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Abstract: This study aims to measure and compare spatiotemporal gait parameters in nineteen
subjects using a full wearable inertial mocap system Xsens (MVN Awinda, Netherlands) and a
photoelectronic system one-meter OptoGaitTM (Microgait, Italy) on a treadmill imposing a walking
speed of 5 km/h. A total of eleven steps were considered for each subject constituting a dataset
of 209 samples from which spatiotemporal parameters (SPT) were calculated. The step length
measurement was determined using two methods. The first one considers the calculation of step
length based on the inverted pendulum model, while the second considers an anthropometric
approach that correlates the stature with an anthropometric coefficient. Although the absolute
agreement and consistency were found for the calculation of the stance phase, cadence and gait cycle,
from our study, differences in SPT were found between the two systems. Mean square error (MSE)
calculation of their speed (m/s) with respect to the imposed speed on a treadmill reveals a smaller
error (MSE = 0.0008) using the OptoGaitTM. Overall, our results indicate that the accurate detection of
heel strike and toe-off have an influence on phases and sub-phases for the entire acquisition. Future
study in this domain should investigate how to design and integrate better products and algorithms
aiming to solve the problematic issues already identified in this study without limiting the user’s
need and performance in a different environment.

Keywords: spatiotemporal parameters; treadmill; gait analysis; gait measuring system; wearable sensors

1. Introduction

Gait is the main activity of human beings and corresponds to their physiological path
of movement [1]. Physiological walking is a bipedal and complex activity. It corresponds
to an automated, neuro-muscular activity that voluntary control can modulate [2]. Moni-
toring spatiotemporal parameters of gait (SPT) is important to assess performance [3] and
abnormalities [4–7] and predict overuse injuries [8].

Gait is characterized by the walking cycle that is a representation of the succession
of body movements. This succession of movement lasts a certain time comprising suc-
cessive gait cycles. One gait cycle (100% time) is divided in two phases: the stance phase
(60% of the cycle) and the swing phase (40% of the cycle) [9,10]. These two phases are
additionally divided into several sub-phases. The stance phase (60% of the gait cycle) is
successively divided into four sub-phases: the loading response (0–10%), the mid-stance
(10–30%), the terminal stance (30–50%) and the pre-swing (50–60%) [9,10]. Meanwhile,
the swing phase (40% of the gait cycle) is subdivided into three sub-phases: initial swing
(60–73%), mid-swing (73–87%) and terminal swing (87–100%) [9,10]. During the gait cycle,
spatial (or distance parameters) and temporal parameters can be measured with different
measurements systems. Spatial parameters are the step length (right heel to left heel), step
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width (medio-lateral distance between two heel strikes) and the stride length (right heel to
right heel), while the temporal parameters are the cadence (number of step per minute),
speed, step and stride time, time and duration of phases and sub-phases [9,10].

Several measurements systems are used for monitoring spatiotemporal parameters
in gait analysis [11], such as force or pressure plates [12], optoelectronic systems [13,14],
wearable motion capturing systems (e.g., accelerometers [15], gyroscopes, magnetometers
or the fusion of the three in an inertial measurement unit (IMU) [16–18], wearable pressure
insoles [19] and smart clothes [20–22]).

Among these systems, IMUs were proved to be useful to monitor gait kinematics
in an ecological approach not necessarily confined to the lab [8,15,17,23–25]. In addition,
photoelectric cell systems such as OptoGaitTM composed of transmitting and receiving LED-
bars are already used as transportable systems for monitoring spatiotemporal parameters
indoor and outdoor [14,26,27]. Each bar can be connected to constitute a walkway with
transmitting and receiving bars of several meters for monitoring gait overground, or on
a treadmill.

There are differences between walking on the treadmill and overground. Treadmill
walking offers a fixed environment, unlike walking on the floor. The contradictory effect
between the visual field (the absence of retinal slippage) and the lower limbs affects walking
speed and requires compensation which will result in an increase in the support phase to
ensure its stability [28].

In most treadmills, substantially less energy is exerted compared to overground
walking at the same speed, as smaller horizontal forces are exerted. As energy transfer is
different, gait/walking characteristics are likely to be affected, especially in the propulsion
phase [28].

