, but as shown in the Formula (9), it is an adaptive dynamic ad-
justment variable. Among them, Iter is the maximum number of iterations, and iter is the
current number of iterations.

Fi = 1− iter
Iter

(9)

In the early stage of algorithm evolution, iter is smaller, Fi is larger, and the algorithm
mutation intensity is larger, so that it can evolve to the optimal value more effectively
and quickly. As the evolution continues, to the later stage of the algorithm evolution, iter
becomes larger and Fi becomes smaller. As the individual evolves toward the optimal
value, the function can quickly and stably converge to the optimal value.

In traditional ABC, if a certain solution xi does not improve after L cycles, this solution
will be abandoned by the employed bees, and the employed bees will become scout bees
and randomly generate a new solution instead. In the DE-ABC used in this article, chaotic
search is introduced into the identification algorithm.

When a solution is still not improved after L cycles, it may fall into a local optimum,
and the scout bees will perform a chaotic search to jump out of the local optimum. The
chaotic search here uses the chaotic sequence generated by the Logistic chaotic map instead
of the random number in the traditional ABC formula.

The logistic chaotic mapping equation is as follows:

Cn+1 = 4Cn(1− Cn) (10)

Among them, 0 < Cn < 1. Suppose the solution of search stagnation is
xi = (xi1, xi2, . . . , xiD), the main steps of chaos search of the scout bees are as follows:

1. The initial value of the chaotic sequence generated according to Formula (11);

C0
ij =

xij − xmin,j

xmax,j − xmin,j
(11)

2. Generate chaotic sequence according to Formula (10);
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3. Generate a new solution according to Formula (12), calculate its fitness value, compare
it with the original solution, and keep the best solution;

x′ij = xi,j + cij ×
(
xmax,j − xmin,j

)
(12)

4. If the maximum number of chaotic iterations is reached, the search ends, otherwise
go to step 2.

4. Model Verification

The below paper is about that the Hammerstein model is applied to model the rate-
dependent hysteresis characteristics of the PEA under input signals of different frequencies.

4.1. Experimental Setup

Experimental equipment for the data acquisition experiment of PEA is shown in
Figure 5. This equipment consists of a computer, a data acquisition card, a drive power
supply, a piezoelectric micro-positioning platform, a piezoelectric amplification module,
a piezoelectric control module, and a displacement sensor. The data acquisition card
is the USB-6346(BNC) produced by NI. The piezoelectric micro-positioning platform is
P733.2DD [36] produced by the PI company. The platform comes with a displacement
sensor, the piezoelectric amplifier module E-505.00 produced by PI company, and the
piezoelectric control module is an E-509.C2A produced by PI company. In order to obtain
the experimental data, the voltage signal generated by the computer MATLAB software is
outputted through USB-6346(BNC) and transmitted to the E-509.C2A piezoelectric control
module. The control voltage generated is amplified by the E-505.00 amplification module
as the driving voltage of the piezoelectric micro-positioning platform. At that moment,
the corresponding output displacement of the platform is gauged by the displacement
sensor of the P733.2DD platform and then transmitted back to Matlab via USB-6346(BNC)
for storage.
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4.2. Comparison of Model Identification Effects

While the input signal frequency is lower than 5 Hz, the experimental results show
that the hysteresis loop of the PEA hardly changes. Therefore, the static Bouc-Wen model is
established by taking the input and output data of the PEA at an input frequency of 1 Hz,
which reflects the static hysteresis characteristics of the piezoelectric actuator. In order
to compare the effects of different identification algorithms, the traditional differential



Micromachines 2022, 13, 42 9 of 14

evolution algorithm (DE), ABC and DE-ABC are employed to discern the parameters of the
improved Bouc-Wen model.

In order to realize the improved Bouc-Wen model identification process, the initial
values of relevant parameters must firstly be determined. Through trial and error, the
upper and lower circumscriptions of the explore scope are set to MinX = [2 0 1 1 0],
MaxX = [1 −2 0 0 −1], and the number of iterations is set to 150 generations. Compared
with the experimental data, the DE-ABC is superior to the DE and the ABC in terms of
convergence rate and identification accuracy. The effects of the above three algorithms are
shown in Figure 6 and Table 1.

