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Abstract
Research on the role of time in associative learning has changed our understanding 
of what an association is. It is a measurable fact about the distribution of events in 
time, not an altered activation-conducting connection in a mind, brain or net. Asso-
ciative learning is the process of perceiving temporal associations and deciding to 
act on them. Informativeness— the ratio of a conditional rate to an unconditional 
rate—is the essential empirical variable, not the probability of reinforcement. The 
communicated information between temporally associated behavioral and reinforcing 
events is the log of informativeness. Because the time units in the rate estimates can-
cel, associative-learning is time-scale invariant: Perceivably associated events may 
be arbitrarily widely separated. There are no windows of associability nor decaying 
eligibility traces. The learning rate—operationally defined as the reciprocal of rein-
forcements prior to the appearance of a conditioned response—is an almost scalar 
function of relative temporal separation, as measured by informativeness. The central 
role of informativeness unites our understanding of Pavlovian and operant/instrumen-
tal phenomena, revealing unexpected quantitative and conceptual communalities.

Keywords Informativeness · Communicated information · Measure of association · 
Strength of evidence · Assignment of credit · Change detection · Time allocation

In 1967, Robert Rescorla reviewed the shortcomings in control procedures then used in 
Pavlovian conditioning experiments (Rescorla, 1967). He pointed out that they replaced 
one contingency with another. He stressed that in a proper control, “the CS provides no 
information about subsequent occurrences of the US” which means that the distribu-
tions of CSs and USs “must be such that the CS occurrences do not predict the occur-
rence of the USs at any time . . .” no matter how remote (p. 74; emphasis in original).

He argued for the truly random control in which reinforcements are programmed 
by Poisson processes, which makes them equally likely at every moment in time. He 
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then used that control to show that associative learning depended on the contingency 
between the conditional stimulus (CS) and reinforcement (R), not on their temporal 
pairing (Rescorla, 1968, 1969; Rescorla & Skucy, 1969). He pointed out that “. . . 
the yoked control [in instrumental conditioning] was introduced precisely to deter-
mine what effects are uniquely due to instrumental reinforcement contingencies.”

Rescorla remarked that the contingency was a function of the proportions of USs 
(hereafter denoted by R’s for reinforcements) that occurred during the CSs and in its 
absence. However, he incorrectly assumed that these proportions could be reduced 
to two probabilities, the probability of R occurring during the CS and the proba-
bility of its occurring in its absence. In equating proportions with probabilities, he 
failed to distinguish between rate and probability. Over the last half century, we have 
learned that the distinction is fundamental. His deep insight into the nature of asso-
ciative learning can only be realized by shifting our attention from the probability of 
reinforcement to the rate of reinforcement.

A probability is the proportion between a count of the “successes” (the Rs) 
divided by the sum of successes and “failures” (the ∼ R’s):

A rate is a count divided by the duration ( T  ) of the interval over which the count 
is made:

The failure to distinguish between probability and rate was and remains common. 
It arises in part from the traditional conception of what an association is, psycho-
logical speaking. That conception has roots in the philosophy of mind that go back to 
Aristotle. In philosophy, psychology, behaviorist cognitive science, and neuroscience, 
associations reside in minds, hence in brains. Their function is to conduct an activat-
ing or deactivating signal from one idea to another, or from one node to another, or 
from one neuron to another. It is the concept of the plastic synapse (Hebb, 1949). 
Central to this conception is that reinforcements strengthen an activating connection 
(a positive association) and nonreinforcements have the opposite effect; they weaken 
a positive association and/or strengthen a negative association. This conception is 
explicit in the Rescorla-Wagner model and its many descendants (Kang et al., 2024; 
Rescorla & Wagner, 1972), that is, in any model that uses delta-rule updating:

Equation (1) is found in some form in every textbook on associative learning and 
in every review of reinforcement learning. It may be read as follows: The change 
in the association between a reinforcer, R , and the ith conditional stimulus ( Ai ) on 
any given trial is proportional to the learning rate, � , times the difference between 
Λ
(
R̈
)
 and the sum over all of the associations between R and the CSs present on that 
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(
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)
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makes ΔAiR negative, which causes positive associations to be decremented and 
negative associations to be made stronger.