Although instrumented gait analysis (IGA) systems can measure SPT in a different
manner with a different sample frequency, it is also important for evaluating the accuracy
and the method used to identify the heel strike and the toe-off events that can influence the
calculation of the phases and sub-phases and consequently the step length and the cadence.

Rudish et al. [29] already evaluated the absolute agreement and consistency between
five different IGA systems (two inertial, two pressure sensors and one optical). They found
high agreement and consistency in gait cycle time, cadence, gait speed and stride length
variables. However, poor agreement in determining phase and sub-phases caused by
an inaccurate detection of toe-off and heel strike was found. Kluge et al. [30] studied
the validity and test-reliability of an inertial system composed of two Shimmer3 sensors
(Shimmer, Dublin, Ireland, 102.4 Hz) for the assessment of SPT using an optical markerless
motion capture system (Simi Reality Motion Systems, Unterschleißheim, Germany, 100 Hz).
They found a good test reliability for all parameters (intraclass correlation (ICC) > 0.81)
except for gait velocity (ICC > 0.55). At the same time, Washabaugh et al. [31] studied
the validity and repeatability of IMUs (APDM’s Mobility Lab) for SPT in overground and
in treadmill using two different body placements (ankle and foot) demonstrating more
repeatability when the sensors are placed on the feet.

In addition, Lee et al. [32] evaluated the validity and reliability of the OptoGaitTM

system for the assessment of SPT using the GaitRite system as a reference for the SPT mea-
surements and found a correlation with all the SPT by ICC (3, 1) = (0.785–0.952), coefficients
of variation (CVME = 1.66–4.06%), 95% limits of agreement, standard error of measurement
(SEM = 2.17–5.96%) and minimum detectable change (MDC95% = 6.01–16.52%). However,
no previous study was found that evaluate the agreement between OptoGaitTM and the
inertial system Xsens (MVN awinda, Netherlands) on treadmill walking in healthy males.
The study of the validity and reliability of IGA instruments is an essential asset that must
be considered in clinical practice. This especially in the case of a new IGA instrument
such as a wearable inertial mocap system that is not considered the gold standard as an
optical system [16,33]. In fact, according to Muro-de-la-Herran [11] and Najafi et al. [34],
the difference of using wearable respects not wearable sensors as optical systems is the
possibility of evaluating the subject in a non-confined lab on different terrain and dis-
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tances promoting patient’s autonomy and active role enhancing usability. However, these
systems that are created to track movements are sometimes not created for clinical use
as for assessing spatiotemporal parameters in gait analysis such as Xsens. According
to Routhier et al. [35], a better study of these devices can allow more acceptance by the
end-users that are also clinicians. Moreover, study these technologies is also important for
mathematicians, designers and engineers. Design and technical issues can also affect the
accuracy of these technologies [33,36–38].

Starting from these observations this study aims to measure and compare spatiotem-
poral gait parameters in nineteen subjects using a full wearable mocap system Xsens and a
photoelectronic systems 1 m OptoGaitTM (Microgait, Italy) on treadmill walking imposing
a walking speed of 5 km/h.

2. Methods

Nineteen healthy male volunteers participated in the study signing informed consent.
This study was also approved by an ethical committee (CE2019/32). Anthropometric
characteristics of the population were collected before each subject’s acquisition, as shown
in Table 1.

Table 1. Anthropometric characteristics of the population (Mean, SD = standard deviation).

Mean (SD)

Age (years) 25.42 (5.83)
Stature (m) 1.81 (0.06)

Body mass (kg) 74.92 (7.40)
BMI (kg/m2) 22.80 (1.36)

Leg length (m) 0.94 (0.05)

The nineteen subjects wore the full mocap system walking at an imposed speed of
5 km/h on the treadmill (Medisoft, Model 870S, Belgium) with two photoelectronic optical
bars (1 m) OptoGaitTM placed at both sides, Figure 1. The initial contact of the right
foot was used as the reference point for the start of the experiment. The spatiotemporal
parameters are the speed (m/s), the step length (m) and the phases of the gait cycle (s).
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Sensors 2021, 21, 4441 4 of 15

2.1. Instrumentation

2.1.1. The OptogaitTM

The OptogaitTM system (1000 Hz) is a photoelectronic system consisting of two LED
bars (96 light-emitting or light-receiving diodes) of one meter each. The device identifies
interruptions in communication between the bars caused by the patient’s movement once
it is positioned on the treadmill and estimates the duration and position. Spatiotemporal
parameters are calculated automatically using a dedicated software provided by Microgait
(Bolzano, Italy).

