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Abstract

Whole genome tiling arrays are a key tool for profiling global genetic and expression variation. In
this study we present our methods for detecting transcript level variation, splicing variation and
allele specific expression in Arabidopsis thaliana. We also developed a generalized hidden Markov
model for profiling transcribed fragment variation de novo. Our study demonstrates that whole
genome tiling arrays are a powerful platform for dissecting natural transcriptome variation at multi-

dimension and high resolution.

Background

Natural gene expression variation represents perturbations
in the cellular network underlying morphological and physio-
logical diversity. It reveals altered signaling pathways that
may include early events responsible for phenotypic varia-
tion. Gene expression phenotypes are complex traits that map
to genetic loci acting in cis and/or trans [1-5]. Trans-acting
loci affect expression of both alleles of the downstream gene,
while cis-acting loci represent genetic polymorphisms in the
regulatory elements causing allelic variation. Cis-regulatory
variation and dosage effects of trans regulatory variation
result in additivity of gene expression, with the expression
level of F1 hybrids being intermediate to that of parents.
Allele specific expression (ASE) in heterozygous individuals,
which directly measures cis variation, is common in human
[6-8], Arabidopsis [9] and maize [10,11]. Nonadditivity of
gene expression, where the expression level of F1 hybrids
deviates from the midpoint of the parental expression levels,
indicates dominant trans regulatory variation, novel combi-

nations of trans regulatory factors and/or cis x trans interac-
tion. Additivity of gene expression has been tested globally in
a few diploid organisms, including Drosophila [12-14], mouse
[15,16], maize [11,17] and Arabidopsis [18]. Regulatory effects
of trans variation and cis x trans interaction could depend on
environmental conditions or developmental stages, which
contribute to natural variation of gene expression plasticity.

In eukaryotic organisms, transcriptome variation may result
from quantitative as well as structural differences of the tran-
scripts. Eukaryotic genes are initially transcribed as pre-mes-
senger RNA (pre-mRNA). The excision of introns and ligation
of exons is mediated by the spliceosome, a ribonucleoprotein
complex containing small nuclear RNAs and associated pro-
teins [19,20]. Alternative combinations of exons allow a sin-
gle gene to produce a variety of transcript isoforms. This
diversifying process, also known as alternative splicing, is a
common phenomenon in eukaryotic organisms [21]. Alterna-
tive splicing could generate mRNAs with different stability
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[22] or different cellular localization [23,24], and proteins
with distinct functions [25]. The regulation of both constitu-
tive and alternative splicing involves auxiliary elements and a
variety of splicing factors [26-28]. The splicing process could
be substantially different between animals and plants, espe-
cially in the early splicing site recognition steps [29,30]. Exon
skipping is a predominant form of alternative splicing in ani-
mals, while alternative intron retention is frequently
observed in plant genes [30-32].

Microarrays provide a comprehensive platform for the study
of natural transcriptome variation between closely related
genomes. Gene expression arrays and exon arrays, on which
each annotated gene or exon is interrogated by approximately
the same number of probes, have been widely used in gene
expression studies [33]. The genomic coverage of these arrays
is limited, however, by the completeness of annotation. On
the other hand, a popular microarray design for detecting
alternative splicing features oligonucleotide probes that cover
exon-exon junctions of spliced transcripts [34,35]. Again,
these arrays aim to investigate known alternative splicing
events [36]. Whole genome tiling arrays cover the entire
genome with high density oligonucleotide probes, independ-
ent of any prior knowledge of transcripts [37,38]. Gene
expression is assayed across the complete gene while splicing
variation can be indirectly assessed as alternative expression
within the gene. The tiling array design also allows a de novo
transcriptome profiling, by revealing new transcribed frag-
ments, gene boundaries, and novel splicing forms. In this
study, we report the natural variation in transcript level and
splicing between two A. thaliana accessions, Columbia (Col)
and Vancouver (Van), using the Affymetrix whole genome til-
ing array, which contains approximately 1.6 million unique
features at a 35 base resolution. Using a quantitative genetics
model, we dissect additive, dominance and maternal expres-
sion variation among parental and reciprocal hybrid geno-
types for annotated gene/exon/intron. We also take an
unbiased approach to infer differentially expressed fragments
independent of the annotation. These analyses have revealed
global patterns of gene expression and splicing variation
between natural A. thaliana populations.

Results

Genome wide sequence polymorphisms

Natural variation in gene expression, as read out by hybridi-
zation differences on a microarray, is due to both true gene
expression differences and genetic hybridization polymor-
phisms. The effect of single feature polymorphisms (SFPs)
[39] can be significant when the analyzed unit is interrogated
by only a small number of probes, or when the locus has a
high level of genetic variation [40]. Copy number polymor-
phisms, reflected as continuous SFPs interrupted by signals
from low quality probes, are an additional source of genetic
polymorphisms interfering with expression analysis. In this
study we did parallel hybridizations of genomic DNA and
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cDNA samples to the Arabidopsis tiling array 1.0 F (Affyme-
trix, Santa Clara, California, USA). Four maternal seed batch
replicates (Materials and methods) were included for each of
the two A. thaliana strains, Col and Van.

We first identified the SFPs between Col and Van as described
previously [39]. A total of 125,043 SFPs were detected at a 5%
false discovery rate (FDR; Table S1A in Additional data file 2).
As the reference genotype of the 1.0 F array is Col, the 118,381
SFPs with a greater signal in Col can be located to the exact
chromosome positions. The remaining 6,662 SFPs with a
greater signal in Van are likely due to duplications in Van or
insertions that cross-hybridize. To identify large (>200 bp)
deletions and duplications in Van relative to Col, we applied a
segmentation algorithm on the genomic hybridization inten-
sities [41]. The probe-level data used here were p-values col-
lected from one-sided two sample t-tests for the alternative
hypothesis H1: pVan > pCol. Using the Akaike Information
Criterion, segment boundaries for each of the five chromo-
somes were identified. We then defined deletions and dupli-
cations as segments with a median p-value > 0.99 and a
median p-value < 0.02, respectively. Non-symmetric p-value
cutoffs were used as the probe intensity differences of dupli-
cated regions were generally less than that of deleted regions
(Figure 1a). This is because at log scale, about one unit of sig-
nal increase is observed across duplications, while several
units of signal decrease are seen for deletions. A total of 1,645
deletions and 136 duplications were detected in Van (Table
S1B in Additional data file 2). The distribution of the length of
indels centered around 500 bp while a few very large dele-
tions were also detected (Figure 1b). Examination of the dis-
tribution of indels in 100-kb bins along the chromosome
suggests that they tend to accumulate in the pericentromeric
region (Figure 1c). Here, Van duplications were presented on
the Col physical map, although they may not be tandem dupli-
cations and could map elsewhere. Interestingly, genes
present in Col but deleted in Van are expressed at lower abso-
lute levels in Col when compared with randomly sampled
gene sets (Figure S1 in Additional data file 1), probably
because gene expression levels are inversely correlated with
their distance to the centromeres.