There is a conceptual problem with this formulation closely connected to the 
assumption that associative learning depends on the probability of reinforcement. The 
problem was already there in the Hullian model on which Rescorla and Wagner (1972) 
based their own model. It comes from attributing causal efficacy to ∼ R “events.” Non-
reinforcements have no physical attributes. They cannot excite sensors. Events with 
causal effects must happen at specifiable times. A failure can cause something to hap-
pen only if there is a specified time at which a success was expected. There are many 
circumstances in which there are no such times. When reinforcements are randomly 
distributed in time, as they are when scheduled by a Poisson process, there are no such 
times because a reinforcement is equally likely at every moment in time (Gallistel, 
2021b). The need to attribute causal efficacy to events that cannot be localized in time 
explains why the Hullian model and its delta-rule descendants could not and still can-
not explain the quantitative facts about extinction (Dayan & Niv, 2008; Gleitman et al., 
1954; Kang et al., 2024; Kimble, 1961).

The problem became apparent in Rescorla and Wagner’s (1972) article when they 
tried to apply Eq. (1) to Rescorla’s contingency-not-pairing results (Fig. 1). Here is 
how they tried to circumvent it in their simulation: “. . . to exemplify the application 
of the model to this particular case, the experimental session was taken to be divis-
ible into time segments the length of the CS duration. Each segment containing the 
CS is thus treated as an AX “trial” [context+CS] and each segment not containing 
the CS as an A “trial. [context only] It is possible then to specify the sequence of 
reinforcement and nonreinforcement over each of the two kinds of trials” (Rescorla 
& Wagner, 1972, p. 88; scare quotes in the original).

In their simulation, they updated the two associative strengths—one for the asso-
ciation between CS and R, the other for the association between context and R—once 
and only once on each imaginary “trial.” When the Poisson process was running, 
they assumed that there was one reinforcement on 40% of the “trials” (imagined 
2-min intervals) and no reinforcements on 60% of them. On reinforced “trials,” they 
set Λ

(
R̈
)
= 1 and incremented the associations between both the context and the CS 

in accord with Eq. (1). On unreinforced “trials,” they set Λ
(
R̈
)
= 0 and decremented 

Fig. 1.  Time lines for the two key protocols in Rescorla (1968). Note. Upper protocol is for the “experi-
mental” group. Lower protocol is for the truly random control group (the group of principal interest). 
The durations of the interval-trial intervals when the noise CS was not present (white) varied about a 
mean much greater than the fixed duration 2-minute intervals when it was present (gray). The question to 
ask oneself when looking at the Highly Informative protocol is, How many nonreinforcements were there 
in the intertrial interval and where did they happen?
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both AcsR and AcR when the CS was present but only AcR when the CS was absent. 
The decrementing of the association between R and context on the many imaginary 
trials that occurred during the ITIs in the upper protocol was the key to explaining 
why the subjects in that group were much more afraid of the noise (gray) than they 
were of the context (white).

It is often remarked that the trouble with simulations is that you are doomed to suc-
ceed. Success comes eventually because one works around certain “minor” details that 
seem unimportant but are in fact fatal. The fatal detail here is that Rescorla did not vary 
the probability of reinforcement, he varied the rate. In the two protocols in Fig. 1, the 
rate was 0.26 shocks/minute. In any 2-min interval, there were anywhere from 0 to 3 
shocks (Gallistel, 2021b). The delta-rule updating model in Eq. (1) is not physically 
realizable when there are no actual trials, which is to say, during the ITIs when only 
the background is present. That is why Rescorla and Wagner (1972) put scare quotes 
around the 2-min “trials” they had to imagine to make the averages in their simulation 
come out right. No partitioning of protocols into “trials” of equal duration will make 
the model work when given the randomly distributed reinforcements the rats in fact 
experienced, because the R count does not change as one makes the imaginary “trials” 
shorter and shorter but the ~R count goes to infinity. As the count of the imagined ~R’s 
goes to infinity, all probabilities—and therefore all associative strengths—go to 0.

Over the 4 decades since the Rescorla-Wagner delta-rule updating model launched 
the modern era in the formalization of associative learning (Esber et al., 2025), it has 
slowly become apparent that the key to a successful formalization is to focus on the 
rate of reinforcement not the probability. The change in focus has led to a change in 
the ontological status of an association in psychology, cognitive science, and neurosci-
ence. It’s no longer something in the head; it’s a measurable statistical fact out there in 
the world, a distal stimulus, not a percept. What is in the head is a percept that repre-
sents the strength of the statistical association out there in the world. I here explain the 
computations by which the percept is thought to be generated and the computations by 
which it produces measured behavior.