2.1.2. The Xsens

Xsens (MVN Awinda, Netherlands, 60 Hz) is a wearable inertial full mocap system
composed of 17 inertial measurement unit Xsens attached to the body by band or attached
to the upper body on a shirt. Kinematic data (3D position, linear and angular acceleration
and velocity of twenty-three segments; the 3D joint angles of twenty-two joints, the centre of
mass of the body, the 3D orientation, free accelerations and magnetic data of the seventeen
wearable inertial systems) are captured and successively visualized by using the MVN
Analyse software. Moreover, the software is not able to calculate automatically all the
spatiotemporal parameters such as cadence, phases or step length.

1. The Inverted Pendulum Model

In this case all the spatiotemporal parameters were described as a percentage of
the gait cycle, modelled as an inverted pendulum [20,21,39,40]. This inverted pendulum
model [20,21,39,40] can be written in the form of an equation which describes the swinging
movement of the legs according to:

SL1 = 2
√
(2∗L ∗ h)− h2 (1)

where SL1 is the step length (m), L is the length of the leg (m) expressed as “the summit
between the iliac crest and the floor” [41] and h is the amplitude of the center of mass
(COM) oscillation during a walking pattern [20,21,39,40].

Using Equation (1) it is possible to determine the speed S1 (m/s) as:

S1 = (SL1/60) ∗ f ∗ α (2)

where f represents the cadence (number of step per minute) and α = 1.14 is a constant
determined by the calibration considering the imposed speed [42].

2. Identification of Gait Phases and Sub-phases

The variation in the angle of the knee in flexion-extension in the sagittal plane
(Figure 2) can be used to determine the different parts of the walking cycle [5,10]. This
method is limited to the analysis of movements in the sagittal plane, but walking takes
place in several planes [18].

Considering in this graph three specific peaks according to Abid et al. [5], it is possible
to determine a stance phase peak angle (Pflex1), a swing phase peak flexion angle (Pflex2)
and a local maximum (Pflex3), Figure 2. These key points are fundamental to determine
the principal phases.

In addition to determine the sub-phases it is possible to consider the waves represent-
ing the flexion and the extension of the bilateral knees during a stride as it was shown
in Figure 3.

The first flexion wave indicates the absorption phase of the body weight on the
supporting leg, corresponding in the stance phase to the loading response (LR) during the
first double support phase (DS) Figure 3 [5,20,21].
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Figure 3. Representation of the knee joint angle and determination of the gait phases and sub-phases
for a full stride with the right leg (which here represents the ipsilateral leg in blue) and the left leg
(which here represents the contralateral leg in orange).

Then, as the opposite leg begins its cycle at 50% offset from the reference leg it is
possible to determine the DS of the supporting leg and DS of the contralateral leg that
corresponds to the pre-swing phase with toe-off of the supporting leg, Figure 3. Next is the
swing phase composed by initial, mid and terminal swing constituting the 40% of the gait
cycle (Figure 3).

2.1.3. The Anthropometric Approach

The anthropometric approach is a method that does not consider any IGA instrument
but the anthropometric characteristics [43]. This method that is normally used in pedome-
ters does not consider the COM and the step length variation. In this case, the step length
SL2 (m) is every time fixed and is expressed as follow:

SL2 = C ∗ R ∗ 0.01 (3)

where R is the stature (m) and C is an anthropometric coefficient (C=0.415) representing
the male population [43].

Considering the Equation (3) is possible to determine the speed (m/s) as follow:

S2 = ((SL2 ∗
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SPT 
Mean (SD) 
OptoGaitT

M 

Mean (SD) 
Xsens 

Mean 
Diff 

95% CI p 
ICC_A 
Mean 

95% CI ICC_C 
Mean 

95% CI 

Stance 
phase (s) 0.69 (0.002) 0.63 (0.002) 0.056 

0.053 to 
0.0602 <0.0001 0.512 

−0.153 to 
0.819 0.87 

0.829 to 
0.901 

Swing 
phase (s) 

0.33 (0.001) 0.34 (0.001) −0.014 −0.018 to 
−0.011 

<0.0001 0.527 0.236 to 
0.691 

0.60 0.479 to 
0.697 

Stance 
phase (%) 

67.80 
(0.107) 

64.83 
(0.124) 

2.971 2.655 to 
3.287 

<0.0001 0.026 −0.082 to 
0.140 

0.06 −0.224 to 
0.289 

)/60) (4)
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where f represents the cadence and
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= 0.905 is a constant determined by the calibration
with respect to the imposed speed on a treadmill at 5 km/h [42].