Natural variation of gene expression

A total of 29,409 annotated genes are interrogated by the 1.0
F array, with exon and intron boundaries inferred from
expressed clone sequences or computational prediction.
Before performing gene expression analysis, the low quality
probes and probes interrogating sequence polymorphisms
detected from genomic hybridizations were removed from
RNA hybridization data. Importantly, as overall gene expres-
sion level was estimated as the average across common exons,
exon probes were defined as probes interrogating gene
sequences that are present in >50% expressed sequence
clones. Under this constraint, a total of 24,756 genes interro-
gated by 625,240 exon probes were then analyzed, with a
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The deletions (orange) and duplications (blue) detected in Van. (a) The density distribution of median probe log intensity difference between Col and Van
for deletions, duplications, and all analyzed probes (black). For each probe the absolute difference of mean probe log intensity between four Col replicates
and four Van replicates was calculated. The medians were then obtained across deleted or duplicated regions. (b) The length distribution of deleted and
duplicated regions. (c) The chromosome distribution of deleted and duplicated regions. Each chromosome was divided into 100 kb bins. Within each bin
the length of deletions or duplications was divided by the bin size (y-axis). The black ticks along each chromosome mark the position of centromeres.

mean density of 25 probes per gene (Figure S2A in Additional
data file 1).

In quantitative genetics terminology, additivity of gene
expression implies that the expression level of a given locus in
F1 hybrids is approximately at the midpoint of that of the
parental lines (henceforth called the 'mid-parent’), while
dominance of gene expression indicates that expression of F1
hybrids deviates from the mid-parent (Figure S2B in Addi-
tional data file 1). In addition, maternally inherited trans reg-
ulatory factors or epigenetic mechanisms may cause gene
expression levels that are correlated with maternal genotypes
(Figure S2B in Additional data file 1). To jointly test for these
effects, for each gene we applied a linear model:

Intensity = Additive + Dominant + Maternal + Error

The additive, dominant and maternal terms in the model
measure the expression difference between parents (addi-
tive), between the average of Fis and the mid-parent (domi-
nant), and between reciprocal Fis (maternal), respectively.
For each term, a d score (Materials and methods) was
obtained for each gene and a permutation based approach
was applied to determine the FDR [42]. Because the null d
score distributions of the additive, dominant and maternal
terms were essentially identical (Figure S2C in Additional
data file 1), we applied the same threshold to call significance
for the three terms (Table S2A in Additional data file 2).

Nearly 8% (1,925) of the analyzed genes were differentially
expressed between Col and Van at a 2% FDR, two-thirds
(1,249) of which were up-regulated in Col. About 3% (667) of
genes were differentially expressed between parents and F1
hybrids at a 6% FDR, the majority (575) being repressed in

the hybrids. Less than 1% (163) of genes were differentially
expressed between reciprocal F1 hybrids at a 17% FDR, all of
which were down-regulated in the Van-mother hybrids (Fig-
ure 2a). For the 1,925 genes differentially expressed between
Col and Van, the ratio of the estimated effect of the dominant
term to that of the additive term (d/a) exhibited a left-skewed
normal distribution (Figure 2b), indicating dominant effects
from the Van line. Genes down-regulated in Van tended to be
repressed in the F1s, while a small number of genes up-regu-
lated in Van were highly expressed in the hybrids (Figure 2b).

To examine the relative expression difference among Col,
Van, and the reciprocal hybrids for genes significant for dom-
inant or maternal terms, we partitioned the four genotypes
into two groups based on their expression mean by k-means
clustering (Figure 2c; Table S2B in Additional data file 2). For
667 genes differentially expressed between parents and F1
hybrids, 61% (404) exhibited normal dominance with hybrids
clustering with a single parent, 25% (168) showed over-dom-
inance, of which 142 were repressed in F1 hybrids, and 12%
(78) had one F1 hybrid strain clustered separately from the
other three strains. For 163 genes differentially expressed
between reciprocal F1 hybrids, 70 correlated with the mater-
nal genotype and 12 with the paternal genotype. Again, we
observed strong dominant negative effects from the Van line.

The enrichment of differential gene expression in functional
annotation categories was examined with a parametric gene
set enrichment analysis [43] using the d scores for each term
as summary statistics (Table S3 in Additional data file 2). We
found that chlorophyll biosynthetic process, response to salt
stress, response to cadmium ion, response to abscisic acid
stimulus and sterol biosynthetic process were up-regulated in
the Col line, while flavonoid biosynthetic process and transla-
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The additive, dominant and maternal effects of gene expression. (a) The number of genes (y-axis) significant for additive (left), dominant (middle), or
maternal (right) terms. From left to right, the bars represent Col > Van, Van > Col, Fls > parents, parents > Fls, Col mother FI > Van mother FI, Van
mother FI > Col mother Fl. (b) Histogram of the dominance/additive ratio (x-axis) for 1,925 genes differentially expressed between Col and Van at a 2%
FDR. The red lines represent the number of genes up-regulated in Col. (c) The inheritance pattern determined by partition of gene expression means by
k-means, for genes significant for dominant (left block) or maternal (right block) terms. From left to right, the bars represent the number of genes (y-axis)
showing Col dominance (Col > Van, Col < Van), Van dominance (Van > Col, Van < Col), over-dominance (Fls > parents, Fls < parents), Col mother FI
separated from the other three strains (Col mother Fl > others, Col mother F| < others), Van mother F| separated from the other three strains (Van
mother F| > others, Van mother Fl < others), maternal effect (Col > Van, Col < Van), and paternal effect (Col >Van, Col < Van).

tion were up-regulated in the Van line. An interesting pattern
emerged when gene set enrichment analysis was performed
for the dominant term: a large number of growth-related bio-
logical processes were suppressed while defense response
pathways were up-regulated in F1 hybrids compared with
those in parental lines.

Cis-regulatory variation revealed by allele specific
expression

Gene expression additivity could be caused by a cis difference
or an additive trans difference. Direct measurement of ASE in
F1 hybrids provides one approach to detect cis variation. The
RNA hybridization intensities of SFP probes in transcribed
regions reflect the overall transcript level as well as the allelic
composition of that transcript (Figure S3A in Additional data
file 1). To correct for gene expression variation, for each gene
we estimated the fold differences in expression level using
non-SFP probes, which were then subtracted from the log
intensities of SFP probes. Our detection of ASE relies on a lin-
ear assumption that the binding coefficients of SFP probes for
both perfect match targets and mismatch targets are constant
across concentrations [44]. This implies that the mid-parent
value (equal allele expression) could be estimated using
genomic hybridization of F1 hybrids as reference (Materials
and methods). ASE was thus detected as the deviation of log
intensities of F1 hybrids from that of mid-parent for the SFP
probes within the transcript. We applied a simple linear
regression to test this, as the log intensity distribution of mid-
parent and F1 hybrids was close to a normal distribution with
stable variance (Figure S3B in Additional data file 1).

When a single threshold was applied to call significant ASE
genes, a larger number of Van-ASE genes than Col-ASE genes

was called. Further examination revealed that the log intensi-
ties of SFP probes for many of these Van-ASE genes were dis-
tributed at the low end (Figure S3C in Additional data file 1),
suggesting possible overestimation of mid-parent values at
low target concentrations. This could be addressed by exclud-
ing from analysis genes with low expression levels [44] or by
applying a more stringent threshold to select Van-ASE genes
with external FDR calibration [44]. At a 0.1% FDR deter-
mined by permutation analysis, a total of 209 Van-ASE genes
were called significant (Table S4A in Additional data file 2),
from which we randomly selected two for experimental vali-
dation and confirmed one (Table S4B in Additional data file
2). This means that the real FDR for the 209 Van-ASE genes
could be 50%. Thus, the threshold appeared to be appropriate
for calling Van-ASE genes.