Micromachines 2022, 13, x 9 of 15 
 

While the input signal frequency is lower than 5 Hz, the experimental results show 
that the hysteresis loop of the PEA hardly changes. Therefore, the static Bouc-Wen model 
is established by taking the input and output data of the PEA at an input frequency of 1 
Hz, which reflects the static hysteresis characteristics of the piezoelectric actuator. In order 
to compare the effects of different identification algorithms, the traditional differential 
evolution algorithm (DE), ABC and DE-ABC are employed to discern the parameters of 
the improved Bouc-Wen model. 

In order to realize the improved Bouc-Wen model identification process, the initial 
values of relevant parameters must firstly be determined. Through trial and error, the 
upper and lower circumscriptions of the explore scope are set to MinX = [2 0 1 1 0], MaxX 
= [1 −2 0 0 −1], and the number of iterations is set to 150 generations. Compared with the 
experimental data, the DE-ABC is superior to the DE and the ABC in terms of convergence 
rate and identification accuracy. The effects of the above three algorithms are shown in 
Figure 6 and Table 1. 

 
Figure 6. Algorithm comparison. 

Table 1. Best fitness of each algorithm. 

Algorithms Best Fitness Value 
DE 0.0247 

ABC 0.0144 
DE-ABC 0.0120 

4.3. Fractional Hammerstein Model 
Parameter identification based on the fractional-order Hammerstein rate-dependent 

nonlinear hysteresis model requires two steps to complete, that is: 
1. Bouc-Wen model identification. This model mainly reflects the static nonlinear hys-

teresis characteristics of the PEA. The model parameters and identification results are 
shown in Table 2 and Figure 7. 

Table 2. The parameters of the model. 

x y α β γ RE RMSE 
0.0031 2.0000 −1.2039 0.1111 0.0024 0.0208 0.0120 

Figure 6. Algorithm comparison.

Table 1. Best fitness of each algorithm.

Algorithms Best Fitness Value

DE 0.0247
ABC 0.0144

DE-ABC 0.0120

4.3. Fractional Hammerstein Model

Parameter identification based on the fractional-order Hammerstein rate-dependent
nonlinear hysteresis model requires two steps to complete, that is:

1. Bouc-Wen model identification. This model mainly reflects the static nonlinear hys-
teresis characteristics of the PEA. The model parameters and identification results are
shown in Table 2 and Figure 7.

2. Identification of the fractional-order model, which mainly reflects the linear dynamic
characteristics of the PEA. A sine frequency sweep signal with a frequency range of
1–100 Hz is generated by Matlab as the input of the Bouc-Wen model. The output data
of the Bouc-Wen model is used as the input of the fractional-order model, and the
collected output data of the experimental equipment of the frequency sweep signal is
used as the output of the fractional-order model. Through the input and output data
of the aforementioned fractional model, the DE-ABC is used to identify the parameters
of the fractional model. Through the DE-ABC, the fractional linear dynamic model is:

G(s) =
5.2589× 106

s2.0384 + 3081s1.0523 + 5.4955× 106 (13)
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Table 2. The parameters of the model.
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4.4. Model Examination

In this section, the effectiveness of the rate-dependent Hammerstein model is testified
when the PEA receives input signals of different frequencies.

When the input signal frequencies are 10 Hz, 20 Hz, 50 Hz and 100 Hz, respectively,
the comparison between the experimentally measured hysteresis shape and the hysteresis
shape simulated by the classical Bouc-Wen model, the hysteresis shape simulated by the
Hammerstein model based on the integer-order dynamic model and the hysteresis shape
simulated by the Hammerstein model based on the fractional-order dynamic model is
shown in Figures 8–11, respectively. Table 3 shows the hysteresis shape simulated by
the classic Bouc-Wen model, the hysteresis shape simulated by the Hammerstein model
based on the integer-order dynamic model, and the maximum error(Max error) and the
mean square error(RMSE) of the Hammerstein model based on the fractional-order dy-
namic model.