2.2. Statistical Analysis

Mean standard deviation (SD) of the twelve SPT variables (stance phase (s) and (%),
swing phase (s) and (%), gait cycle (s), double support (s) and loading response (s) and
(%), pre-swing (s) and (%), cadence (step/min), speed (m/s)) measured using the two
IGA systems (Xsens, OptogaitTM) were performed using the software Microsoft Excel
(2019). Bland–Altman analysis was applied for understanding the agreement between
these SPT variables using the two IGA systems together with the mean of differences
with the 95% confidence intervals and p-values [44–48]. In addition, intraclass correlation
coefficients (ICC) for mean of different gait variables looking for the absolute agreement
and consistency and repeatability were studied using the software SPSS (IBM SPSS Statistics
Version 27) [49,50]. Additionally, mean square errors (MSE) of the speed measured using
the two systems (Xsens, OptogaitTM) with respect to the imposed speed (5 km/h) of the
treadmill were calculated [51–53].

3. Results

Spatiotemporal parameters measured with respectively the wearable inertial mo-
cap system and the OptoGaitTM on the treadmill are shown in Tables 2–5. Furthermore,
Tables 2 and 4 show the mean of differences, absolute agreement and consistency with the
95% confidence intervals and p-values. Meanwhile, Figures 4–6 display the Bland-Altman
plots analysis. Regression analysis of the difference together with the 95% confidence inter-
vals (CI), p-values and coefficient of repeatability (CR) of the spatiotemporal parameters
between Xsens and the OptoGaitTM are reported in Tables 3 and 5.
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Table 2. Mean, SD (standard deviation), Mean of differences of the measured values between pairs of devices together with the 95% confidence intervals (CI) and p-values. Intraclass
correlation coefficients (ICC) for mean of different gait variables measured for overlapping phases of system pairs. ICCs reflect absolute agreement (ICC_A) and consistency (ICC_C)
of ratings.

SPT Mean (SD)
OptoGaitTM Mean (SD)Xsens Mean

Diff 95% CI p ICC_A
Mean 95% CI ICC_C

Mean 95% CI

Stance phase (s) 0.69 (0.002) 0.63 (0.002) 0.056 0.053 to 0.0602 <0.0001 0.512 −0.153 to 0.819 0.87 0.829 to 0.901
Swing phase (s) 0.33 (0.001) 0.34 (0.001) −0.014 −0.018 to −0.011 <0.0001 0.527 0.236 to 0.691 0.60 0.479 to 0.697
Stance phase (%) 67.80 (0.107) 64.83 (0.124) 2.971 2.655 to 3.287 <0.0001 0.026 −0.082 to 0.140 0.06 −0.224 to 0.289
Swing phase (%) 32.27 (0.104) 35.16 (0.124) −2.888 −3.213 to −2.564 <0.0001 −0.028 −0.147 to 0.094 −0.074 −0.041 to 0.189

Gait cycle (s) 1.02 (0.003) 0.98 (0.003) 0.041 0.038 to 0.044 <0.0001 0.796 −0.167 to 0.940 0.945 0.928 to 0.958
Double support (%) 35.53 (0.171) 29.64 (0.188) 5.884 5.391 to 6.378 <0.0001 0.016 −0.061 to 0.101 0.056 −0.023 to 0.241

Time of Double support (s) 0.36 (0.002) 0.29 (0.002) 0.072 0.067 to 0.077 <0.0001 0.149 −0.123 to 0.403 0.461 0.293 to 0.590
Loading response (%) 22.27 (0.673) 14.85 (0.115) 7.423 6.093 to 8.752 <0.0001 0.028 −0.014 to 0.193 0.044 −0.254 to 0.272