Among 9,745 genes analyzed, 540 genes showed Col allele
specific expression at a 1% FDR (Table S4A in Additional data
file 2). An example of ASE genes is presented in Figure 3a.
Since ASE genes contain cis-regulatory variations, many of
them should exhibit differential expression between parental
lines. We thus estimated the fold enrichment of the ASE genes
in the set of differentially expressed genes between Col and
Van. As expected, increasing the significance threshold for
either differential expression or ASE increased the fold
enrichment (Figure 3b). The ASE genes were especially
enriched within differential genes of high statistical signifi-
cance; the 749 ASE genes were enriched in the top 642 differ-
ential genes by more than three-fold (Figure 3b).

Under the linear assumption, a more straightforward
approach to estimate the mid-parent value is to use the aver-
age of SFP probe intensities of parental RNA hybridizations
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Detection of ASE in F| hybrids. (a) Col ASE for gene AT4G29950. After correction of overall gene expression level, the relative log intensity (y-axis) for
Col (red), Van (blue), FI hybrids (orange), and mid-parent (black) were plotted along chromosomal positions (x-axis), with standard deviation indicated.
Solid dots, non-SFP probes; crossed circles, SFP probes. (b) Fold enrichments of significant ASE genes within the differential genes between Col and Van.
The numbers of significant calls were selected according to permutation-based FDRs.

(Materials and methods). This approach performed poorly,
however, in comparison with that using genomic hybridiza-
tion as reference. Only 30 genes were called significant at a
34% FDR (Table S4C in Additional data file 2), 25 of which
overlapped the 749 ASE genes detected by using genomic
hybridization as reference.

Allelic difference between reciprocal F1 hybrids, resulting
from genomic imprinting, has been identified for several
genes in A. thaliana endosperms [45]. Using the corrected
SFP probe intensities, allelic differences between reciprocal
F1 hybrids can be estimated. No significant imprinting effect
was detected, however, in our 3-day-old seedling samples
(data not shown).

Natural variation of splicing

We next examined splicing variation between Col and Van.
Since the majority of exons were expressed in our whole seed-
ling mRNA preparations (Figure S4A in Additional data file
1), their hybridization intensities depended on overall tran-
script abundance as well as possible splicing variation that
would modify a particular exon expression level. Thus, overall
gene expression variation should be corrected for before test-
ing for exon differences. Such a correction, however, shrinks
the difference between two differentially spliced exons while
simultaneously introduces a difference for the other exons in
the same gene, since the overall gene expression level is
underestimated in the presence of a skipped exon. Exons
interrogated by >25% of the total gene probes were excluded
from analysis, as they showed no enrichment for significant
calls compared with null distribution, likely due to their large

correlation with gene expression estimates (data not shown).
A total of 68,022 exons for 15,349 genes were analyzed with a
mean density of 3.7 probes per exon (Figure S4B in Addi-
tional data file 1). For each exon, probe intensities corrected
by either mean gene expression or median-polished gene
expression were tested with a linear model including additive,
dominant and maternal terms. As an alternative approach to
the probe level analysis, splicing indices [34] were also tested
for the same 68,022 exons (Materials and methods).

Using probe intensities corrected by gene mean, only 0.35%
(236) of the 68,022 analyzed exons were called significant for
differential splicing between Col and Van at a FDR of 41%
(Table 1). Using probe intensities corrected by gene median,
0.34% (230) of the analyzed exons were called significant at a
24% FDR while 0.74% (500) could be called at a higher FDR
of 41% (Table 1). As the exons analyzed here were interro-
gated by <25% of total gene probes, estimation of gene
median expression would be less affected by alternatively
spliced probes. Using splicing indices, 0.38% (258) of the
analyzed exons were called significant at a 4.6% FDR while
0.71% (482) were called at an 18% FDR (Table 1). Based on
these different analyses, we expected that the top approxi-
mately 0.7% of exons contained true positives. We thus
selected for further analysis 477 significant exons with correc-
tion by gene mean, 500 with correction by gene median, and
482 with splicing indices. Not surprisingly, a substantial
number (297) of the significant calls from the three
approaches overlapped. For the probe level analysis, we used
a single threshold to select exons significant for additive,
dominant or maternal terms (Table S5A, S5B in Additional

Genome Biology 2008, 9:R165
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Differential spliced exons and introns detected at different thresholds

Delta* Sig+t Sig-t Total Falset FDR (%)

Exon (gene mean)} 0.3 287 190 477 559 117
0.4 177 129 306 205 67.0

0.5 127 109 236 97 41.0

0.6 92 86 178 55 30.8

0.7 77 69 146 34 23.4

0.8 57 54 i 23 20.8

0.9 32 39 71 16 228

| 28 29 57 12 20.5

Exon (gene median)T 0.3 523 280 803 556 69.2
0.4 328 172 500 203 40.6

0.5 223 120 343 96 28.0

0.6 154 76 230 54 235

0.7 123 52 175 34 19.3

0.8 101 47 148 23 15.6

0.9 71 32 103 16 15.6

I 56 28 84 12 13.8

Exon (splicing index)¥ 0.3 402 249 651 302 46.4
0.4 310 172 482 86 17.8

0.5 233 132 365 30 8.16

0.6 166 92 258 12 4.64

0.7 134 86 220 6 2.53

0.8 105 74 179 3 1.56

0.9 80 60 140 2 I.16

| 64 50 114 | 0.77

Intron 0.3 561 1,034 1,595 332 20.8
0.4 405 523 928 85 9.17

0.5 316 352 668 28 4.26

0.6 239 220 459 12 2,61

0.7 202 155 357 7 1.91

0.8 176 120 296 5 1.53

0.9 140 94 234 3 1.31

| 120 75 195 2 I.15

The total number of analyzed exons was 68,022 for 15,349 genes, and of analyzed introns was 62,859 for|7,434 genes. *Thresholds. 1Significant calls
with greater expression in Col (Sig+) or greater expression in Van (Sig-). #False calls based on 1,000 permutations. $Exonic splicing analysis using
exon intensity corrected by gene mean. TExonic splicing analysis using exon intensity corrected by gene median. ¥Exonic splicing analysis using splicing

index.

data file 2) based on their identical null d score distributions
(data not shown). The inheritance of differential exon splicing
was predominantly additive (Figure 4a).

As the default status of introns is to be spliced (Figure S4A in
Additional data file 1), a direct comparison of intron probe
intensities should reveal relative intron retention between
genotypes. A total of 62,859 introns for 17,434 genes were
analyzed with a mean density of 3.7 probes per intron (Figure

S4B in Additional data file 1). For each intron, probe intensi-
ties were again tested under the same linear model with the
additive, dominant and maternal terms. About 0.73% (459) of
the analyzed introns were called significant for differential
splicing between Col and Van at a 3% FDR, 239 retained in
Col and 220 retained in Van (Table 1). Similar to exons, inher-
itance of the differential intron splicing was largely additive
(Figure S4C in Additional data file 1). Although 0.14% (87) of
analyzed introns were differentially expressed between mid-

Genome Biology 2008, 9:R165

Zhang et al. R165.6



http://genomebiology.com/2008/9/1 I /R165

Genome Biology 2008,

Volume 9, Issue | I, Article R165

0.5
|

relative log intensity
0.0
l

a) <+ . © o i © -

( ) additive dominant maternal

T oA T o A T o -

S o2 4o 1 2 s S o2 o0 12 s 5 o2 oo 12 s
null d null d null d
(b) = : = CC
- AT1G51350 intron8

L IRYAY]

V. C vV VvV V. C c C

gDNA cDNA
[le}
o' —
[
o exon128456789
~ intron 134578
! T T T T T T T T
19039500 19040500 19041500 19042500
bp
Figure 4

The additive, dominant and maternal effects of splicing. (a) Quantile-quantile plots of additive (left), dominant (middle) and maternal (right) terms for
exonic splicing. The real d scores (y-axis) were plotted against the null d scores (x-axis) obtained by 1,000 permutations. (b) Experimental validation for
ATI1G51350 intron 8. The relative log intensity (y-axis) of Col (red) and Van (blue) was plotted along chromosomal positions (x-axis), with standard
deviation indicated. Annotated exons and introns are indicated as thick and thin black horizontal bars, respectively, at y = 0. The arrows point to the start
positions (along the forward strand) of the pair of flanking primers. Gel patterns show from left to right: Van (V) and Col (C) genomic DNA (gDNA), and

three replicates of Van and Col cDNA.

parent and F1 hybrids at a 13% FDR (Table S5D in Additional
data file 2), many of which could merely reflect gene expres-
sion dominance as the probe intensity of retained introns
depends on the level of gene expression as well as the level of
intron retention.