When the input signal frequency of the piezoelectric actuator is 10 Hz, a Max error of
the classic Bouc-Wen model is 0.5000 µm, and a RMSE is 0.1127. The Hammerstein model
based on the integer-order dynamic model has a Max error of 0.1144 µm and a RMSE of
0.0413. The Hammerstein model based on the fractional dynamic model has a Max error of
0.0753 µm and a RMSE of 0.0264.

When the input signal frequency of the piezoelectric actuator is 20 Hz, a Max error of
the classic Bouc-Wen model is 0.5161 µm and a RMSE is 0.1095. The Hammerstein model
based on the integer-order dynamic model has a Max error of 0.2572 µm and a RMSE of
0.0627. The Hammerstein model based on the fractional dynamic model has a Max error of
0.0915 µm and a RMSE of 0.0244.
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Table 3. RMSE and Max error of the model.

Frequency Model Max Error RMSE

10 Hz

Classic Bouc-Wen 0.5000 µm 0.1127

Hammerstein based on integer-order dynamic 0.1144 µm 0.0413

Hammerstein based on fractional dynamic 0.0753 µm 0.0264

20 Hz

Classic Bouc-Wen 0.5161 µm 0.1095

Hammerstein based on integer-order dynamic 0.2572 µm 0.0627

Hammerstein based on fractional dynamic 0.0915 µm 0.0244

50 Hz

Classic Bouc-Wen 0.6292 µm 0.1411

Hammerstein based on integer-order dynamic 0.5266 µm 0.1086

Hammerstein based on fractional dynamic 0.0788 µm 0.0228

100 Hz

Classic Bouc-Wen 1.2012 µm 0.2698

Hammerstein based on integer-order dynamic 0.5039 µm 0.1101

Hammerstein based on fractional dynamic 0.0727 µm 0.0221

When the input signal frequency of the piezoelectric actuator is 50 Hz, a Max error of
the classic Bouc-Wen model is 0.6292 µm and a RMSE is 0.1411. The Hammerstein model
based on the integer-order dynamic model has a Max error of 0.5266 µm and a RMSE of
0.1086. The Hammerstein model based on the fractional dynamic model has a Max error of
0.0788 µm and a RMSE of 0.0228.

When the input signal frequency of the piezoelectric actuator is 100 Hz, a Max error of
the classic Bouc-Wen model is 1.2012 µm and an RMSE is 0.2698. The Hammerstein model
based on the integer-order dynamic model has a Max error of 0.5039 µm and a RMSE of
0.1101. The Hammerstein model based on the fractional dynamic model has a Max error of
0.0728 µm and an RMSE of 0.0221.

It can be known by analyzing the experimental results. The traditional Bouc-Wen
model can only describe the symmetrical and rate-independent hysteresis characteristics.
However, in actual conditions, the hysteresis characteristics of experimental equipment are
often asymmetric and rate-dependent. It can be known from Table 3 that as the voltage
frequency increases, the error of the traditional Bouc-Wen model begins to increase. The
Hammerstein model based on the integer- order dynamic model can reveal the asymmetric
and rate-dependent hysteresis characteristics. However, because the fractional-order model
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is more in line with the engineering practice and can highlight the dynamic characteristics
of piezoelectric actuator more accurately, the Hammerstein model using the fractional order
model to describe the dynamic characteristics of PEA is more accurate.

5. Conclusions

This paper proposes a rate-dependent hysteresis model based on fractional Ham-
merstein. The Bouc-Wen model describes the nonlinear static features of the piezoelectric
actuator, and the fractional model describes the dynamic features of the piezoelectric ac-
tuator. First, the DE-ABC is used to identify the Bouc-Wen model parameters with static
hysteresis. Secondly, on the basis of this Bouc-Wen static hysteresis model, the fractional-
order dynamics model is obtained through the input and output data of the sweep signal
with a frequency of 1–100 Hz. The DE-ABC is applied to the parameter identification of the
Bouc-Wen model and fractional order model. The simulation results show that in the wide
frequency range of 1–100 Hz, the Max error is about 0.0915 µm, and the RMSE is 0.0244. In
summary, when the excitation voltage frequency of the piezoelectric actuator is at different
frequencies, the Hammerstein model based on the fractional-order proposed in this paper
can provide higher accuracy at different frequencies.
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