Time of loading response (s) 0.15 (0.004) 0.14 (0.001) 0.008 −0.0005 to 0.017 0.0660 0.137 −0.129 to 0.341 0.138 −0.131 to 0.343
Pre−swing (%) 17.80 (0.114) 16.11 (0.321) 1.686 0.995 to 2.377 <0.0001 −0.122 −0.433 to 0.125 −0.137 −0.491 to 0.133

Time of pre−swing (s) 0.18 (0.001) 0.14 (0.001) 0.036 0.033 to 0.039 <0.0001 0.138 −0.118 to 0.362 0.362 0.162 to 0.514
Cadence (step/min) 117.50 (0.410) 122.39 (0.416) −4.888 −5.256 to −4.520 <0.0001 0.804 −0.164 to 0.942 0.946 0.925 to 0.959

Table 3. Regression analysis of the differences (Coefficient (slope and intercept), SE = standard error) together with the 95 % confidence intervals (CI), p-values and coefficient of
repeatability (CR) of the spatiotemporal parameters between the OptoGaitTM (O) and the Xsens (X).

SPT (O-X) Parameter Coefficient SE t p 95% CI CR 95% CI

Stance phase (s) Intercept 0.096 0.033 2.900 0.0041 0.030 to 0.162
0.121 0.110 to 0.134Slope −0.059 0.049 −1.192 0.2346 −0.157 to 0.038

Swing phase (s) Intercept −0.046 0.029 −1.569 0.1182 −0.104 to 0.011 0.056
0.0514 to 0.0623Slope 0.093 0.087 1.065 0.2878 −0.079 to 0.265

Stance phase (%) Intercept 21.820 8.805 2.478 0.0140 4.461 to 39.180
7.378 6.733 to 8.160Slope −0.284 0.132 −2.141 0.0334 −0.545 to −0.0225

Swing phase (%) Intercept 8.821 4.792 1.840 0.0671 −0.627 to 18.269
7.327 6.687 to 8.104Slope −0.347 0.142 −2.444 0.0153 −0.627 to −0.0672

Gait Cycle (s) Intercept −0.039 0.032 −1.219 0.2239 −0.102 to 0.0242
0.091 0.083 to 0.101Slope 0.080 0.032 2.496 0.0133 0.016 to 0.143

Double support (s) Intercept 0.127 0.033 3.826 0.0002 0.061 to 0.193
0.158 0.144 to 0.175Slope −0.168 0.101 −1.666 0.0971 −0.368 to 0.030

Double support (%) Intercept 11.653 4.390 2.654 0.0086 2.997 to 20.308
13.531 12.349 to 14.966Slope −0.177 0.134 −1.316 0.1896 −0.442 to 0.088

Pre-swing (s) Intercept 0.054 0.018 2.964 0.0034 0.018 to 0.089
0.0834 0.076 to 0.0927Slope −0.108 0.110 −0.977 0.3295 −0.326 to 0.110

Pre-swing (%) Intercept 29.749 1.602 18.564 <0.0001 26.590 to 32.909
10.447 9.534 to 11.554Slope −1.654 0.093 −17.682 <0.0001 −1.839 to −1.470

Loading response (%) Intercept −26.826 0.864 −31.042 <0.0001 −28.529 to −25.122
23.984 21.889 to 26.527Slope 1.844 0.044 41.031 <0.0001 1.756 to 1.933

Cadence (step/min) Intercept −2.893 3.864 −0.748 0.4549 −10.512 to 4.725
10.935 9.980 to 12.095Slope −0.016 0.032 −0.516 0.6058 −0.080 to 0.046
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Table 4. Mean of differences of the measured values between pairs of devices together with the 95% confidence intervals (CI) and p-values. Intraclass correlation coefficients (ICC) for
mean of different gait variables measured for overlapping phases of system pairs. ICCs reflect absolute agreement (ICC_A) and consistency (ICC_C) of ratings.