We further analyzed the enrichment in Gene Ontology func-
tional categories for genes containing the 477 differentially
spliced exons (correction by gene mean) or the 459 differen-
tially spliced introns, using Fisher's exact test (Table S6A,
S6B in Additional data file 2). Differentially spliced introns
were significantly enriched in the chloroplast thylakoid mem-
brane (p < 4.51E-04) and thylakoid lumen (p < 3.93E-03) cat-
egories. Close examination of the corresponding 16 genes

located in the thylakoid membrane revealed 11 genes as con-
stituents of the photosynthetic apparatus, including the light
harvest complex, photosystems, cytochrome b6f complex, P-
type ATPase and electron transporters (Table S7A in Addi-
tional data file 2). In addition, many differentially spliced
genes located in the thylakoid lumen functioned in proteoly-
sis or protein folding, presumably to repair or maintain the
photosynthesis apparatus (Table S7A in Additional data file
2). Differentially expressed genes were also significantly
enriched in the thylakoid membranes (p < 3.78E-06; Table
S6C in Additional data file 2), where they partially overlapped
with the differentially spliced genes (Table S7B in Additional
data file 2).
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Validation of differential splicing

As an in silico validation, we examined the fold enrichment of
the detected differential exons in known alternatively spliced
exons annotated in TAIR7 GenBank files. Differential exons
called by each of our three approaches all showed enrichment
in known alternatively spliced exons. There was 3.92-fold
enrichment (p < 5.97E-09) for the 477 exons detected by
analysis with correction by gene mean, 3.09-fold enrichment
(p < 3.60E-06) for the 500 exons detected with correction by
gene median, and 2.16-fold enrichment (p < 5.30E-03) for the
482 exons detected with splicing indices (Table S8A in Addi-
tional data file 2).

To provide an independent estimation of FDR for differential
splicing, we tested a set of differential exons and introns by
reverse transcription PCR (RT-PCR; Additional data file 3).
Although the list was slightly biased toward highly significant
calls, it still covered a broad range of the test statistic distribu-
tion (Figure S4D in Additional data file 1). Whenever possi-
ble, primers were designed to immediately flank the detected
exon/intron region. Band patterns of RT-PCR products were
compared between Col and Van across three maternal seed
batch replicates. For 43 tested exons, 36 were from the list
containing 477 exons (correction by gene mean) of which 44%
(16/36) were suggested by RT-PCR (Table S8B in Additional
data file 2). For differential introns, from the list of 459, 61%
(38/62) were suggested by RT-PCR (Table S8B in Additional
data file 2). Interestingly, many instances of differential splic-
ing between Col and Van were also alternative splicing within
Col or Van, as demonstrated by multiple transcript variants
within genotypes. The splicing difference could be due to a
novel transcript variant only occurring in one genotype or
could be due to a different ratio of transcript variants between
genotypes (Figure 4b). We were aware, however, that the gel-
based validation was limited by sensitivity and resolution.
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Furthermore, the relationship between the band patterns and
the probe intensities were indirect, as the probe intensity dif-
ference might reflect the sum of difference over several splic-
ing isoforms (Additional data file 3).

The impact of SFP probes on estimation of natural
transcriptome variation

Several microarray studies of natural transcript level varia-
tion have shown that the effect of SFP probes is small
[15,16,46]; however, these studies all relied on gene expres-
sion arrays, where probe sequences are largely masked from
genetic polymorphisms identified from expressed sequence
tags. Whole genome tiling arrays lack this bias; their probe
sequences are selected based on the relative distance along
chromosomes. To estimate the effect of SFP probes on tiling
array analysis, we applied variance partition on parental
strain expression data for 10,764 genes, 5,280 exons and
10,931 introns that contained SFP probes. The model
included genotype, SFP and genotype x SFP interaction
effects. Although the variance contributed by SFP was moder-
ate in comparison with that by genotype (Figure S5A in Addi-
tional data file 1), the variance by SFP x genotype interaction
was significant, especially for exon splicing analysis (Figure
5).

We further examined the effect of SFP probes by comparing
the results with or without the SFP probes included in the
analysis. For gene expression, inclusion of SFP probes in the
analysis generally increased the number of significant calls
and decreased the permutation-based FDR at the same
thresholds (Table S9 in Additional data file 2). This was
caused by the overestimation of differential gene expression
levels, especially in the direction of greater expression in Col
as the majority of SFP probes have greater Col signals (Figure
S5B in Additional data file 1). For each threshold we com-
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pared the fold enrichment of SFP-containing genes in the sig-
nificant calls with or without the SFP probes included in the
analysis. The SFP-containing genes were enriched in the sig-
nificant calls even for the analysis in which SFP probes were
excluded, since polymorphic genes tend to be differentially
expressed. Nevertheless, the fold enrichments were signifi-
cantly higher in the analysis that included SFP probes (Table
S9 in Additional data file 2). For exon splicing analysis with
SFP probes included, although the differential expression
level of SFP-containing exons was generally overestimated in
the direction of greater signals in Col, many non-SFP exons
were overestimated in the direction of greater signals in Van
(Figure S5C in Additional data file 1). This is likely because
the inclusion of SFP probes caused the underestimation of
Van gene expression; the signals of non-SFP exons within
these genes were therefore overestimated for Van due to the
correction by overall gene expression level. In comparison
with gene expression and exonic splicing, the fold enrichment
differences dependant on inclusion of SFP probes was not as
striking for intronic splicing (Table Sg in Additional data file
2). This is likely because intronic splicing is highly correlated
with sequence polymorphisms within introns. Nevertheless,
the overlap of the significant calls between the analyses
including and excluding SFP probes was very low (data not
shown).
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De novo transcriptome variation