SPT Mean A Mean B Mean
Diff 95% CI p ICC_A

Mean 95% CI ICC_C
Mean 95% CI

SLo (m), SL1 (m) 0.71 (0.50) 0.59 (0.721) 0.113 0.105 to 0.121 <0.0001 0.22 −0.156 to 0.534 0.579 0.447 to 0.679
SLo (m), SL2 (m) 0.71 (0.50) 0.75 (0.151) −0.039 −0.046 to −0.033 <0.0001 0.366 −0.033 to 0.588 0.491 0.338 to 0.616
SL1 (m), SL2 (m) 0.59 (0.721) 0.75 (0.151) −0.153 −0.160 to −0.145 <0.0001 0.088 −0.075 to 0.140 0.463 0.295 to 0.591

So (m/s), S1 (m/s) 1.39 (0.18) 1.38 (3.701) 0.003 −0.012 to 0.020 0.6421 0.171 −0.089 to 0.369 0.171 −0.088 to 0.368
So (m/s), S2 (m/s) 1.39 (0.18) 1.38 (0.631) 0.006 −0.002 to 0.014 0.1700 0.093 −0.434 to 0.167 −0.093 −0.435 to 0.167
S1 (m/s), S2 (m/s) 1.38 (3.701) 1.38 (0.631) 0.002 −0.015 to 0.019 0.8012 0.122 −0.153 to 0.332 0.122 −0.152 to 0.331

Table 5. Regression analysis of the difference (Coefficient (slope and intercept), SE = standard error) together with the 95% confidence intervals (CI), p-values and coefficient of repeatability
(CR) of the spatiotemporal parameters between Xsens and the OptoGaitTM.

Parameter Coefficient SE t p 95% CI CR 95% CI

SLo (m), SL1 (m)
Intercept 0.282 0.058 4.863 <0.0001 0.168 to 0.397

0.250
0.228 to 0.277

Slope −0.258 0.088 −2.921 0.0039 −0.433 to −0.084

SLo (m), SL2 (m)
Intercept −0.629 0.059 −10.577 <0.0001 −0.746 to −0.51 0.119

0.108 to 0.131Slope 0.805 0.081 9.915 < 0.0001 0.645 to 0.965

SL1 (m), SL2 (m)
Intercept −0.831 0.050 −16.598 <0.0001 −0.930 to −0.732

0.318 0.290 to 0.352Slope 1.004 0.074 13.558 <0.0001 0.858 to 1.150

So (m/s), S1 (m/s)
Intercept 2.252 0.080 27.974 <0.0001 2.093 to 2.411

0.232 0.212 to 0.257Slope −1.618 0.057 −27.957 <0.0001 −1.732 to −1.503

S1 (m/s), S2 (m/s)
Intercept −1.726 0.135 −12.702 <0.0001 −1.9943 to −1.458

0.252 0.230 to 0.278Slope 1.246 0.097 12.734 <0.0001 1.053 to 1.439

So (m/s), S2(m/s)
Intercept −0.629 0.059 −10.577 <0.0001 −0.746 to −0.512

0.119 0.108 to 0.131Slope 0.805 0.081 9.915 <0.0001 0.645 to 0.965
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Finally, Table 6 shows the mean square errors (MSE) considering S1 = speed calculated
using the Equation (2), S2 = speed calculated with Equation (4) and SO = speed calculated
using the OptoGaitTM with respect to the imposed speed on treadmill (5 km/h).

Table 6. Mean square errors (MSE) considering S1 = speed calculated using the Equation (2).
S2 = speed calculated with Equation (4) and SO = speed calculated using the OptoGaitTM respect to
the imposed speed on treadmill (5 km/h).

S1 S2 SO

MSE (m/s) 0.014 0.003 0.0008
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4. Discussion

From this study emerged good agreement and consistency for the time of the stance
phase and swing phase (Table 2). Although differences were found between the two
systems as shown in Tables 2 and 3. According to Lee et al. [32,54], a longer stance
phase was found in the OptoGaitTM system. This can be caused as stated by previous
studies by the fact that there is a gap between the treadmill belt and the OptogaitTM

bars [32]. This causes an incorrect detection of the initial contact and toe-off [54]. This
issue can affect the entire gait cycle and the relative phases. This can, in part, be solved
by minimizing the space between treadmill belt and the bar integrating the bar in the
treadmill. Nowadays, Microgait (Bolzano, Italy) offers the possibility of integrating the
OptogaitTM bars on the treadmill as with Lode (Katana model, Lode BV, Netherlands.)
or H/P Cosmos (quasar®model, Germany). However, this constitutes a non-portable
solution that is costly. Regardless of this, OptogaitTM is affected, in addition, by the
error due to an early heel contact and late toe-off caused by the LEDs that are raised by
3 mm from the floor [55,56]. However, a study from Lienhard et al. [27] also found this
problematic issue in overground walking. In fact, according to Lienhard et al. [27], the error
increases with decreasing walking speed. Despite this, different studies use this system
as an optical system to assess agreement and reliability [27,32,54–56]. However, the two
devices present a different sampling frequency that can have an effect on the precision
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of the event detection. According to Marmelat et al. [57], gait should be collected at
120 Hz for having a good compromise between accuracy and processing time. Nonetheless,
this effect was not studied in this research testing different sampling frequencies due
to the limitation of setting this technology at different sampling frequencies. Despite
this, excellent agreement and consistency were found for the gait cycle and the cadence
(Table 2). This was demonstrated by a gait cycle duration of 0.98 secs using the Xsens and
the gait cycle duration of 1.02 s using the OptoGaitTM. These results are in accordance
with Murray et al. [58] (where the average gait cycle duration should correspond to values
between 0.98 to 1.07 secs for men) and with the findings of Rudisch [29] (where high
agreement and consistency were found). Poor agreement and consistency (Tables 2 and 3)
were found with the time of double support, time of loading and time of pre-swing between
the two devices. In fact, systematic differences of these sub-phases (Tables 2 and 3) can
reflect a non-accurate acquisition of the heel-strike and toe-off event [29].

Regarding the step length and speed, different methods were presented. A method
that calculates the step length using the inverted pendulum model applied on Xsens,
SL1 (Equation (1)). In addition, a method that is based on the anthropometric approach
(Equation (3)) that does not consider the step length variation. This equation is normally
used in a pedometer but the application of this formula in gait analysis brings some
limitations especially when we use the variation of the step length for evaluating patholo-
gies [59]. Poor agreement but good consistency was found between SL1 (Xsens) and SLo
(OptoGaitTM). Differences between the two systems were also found with p < 0.0001
(Table 4). In term of step length, the OptoGait TM system does not consider the anthropo-
metric variables, such as stature or leg length, but only the contact as interruption between
the bars (Table 4). Step length calculated using the Xsens was underestimated with respect
the OptoGaitTM and the anthropometric approach (Table 4). To investigate more, mean
square errors (MSE) with respect to the imposed speed on treadmill of 5 km/h were also
calculated for both devices measuring systems (Table 6). OptoGaitTM demonstrated being
the device with lower SO (MSE = 0.0008 m/s) with respect to the other devices. This is
followed by the anthropometric approach S2 (MSE = 0.003 m/s) and the speed calculated
using the Xsens, S1 (MSE = 0.014 m/s). Considering the two speeds using the Xsens and the
anthropometric approach, two calibration factors as α and γ for each speed calculation S1
and S2 were adopted reducing this error. However, between the two systems, OptoGaitTM

was revealed to be more accurate for step length and speed detection.
In terms of capturing, the two devices request a different pre-acquisition period neces-