As the annotation-based approach is limited by expression
library coverage, we developed a complementary approach
using a generalized hidden Markov model (HMM) to detect
differentially transcribed fragments between Col and Van,
independent of annotation (Figure 6a). For the cDNA hybrid-
izations, probe-level p-values were collected from one-sided
two sample t-tests for the alternative hypothesis H1: uVan >
uCol. Our model was then built to partition probe-level p-val-
ues into three hidden states, representing roughly equal
expression between Col and Van (state 1, p-values are uni-
formly distributed), greater expression in Van (state 2, p-val-
ues are close to 0), and greater expression in Col (state 3, p-
values are close to 1). Each hidden state contains a discrete
emission distribution with 50 bins spanning [0, 1], which
describes the probability of observing a given probe-level p-
value conditioned on the hidden state. The model also con-
tains a three-by-three base transition matrix T with three free
parameters, t,,, t,,, and t,,, where t;; is the probability of tran-
sitioning from state i to state i in a single base step. The rest
of the matrix is determined by the relationship t; = (1 - t;)/2
when i does not equal j. To incorporate the variation of probe
distance, the transition matrix was further defined as T for
two probes whose midpoints are b bases apart. This heteroge-
neous Markov process allows more frequent state transitions
between more distant neighboring probes [47]. The Baum-
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De novo transcriptome variation. (a) The generalized HMM procedure for a chromosome region. Upper panel: the relative log intensity for four Col
replicates (red) and four Van replicates (black) along chromosome positions. Blue bars, annotated genes. Middle panel: probe level p-value was obtained by
one-sided two sample t-test between Col and Van. Emission and transition probability was estimated by the Baum-Welch algorithm. Lower panel:
posterior probabilities of no difference (blue), greater Van expression (green), and greater Col expression (orange) were determined using the Forward-
Backward algorithm. Black line: 0.99 posterior probability cutoff. (b) The distribution of the length of differential segment (white bars) and probes per
differential segment (grey bars) for state 2 (upper panel) and state 3 (lower panel) segments.
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Welch algorithm [48] was used to estimate the emission dis-
tributions directly from the data, with a quasi-Newton
bounded optimization algorithm [49] applied once every ten
iterations to re-estimate the transition probabilities. This
hybrid estimation approach was applied separately to each of
the five chromosomes, with no significant differences in
emission distributions or transition parameters observed
(Figure S6 in Additional data file 1). Following parameteriza-
tion, the Forward-Backward algorithm was applied to com-
pute the posterior probability for all three states at each probe
position. Segments were collected within which all probes
have a state 1, state 2 or state 3 posterior probability > 0.99. A
total of 6,800 differential segments were identified, 4,262
with greater expression in Col and 2,538 with greater expres-
sion in Van. The median length of the differential segments
was about 330 bp and 7 probes (Figure 6b).

The differential segments fell largely within the annotated
gene regions, although the exact coincidence of segment
boundaries and annotated gene/exon boundaries was often
undetectable, likely due to the limitation of probe density of
the 1 F array. For a comparison of the HMM and the annota-
tion-based analyses, we collected all differential segment(s)
that contained >3 probes within the annotated gene bounda-
ries. These differential segments, using our predefined crite-
ria (Materials and methods), represented 2,673 differentially
expressed genes, 1,222 differentially spliced genes, 109 novel
gene boundaries and 85 non-annotated transcripts (Table 2).
About 79% of differentially expressed genes detected by the
annotation approach at a 3% FDR were also detected by the
HMM analysis, while only 10% of differentially spliced genes
detected by the annotation approach were also detected by
the HMM analysis (Table S10 in Additional data file 2). Fur-
thermore, 301 differentially spliced genes detected by annota-
tion were called by the HMM analysis as differentially
expressed genes, and an additional 295 genes labeled as dif-
ferentially expressed by annotation were called by the HMM
analysis as differentially spliced (Table S10 in Additional data

Table 2
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file 2). Differentially spliced genes detected by the HMM anal-
ysis were enriched in known alternatively spliced genes by
1.66-fold (p < 2.56E-08), a fold enrichment comparable to
that of the annotation approach. Among the differentially
spliced genes subjected to RT-PCR validation, 22 were
detected by the HMM analysis, of which 13 were suggested to
be true positives.

Several factors may explain the discrepancy between the two
approaches. First, for many differentially spliced exons/
introns detected by the annotation approach, the correspond-
ing genes were expressed at different levels. Currently, our
HMM method is unable to detect splicing differences in the
presence of gene expression differences, as quantitative inter-
nal variation of a differential segment was not accounted for.
Second, for many differential segments detected by the HMM
analysis, which were called as differentially spliced, their
probe intensity differences were relatively small or they
involved un-annotated exon/intron structure. Such splicing
differences are likely unable to be called by the annotation
approach, as the correction of the probe intensities by whole
gene expression level would mask additional small differ-
ences. Importantly, the cutoff to distinguish between differ-
ential expression and differential splicing for the HMM
analysis (Materials and methods) was rather arbitrary. It is
likely that a finer tiling array resolution would allow a finer
delimitation of the start and stop positions of HMM seg-
ments.

Discussion

The two A. thaliana accessions used in this study, Col and
Van, were collected from distinct geographic locations. At the
3-day-old stage, overall growth and morphology was indistin-
guishable between Col and Van seedlings. About 8% of their
genes, however, already exhibited differences in expression
level. Differentially expressed genes were enriched in biolog-
ical processes that depend on variable environmental factors,

The number of significant calls by de novo transcriptome profiling

Col > Van Van > Col Total
Annotation Differential expression® 1,626 923 2,549
Differential exonic splicingt 287 190 477

Differential intronic splicingt 239 220 459
HMM Differential expression 1,667 1,006 2,673
Differential splicing 765 457 1,222

Un-annotated transcript 37 48 85

Un-annotated 5' 31 32 63

Un-annotated 3' 30 16 46

*The number of significant calls at a 3% FDR for differentially expressed genes. 1The number of significant calls for differentially spliced exons using
exon probe intensity corrected by gene expression mean. ¥The number of significant calls at a 3% FDR for differentially spliced introns.
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including light, water, salt and pathogen presence (Table S3
in Additional data file 2), suggesting a possible mechanism of
adaptation to distinct habitats. Interestingly, Van harbors a
null mutation at ERECTA [50], which has been identified as a
trans regulatory hot spot [51]. Future mapping of expression
quantitative trait loci (eQTL) in segregating populations
between Col and Van is required to dissect the causative loci
for these gene expression variations [51,52]. Several recent
microarray studies have consistently demonstrated substan-
tial natural variations in transcript level among A. thaliana
accessions [18,46,51-53]. The exact proportions of differen-
tial genes reported by these studies, however, are quite differ-
ent, ranging from 4% [51] to 32% [18]. Between Col and Van,
10% of differential genes were detected in a study of seven A.
thaliana accessions [46,53]. Different biological samples, sta-
tistical approaches and microarray platforms all contribute to
these differences. Distinct from previous studies, we control-
led the effect of sequence polymorphisms using parallel
genomic hybridizations and demonstrate that this is critical
for analysis of natural transcriptome variation using whole
genome tiling arrays. Even so, we can not completely exclude
the possibility that there were SFP probes not removed at the
selected threshold, which may introduce technical bias result-
ing in, for example, a smaller number of genes with greater
expression in Van.

About 3% of genes exhibited expression dominance, largely
contributed by Van. Haploinsufficiency of ERECTA signaling
could be one explanation. The general down-regulation of
growth-related processes and up-regulation of defense
responses in F1 hybrids could also be explained by the genetic
incompatibility of rapidly evolving pathogen resistance genes
between Col and Van [54]. Studies on the inheritance pattern
of gene expression in F1 hybrids have led to quite different
conclusions. In maize F1 hybrids, only 20% of differentially
expressed genes were estimated to be dominant by microar-
ray profiling [11,17], while two-thirds of 30 genes tested by
northern blot were shown to be dominant [55]. In Arabidop-
sis, Vuylsteke et al. [18] found that, depending on accession
pair, 6-21% of genes showed dominance. Although the pro-
portion of dominant to additive genes estimated in our study
(35%) was within the range they reported, we observed much
less genes exhibiting overdominance. In mouse F1 hybrids
between laboratory strains, Cui et al. [16] estimated that the
proportion of dominant to additive genes was 36%. Even less
dominant effects were detected in F1 hybrids derived from
natural mouse strains [15]. Thus, for maize, Arabidopsis and
mouse, the additive effect of gene expression seems to be pre-
dominant, with a significant number of genes showing domi-
nant inheritance. In contrast, expression inheritance of
Drosophila is largely dominant in a sex-dependent manner
[12-14]. Unlike mouse [16] and Drosophila [12], which show
significant gene expression differences between reciprocal F1
hybrids, the parental effect is small in Arabidopsis [18] and
maize [11,17]. In our study, less than 1% of the analyzed genes
showed parental effects.