sary for the setup and the calibration. Xsens requires the body placement of the wearable
inertial sensors attached to the body by straps. This is after introducing the anthropomet-
ric measurements to the MVN Awinda software for representing and scaling the Digital
Human Model (DHM) of the subject, where a successive calibration is required [60–63].
This is not practical when you need to acquire a patient in a clinical setting as you have
limitation in time. However, the OptoGaitTM system does not requires such a long time
since is not necessarily to place any sensor to the body. This is advantageous in terms of
comfort because the subject does not wear any sensors that can influence their performance.
In contrast, the OptoGaitTM does not permit a complete evaluation of the Kinematics of
the subjects as the Xsens. The advantage of this device is the capability of exporting from
this device information regarding 3D position, linear and angular acceleration and velocity
of twenty-three segments: the 3D joint angles of twenty-two joints, the centre of mass
of the body, the 3D orientation, free accelerations and magnetic data of the seventeen
wearable inertial systems. In addition, Xsens can be used for monitoring different distances
and terrains giving more complete freedom of capturing. This is not possible using the
OptogaitTM as it is necessary to have the two receiving bars on the pathway. The bars need
to be parallel and at the same distance, also creating a fixed pathway that may condition
the protocol and the user’s performance. Furthermore, the Xsens offers the possibility of
exporting the file as BVH files that can be imported into simulation software as Anybody
for musculoskeletal simulation [63,64].
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Additionally, this study presents some limitations. The first limitation is the use of only
one imposed speed of 5 km/h for also evaluating the error between these devices. Future
study needs to evaluate the error in speed by also considering different body placement of
the sensor in Xsens using different imposed speeds. Secondly, the frequency of acquisition
that maybe have been caused also differs in timing for the phases and sub-phases. The
Xsens system does not offer the possibility to test the effect of sampling frequency in gait
accuracy. This is because only two frequencies of acquisitions can be assessed as 60 Hz for
full body and 100 Hz for the upper or lower body. A lower body configuration can present
a benefit in term of accuracy in timing in phases and sub-phases. By contrast, this does not
represent the full capturing for determining the full body kinematics and the exporting of it
as BVH file necessary for the simulation of the musculoskeletal prediction in Anybody [64].
Third, in this study, we did not compare the two IGA instruments with a third IGA system
as an optical system. This is because we saw that, in the literature, the OptoGaitTM system
was used as a reference system to study agreement and reliability [27,32,54–56]. However,
from this study, it emerged that OptoGaitTM also presents limitations due to the system
design and integration. Overall, this study is important because it demonstrates the
criticality of using these two different measurements systems in clinical trials.

5. Conclusions

In this paper, two different methods to measure spatiotemporal parameters using two
systems were compared: a photoelectronic one (OptoGaitTM) and a wearable inertial mocap
system (Xsens). MSE calculation with respect to the imposed speed of 5 km/h shows a
smaller error (MSE = 0.0008 m/s) using the OptoGaitTM. Although this system proved to
not be accurate on the calculation of the gait phases such as time and percentage of the
stance phase and their sub-phases, agreement and consistency were found between the
two systems for the calculation of the stance phase, cadence ad gait cycle. Nevertheless, an
incorrect detection of toe-off and heel strike in OptoGaitTM caused by LEDs and the system
design and integration and interaction with the treadmill can cause a systematic difference
in phases and sub-phases. In addition, we proposed two methods: a method based on the
inverted pendulum model for the calculation of gait phases and sub-phases applying it
to Xsens and a method based on the anthropometric approach that does not consider the
two instruments of measurements. In both cases for the speed, a calibration factor was
determined for this specific speed. This calibration factor reduced the error in speed using
the Xsens and the anthropometric approach. As the anthropometric approach is used in
pedometers, we do not suggest using it when in the case it is necessary to evaluate the
variation of the step length for clinical evaluation [59]. Moreover, OptoGaitTM presented a
smaller MSE error for speed detection.

Overall, our results indicate that the accurate detection of heel strike and toe-off have
an influence on phases and sub-phases for the entire acquisition. Future study in this
domain should investigate how to design and integrate better products and algorithms
aiming to solve the problematic issues already identified in this study without limiting the
user’s need and performance in a different environment.

Author Contributions: Conceptualization. S.S.; Methodology. S.S., S.V., E.R., D.V.T., R.H.; Statistical
analysis. S.S.; investigation S.S., S.V., E.R., D.V.T., R.H.; writing. S.S. review and editing. S.S., S.V.,
D.V.T., R.H.; supervision. S.S., E.R., S.V., D.V.T., R.H.; All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Belgian Royal Higher Institute for Defence, Military
Hospital Queen Astrid and the University of Antwerp.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Ethics Committee of the CHU Brugmann (CE2019/32).

Informed Consent Statement: Informed consent was obtained from all subjects that participated in
this study.



Sensors 2021, 21, 4441 13 of 15

Acknowledgments: We would also like to thank all the participants in this study for their subjects,
commitments and motivated collaboration.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

SPT spatiotemporal parameters
IMU inertial measurement unit
IGA instrumented gait analysis
SD standard deviation
COM center of mass
DS double support
Min minimum
Max maximum
ICC intraclass correlation coefficients
ICC_A intraclass correlation coefficients reflect absolute agreement
ICC_C intraclass correlation coefficients reflect consistency
MAD mean absolute deviation
MSE mean square error
CI confidence interval
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