Genome Biology 2008,  Volume 9, Issue ||, Article R165

The study of gene expression additivity in an F1 hybrid system
tests the sum of regulatory effects across underlying eQTL.
Nevertheless, the non-additive effect of eQTL and transgres-
sion have been shown to be common [51,52,56]. Direct meas-
urement of ASE in F1 hybrids provides an alternative to
linkage analysis for detection of cis-regulatory variation that
contributes to gene expression additivity. We determined
that 8% of the analyzed genes had ASE using SFP probes
located within transcripts. As the genes had to contain SFPs
to be analyzed, these genes are already enriched for cis varia-
tion, suggesting that 8% is an overestimation of the propor-
tion of cis-regulated genes. The power for detecting allelic
differences in RNA samples by SFP probes was shown to be
low [44]. This is partly because the detection approach relies
on linear assumption of probe behavior, which could be
invalid when target concentration is too low or too high in
RNA samples. Estimation bias could be further introduced
due to the fact that only probes for perfect match targets were
present on the array. ASE detection using single nucleotide
polymorphism arrays, which contain probe sequences for
both alleles, will potentially solve this problem. The high fold
enrichment of ASE genes in highly significant differential
genes is consistent with previous observations that cis-varia-
tions tend to have large expression effects [51,57].

In contrast to gene expression, differential splicing showed
few dominant effects in F1 hybrids, indicating that splicing
variation is mainly due to cis variation, as expected. Never-
theless, additive trans variation cannot be ruled out. Qualita-
tive differences in transcript structure could have more severe
effects on normal cellular functions than quantitative differ-
ences in transcript level. On the other hand, splicing variation
provides one of the major mechanisms for rapidly evolving
new protein functions, which is critical for survival in unpre-
dictable environments. A recent study suggests that proteins
appear to be more tolerant of structural deletions, insertions
and replacements than previously thought [58]. Interest-
ingly, genes associated with various stress responses are espe-
cially prone to alternative splicing [32,59]. We found that
many genes involved in light acclimation responses, which
modulate the composition and function of the plant photo-
synthetic apparatus in response to the changing irradiance
[60], were differentially spliced between Col and Van. Future
studies in other A. thaliana accessions should reveal whether
this is a common phenomenon.

On the affymetrix 1.0 F array, the most frequent distance
between the middle bases of two adjacent probes is 35 bp.
With this resolution the majority of annotated genes are well
covered in terms of probe density. Thus, probe effects are
generally not a major issue in the estimation of overall gene
expression difference, as relative change across all probes is
tested. In contrast, the estimation of splicing differences,
especially exonic splicing variation, is more challenging. For
annotation-based exonic splicing analysis, as discussed previ-
ously, the signal-to-noise ratio of a true differential exon is
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reduced by the correction for the overall gene expression dif-
ference. Probe density becomes the limiting factor here. The
small number of interrogating probes (Figure S4B in Addi-
tional data file 1) indicates that the statistical power to detect
a differential exon is lower than the power to detect a differ-
ential gene, and that the FDR will be higher. For example, a
low quality probe may not detect a true expression difference
for the gene but suggest the presence of a splicing difference
for that exon. The high FDR associated with the differential
exons, obtained by either permutation analysis or experimen-
tal validation, clearly demonstrates this.

Despite these limitations, our study demonstrates that the
high density whole genome tiling array is a powerful platform
for comparative transcriptome profiling in addition to devel-
opmental expression analysis [61]. Our strategy of annota-
tion-based modeling of the probe level intensity for gene
expression and splicing could be extended to include addi-
tional experimental treatments, such as environmental con-
ditions and/or developmental stages. The HMM method we
have developed is highly adaptable since the model requires
only a string of p-values as input; any statistical test may be
selected to appropriately extract the information from probe-
wise data for the comparison of interest. Refinements on
array design, specifically probe density, and our analysis tools
will certainly benefit future large-scale studies such as gene
expression association mapping. Next generation sequencing
technology, including Roche/454, or Illumina/Solexa paired-
end sequencing, represents a complementary method for
transcriptome profiling. Here, the precise transcript gene
structure is identified, but without multiple independent bio-
logical replicates, counted differences may not be significant.
Tiling arrays and high-throughput sequencing technologies
are synergistic, but so far very few studies have performed a
direct comparison or leveraged the strengths of both methods
[62].

Materials and methods

Plant material

Seeds of A. thaliana accessions Col-0 (accession number
[CS22625]) and Van-0 (accession number [CS22627]) were
obtained from the Arabidopsis Biological Resource Center.
Seeds were planted in soil, imbibed for 5 days in a cold room
at 4°C, and moved to a green house on 31 January 2005.
Plants were grown in the green house with 16 h light (cool
white light supplemented with incandescent) and 8 h dark at
a constant temperature of 20°C. The first cross experiment
was conducted on 28 February 2005, and on 1 March 2005
the second cross experiment was conducted between the
same plant pairs as in the first experiment. Both cross exper-
iments began around 9:00 am and ended around 5:00 pm. In
each experiment, four replicate crosses for each of Col x Col,
Van x Van, Van (@) x Col (&), and Col (Q) x Van (J') were
made. Each replicate cross was between individual paternal
and maternal plants and each parental plant was only used
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once (16 Col and 16 Van plants used in total). For each repli-
cate cross, the seeds from the two experiments were com-
bined and used as one maternal seed batch. Thus, for each of
the crosses (Col x Col, Van x Van, Van (&") x Col (?), and Col
() x Van (9Q)), there were four independent maternal seed
batch replicates.

Approximately 250 seeds from each maternal seed batch
were grown on a single petri dish. After gas sterilization for 4
h, seeds were plated on a total of 16 0.7%-agar (Sigma, St.
Louis, Missouri, USA) plates supplemented with 0.5%
Murashige and Skoog salts (Sigma). Seed plates were placed
horizontally in a growth chamber (Percival Scientific model
E361, Percy, Iowa, USA) after stratification for 5 days at 4°C.
Seedlings were grown for 78 h under a diurnal mode with 12
h light (cool white light supplemental with red light) and 12 h
dark at a constant temperature of 20°C.

Sample preparation and microarray hybridization
Seedlings grown on each plate were split for genomic DNA
and RNA preparation. Genomic DNA was isolated from 100
seedlings for each plate using a DNeasy plant mini kit (Qia-
gen, Valencia, California, USA). About 300 ng DNA was
labeled using a BioPrime DNA labeling system (Invitrogen,
Carlsbad, California, USA) with conditions modified as previ-
ously described [39]. About 20 ug total RNA was isolated
from an additional 120 seedlings per plate using an RNeasy
plant mini kit (Qiagen). Poly-(A) RNA was enriched from
total RNA using an Oligotex mRNA mini kit (Qiagen). Poly-
(A) RNA was mixed with 166 ng random hexamer (Invitro-
gen) and subjected to first-strand ¢cDNA synthesis (Invitro-
gen) according to the manufacturer's recommendations in a
total volume of 40 pl at 42°C for 1 h. The 40 pl first-strand
reaction was used in second-strand cDNA synthesis (Invitro-
gen) according to the manufacturer's recommendations in a
total volume of 300 pl at 16°C for 2 h. Samples were then sub-
jected to RNase treatment at 37°C for 20 minutes with 20
units RNaseH (Epicentre, Madison, Wisconsin, USA), 1 unit
RNaseA and 40 units RNaseT (Ambion, Austin, Texas, USA).
Double-stranded cDNA was further purified using a Qiaquick
PCR purification kit (Qiagen), and then labeled using a Bio-
Prime DNA labeling system (Invitrogen) as described above.
About 30 pg of labeled product from genomic DNA or from
double-stranded ¢cDNA was subjected to hybridization to
Arabidopsis Tiling 1.0 F array (Affymetrix) using a standard
gene expression array washing/staining protocol (Affyme-
trix).

Validation of differential splicing and allele specific
expression

For each of the differential exons and introns selected for val-
idation, gene specific primers were designed to flank the pre-
dicted exon or intron using Primer3 [63], as listed in Table
S11A in Additional data file 2. Seedlings were grown as
described above, with three maternal seed batch replicates for
each of Col and Van. Total RNA was isolated from 120 seed-
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lings per plate using a RNeasy plant mini kit (Qiagen). For
each sample, approximately 2 ug total RNA was reverse tran-
scribed using 40 U Superscript III (Invitrogen) and 0.5 ug
Oligo(dT)12-18 primer (Invitrogen) in a total volume of 20 pl
at 42°C for 1 h. First strand cDNA was amplified using gene
specific primer pairs with the following PCR conditions:
denature at 94°C 3 minutes, 38 cycles of 94°C 15 s, 68°C 15 s,
72°C 30 s (or 45 s depending on the product size), extension
at 72°C 5 minutes. PCR products were separated on 1.2% aga-
rose gel.

For the two selected ASE genes, a single nucleotide polymor-
phism within each gene was selected. The sequences of flank-
ing PCR primers and extension primers were designed using
Assay Design 3.1 (Sequenom, San Diego, California, USA), as
listed in Table S11B in Additional data file 2. Reverse tran-
scription was performed as described above for mRNA sam-
ple from a F1 hybrid. Gene specific PCR was then performed
for the genomic DNA and reverse transcription products for
that F1 hybrid, using conditions described above except using
42 thermo-cycles. PCR products were cleaned with a
Qiaquick PCR purification kit (Qiagen), and submitted to the
University of Chicago Sequencing Core for extension reaction
and mass spectrometry (Sequenom).

Data analysis

The accession numbers of the microarray data in this study
have been deposited in the Gene Expression Omnibus (GEO)
[64] ([GEO:GSE8891], [GEO:GSE13620]). The genome
tracks of SFPs, deletions/duplications, gene expression vari-
ation, allele specific expression, splicing variation, and tran-
scribed fragment variation are included in Additional data file
4, which can be viewed using GBrowser [65].

Array annotation

Perfect match probes from the Arabidopsis tiling 1.0 F array
(Affymetrix) were megablasted against the Arabidopsis
genome release version 7 including mitochondria and chloro-
plast sequences with word size >8 and E-value <0.01. Single
perfect matches, without a second partial match of >18/25
bp, were selected, giving a total of 1,683,620 unique probes.
These were mapped to annotated mRNAs as intron, tran-
scription unit (exon, alternative exons), intergenic, or flank-
ing probes that span an annotated boundary.

Detection of deletion/duplication

Raw intensities from .CEL files of genomic hybridizations
were corrected for spatial effects and log transformed as pre-
viously described [66]. Probe intensities from all 1,683,620
probes were quantile normalized using the Bioconductor
package Affy. SFPs were detected using the Bioconductor
package Siggenes as previously described [39]. For detection
of deletion/duplication, the probe-level p-values were col-
lected from one-sided two sample t-tests for the alternative
hypothesis H1: uVan > pCol. Each of the five chromosomes
was divided to 1 Mb bins and analyzed separately to reduce
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the memory usage. The segment algorithm [41] was applied
to the probe level p-values, with maximum segment length set
as 5,000 probes x 35 bp/probe = 175 kb, and base per seg-
ment set as 5 kb. Thus, the algorithm calculated 1 to 200 pos-
sible segments within a 1 Mb region to determine the segment
boundaries. The optimal number of segments from each of
the 1 Mb bins were determined by the Akaike information cri-
terion or Bayesian information criterion. Segments with
median probe p-value > 0.99 (deletion) or median probe p-
value < 0.02 (duplication) were collected for each 1 Mb bin
and jointed together if they were located at bin boundaries. To
reduce the chance of false positives, indels were further
selected only if they contained >6 probes and interrogated by
>1 probe/1 kb density.

Annotation-based analysis

Raw intensities from .CEL files of cDNA hybridizations were
corrected for spatial effects and log transformed as previously
described [66]. For annotation-based analysis, probes with
the 5% weakest intensity in genomic DNA hybridization,
probes interrogating the 125,043 SFPs (5% FDR) and 1,781
indels, intergenic probes, probes spanning exon boundaries,
and probes interrogating multiple transcripts were excluded
from the RNA data. The intensities of the remaining probes
were quantile normalized. Exon probes were defined as
probes interrogating gene sequences that present in >50% of
the expressed clones. Intron probes were defined as probes
interrogating gene sequences that either were absent in
expressed clones or present in <50% of expressed clones. For
each probe, the probe effect was removed by subtracting the
mean log intensity across all samples. Genes with >3 exon
probes were analyzed for differential expression by fitting a
linear model: Intensity = Additive + Dominant + Maternal +
Error. The additive, dominant and maternal terms were con-
trasted as (1, -1, 0, 0), (0, 0, 1, 1), (0, 0O, -1, 1), respectively,
within the linear model. Exonic differential splicing was ana-
lyzed for genes with >2 exons and >5 exon probes. Intronic
differential splicing was analyzed for genes with >2 exons and
>3 exon probes. Within these selected genes, exons or introns
containing >2 probes were subjected to further analysis.

For exonic splicing analysis using probe intensities corrected
by gene mean, for each gene the probe intensities were fitted
by the linear model: Intensity = Additive + Dominant +
Maternal + Error. For each exon, the residuals were then fit-
ted by the linear model: Residual = Additive + Dominant +
Maternal + Error. For exonic splicing analysis using probe
intensities corrected by gene median, exon probe intensities
were corrected by a median-polished gene expression value
estimated across strain replicates and gene probes, which
were then fitted by the linear model. For exonic splicing anal-
ysis using splicing indices, the mean exon expression was
summarized as the mean across exon probes for each repli-
cate sample. Gene expression was then calculated as the aver-
age of exon means across exons and across replicate samples
within genotype. The splicing indices (exon mean/gene
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mean) were then fitted by the linear model. Both corrected
exon probe intensities and the splicing indices generally
showed distributions close to a normal distribution (data not
shown).

For detection of intronic differential splicing, intron probe
intensities were directly fitted by the linear model: Intensity
= Additive + Dominant + Maternal + Error. FDRs were deter-
mined by 1,000 permutations, with the following procedure:
step 1, fit a partial model missing the term being tested; step
2, permute residuals; step 3, add permutated residuals to the
predicted values; step 4, fit those data with a full model; step
5, calculate a d score; step 6, repeat steps 2 to 5 for 1,000
times. The null hypothesis here is that the term being tested
is not significant; thus, residuals from partial modeling are
assumed to be independent random variables that could be
permutated by across samples. The d score is defined as the
Coefficient/(Standard deviation + s0), where so is the median
of standard deviations across all genes and all permutations
[42]. The adding of constant so to the denominator is to avoid
very small effect genes being called significant [42]. The d
scores were ranked for each of the 1,000 permutations and a
null distribution was obtained by averaging d scores across
permutations for each rank. For each threshold, the FDR was
calculated as the average number of permutation d scores
exceeding the threshold divided by the number of real d
scores exceeding that threshold [42]. We found that FDRs
calculated by this method sometimes exceeded 100%. This
was due to the d score distribution of non-significant genes in
real data being tighter than the null [42], meaning no signifi-
cant enrichment over background.

To detect ASE, probes with the 5% weakest intensities in
genomic DNA hybridization, intergenic probes, probes span-
ning exon boundaries, and probes interrogating multiple
transcripts were excluded from the RNA data. Exon probes
were defined as probes interrogating gene sequences that
present in >50% of the expressed clones. These exon probes,
including non-SFP probes and SFP probes, were quantile
normalized. A total of 9,745 genes containing >5 non-SFP
exon probes and >1 SFP exon probe were selected for further
analysis. For each gene, the additive, dominant and maternal
effects were estimated by the linear model. These effects were
subtracted from the log intensities of SFP probes to correct
for fold difference of gene expression level across genotypes.
The corrected SFP probe intensities reflected the relative
binding (allelic composition) for a given amount of target.
Under the linear assumption, the intensity of SFP probes is
expressed as:

ICol = CCol x SCol

IVam = CVan x SVan

Imid =1/2 x CCol x SCol +1/2x CVan X SVan 1)
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Here, I represents probe intensity, C target concentration,
and S binding coefficient for the corresponding target. Sup-
pose Cyy_col = Crpovan = Cp and Cy ) = Cyyapy = C,, where sub-
script m- and g- represent RNA and DNA hybridization,
respectively, it follows that:

Im—Col/ Ig—Col = Im—Van/ Ig—Van = Im-mid/ Ig-mid = Cm/ Cg

or

10g Lol IOg Ig»Col = IOg Tnvan- 10g Ig-Van = IOg Lnmid- 10g Ig»mid (2)

Re-arranging equation 2, we have:

10g Im—mid = 1Og Ig—mid + 1/2 x (IOg Im—Col - IOg Ig—Col + 1Og Im—Van -
log L,_v,n) =log I, iq + 1/2 x D

We included both Col and Van genomic hybridizations here to
estimate the mid-parent values, in an attempt to reduce the
estimation bias associated with different targets. For each
SFP probe, D was calculated using mean log intensities across
four replicates of genomic or RNA hybridization for Col and
Van. We then obtained eight independent mid-parent values
from the eight replicates of F1 genomic hybridization. For
each gene, the eight replicates of F1 RNA hybridization were
tested for deviation from the mid-parent values by a simple
linear regression across SFP probes within the gene. A per-
mutation approach was applied to determine the FDR.

ASE was also analyzed using mid-parent values estimated as
the average natural intensities of parents for RNA hybridiza-
tions (equation 1). The log transformed probe intensities were
first converted back to natural intensities. Using non-SFP
probes, the median-polished gene intensity was estimated for
each genotype. The SFP probe intensities were divided by the
corresponding gene intensities to correct for expression dif-
ference. Then, for each SFP probe, the mid-parent values
were estimated as the average of parental values. Four inde-
pendent data points were obtained by pairing four replicates
of Col and Van RNA hybridizations without replacement. The
eight replicates of F1 RNA hybridization and four mid-parent
values were then log transformed for linear regression. A per-
mutation approach was applied to determine the FDR.

To estimate the effect of SFP probes on the analysis of natural
transcirptome variation, we applied variance partition for
genes/exons/introns that contained >1 non-SFP probe and >1
SFP probe on parental strain expression data. An ANOVA
model, Gene/exon/intron intensity = Genotype + SFP + Gen-
otype x SFP + Error, was tested for each gene/exon/intron.
Here, the probes with the 5% weakest signals, probes interro-
gating the 125,043 SFPs and 1,781 indels were not removed
from the RNA data, as if there were no genomic DNA hybrid-
ization data available. The same set of genes/exons/introns
was compared for analyses with and without SFP probes.
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The annotation-based analysis was coded as R scripts (Addi-
tional data file 5).

Hidden Markov model

For HMM analysis, probes with the 5% weakest intensities in
genomic DNA hybridization, probes interrogating the
125,043 SFPs (5% FDR) and 1,781 indels were excluded from
the RNA data. The intensities of the remaining probes were
quantile normalized. Probe level p-values were collected from
one-sided two sample t-test for the alternative hypothesis Hi:
uVan > puCol. We included three hidden states in our model to
distinguish equal, Col higher, and Van higher expression.
Each state contained a discrete emission distribution with 50
bins equally spaced from zero to one. The probability of state
transitions was represented by a 3 x 3 base transition matrix
T, which contained three free parameters, t;; for i = {1, 2, 3},
where t;;is the probability of staying in the same state (i) from
one base to the next. The off-diagonal elements in this matrix
were determined by the equation t;; = (1-t;)/2. Since probes
were not always equally spaced, we treated state transitions
as a simple Markov chain such that the probability of a state
transition t; * between two probes whose midpoints are b
bases apart was defined by the matrix T* = Tb. We used a
modified version of the Baum-Welch algorithm [48] to obtain
estimates for the emission distributions for the three states
and the transition probabilities t;;. In our modified approach,
the standard expectation-maximization procedure was
applied to estimate the emission distributions during each
iteration of the Baum-Welch algorithm. During the conver-
gence of the Baum-Welch algorithm, a quasi-Newton
bounded optimization algorithm known as L-BFGS-B [49]
was applied once every ten iterations to re-estimate the tran-
sition probabilities within the bounded interval [0.95, 1] for i
={1, 2, 3}. It does not appear that our bounds affected transi-
tion estimates as all transitions were estimated to take values
at some distance from the bounds. Parameter estimation was
done twice for each chromosome, using different starting
emission distributions to make sure that the Baum-Welch
algorithm was converging to the global maximum of the
parameter likelihood surface rather than local peaks. Follow-
ing parameter estimation, the Forward-Backward algorithm
was applied to determine the posterior probability of each
state for each probe. Segments were collected within which all
probes have a state 1, state 2 or state 3 posterior probability >

0.99.

Differential segments (state 2 and 3 segments) were com-
pared with annotation. For each of the annotated genes inter-
rogated by >3 probes, we collected all differential segment(s)
that contained >3 probes within the annotated gene bounda-
ries. Differentially expressed genes were defined as those
annotated genes that had >1/3 probes located within the
observed differential segment(s). Differentially spliced genes
were defined as those annotated genes that had <1/3 probes
located within the differential segment(s), or those genes that
contained >2 differential segments from opposing hidden
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states. Differential segments overlapping with annotated
gene boundaries and extending those boundaries by >3
probes detected novel gene boundaries. In addition, these dif-
ferential segments for novel gene boundaries were either not
overlapped with adjacent genes, or overlapped but the dis-
tances between the two neighboring gene boundaries were
>10 probes. Differential segments (>5 probes) completely
outside of any annotated gene region represented novel tran-
scripts.

The implementation of HMM and the related analysis was
coded as R scripts (Additional data file 6).
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