In his 1967 review, Rescorla demurred when it came to specifying a formula for 
computing contingency. He had good reason to do so because there was then no for-
mula for computing it in continuous time (Gibbon, 1981; Gibbon et al., 1974). Now 
there is (Balsam et al., 2006; Balsam & Gallistel, 2009). The key to finding a formula 
was to turn to information theory. Rescorla would have approved because his review 
stressed the fact that reinforcement was contingent on a CS just in case it communi-
cated information about where the reinforcement was to be found in time. Information 
theory provides the mathematical foundation for our understanding of what informa-
tion is and how it is communicated (Cover & Thomas, 1991; Shannon, 1948).

Measuring Communicated Information

Rescorla realized that to have a quantitative theory of associative learning, we 
must measure the distal stimulus, the amount of information communicated. We 
need to measure it as soon as there is anything to measure, which means after the 
first reinforcement. Probability of reinforcement is useless then, because when the 
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reinforcement occurs when both the CS and its context are present, the probabil-
ity of reinforcement is 1 for both predictors. If probability drove associative learn-
ing, learning to respond to the CS after its first reinforcement (one-shot learning) 
would be impossible. Learning would have to progress by small changes, which is 
sometimes taken as definitional (Richards & Kording, 2023). However, one-shot 
associative learning is seen in both Pavlovian and operant protocols when the statis-
tical association is sufficiently strong (Gallistel & Shahan, 2024; Harris & Gallistel, 
2024; Jenkins et al., 1981; Revusky & Garcia, 1970).

An extreme example helps us to intuit why one-shot associative learning should 
be possible. Suppose a subject has been in a test chamber for 6 hr when a noise 
comes on and 1 s later they get shocked. We and the subject would be inclined to 
think the noise was associated with the shock. If someone argued it was “just a 
coincidence,” most of us would be inclined to respond, “That’s one hell of a coin-
cidence!” The information theoretic computation of the association and its reliabil-
ity given an n of one justify our intuition because they take interval durations into 
account. The deep problem with probability of reinforcement is that it does not take 
duration into account.

The information-theoretic measure of communicated information is the log of 
the ratio of two rates. The rates are counts divided by durations. There are 21,600 
s in 6 hr. In the above example, the contextual rate of shock is �R|C = 1∕21,600s , 
and the rate during the 1-s CS is, �R|CS = 1∕1s . The ratio of the rate of reinforce-
ment conditional on a CS and the rate in the context in which the CS and the rein-
forcement occur is the informativeness of their temporal relationship. It is denoted 
by lower case iota ( � ). In the example at hand � = �R|CS∕�R|C = 1∕

1

21600
= 21600 . 

The log to the base 2 of this ratio is 14.4 bits, which, in our example, is the 
amount of information communicated by the CS about when to expect the next 
shock.

If a receiver assumes that shocks are randomly distributed within the context 
in which the shock has occurred—the simplest assumption—then the receiver has 
considerable uncertainty about when to expect the next shock (somewhere in 6 hr). 
When the noise comes on, it greatly reduces the uncertainty, because it predicts the 
shock is imminent (within the next second).

Uncertainty in information theory is measured by the entropy, H , of a random 
variable’s distribution, which is the mean surprisal:

The amount by which a communicating signal (the noise) can reduce contextual 
uncertainty (about when to expect shocks) is the communicated information.

The (differential) entropy of the exponential distribution is 
H = 1 − ln� = 1 − ln(1∕�) , where λ is the rate parameter of the exponential dis-
tribution and � is its reciprocal, the mean interval (also called the time constant). 
The difference between the entropy of the contextual distribution of intershock inter-
vals and the entropy of the distribution communicated by the noise is the log of the 
noise’s informativeness:

H =
∑

plog(1∕p)
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Equation (2) is the formula that eluded Rescorla because the communicated infor-
mation divided by the available information is the contingency (Gallistel & Latham, 
2022). The available information is the amount that removes all uncertainty. It is 
communicated by a CS or a response (r) only when they and the R occur simultane-
ously. In the most common Pavlovian protocol, delay conditioning, reinforcement 
coincides with CS termination on every trial. In that case, the contingency between 
CS termination and reinforcement is 1. It is, however, useless as a warning because 
the offset signal comes too late for the subject to make an anticipatory response. The 
useful warning comes only from CS onset, provided the delay between onset and 
the shock is long enough for the subject to make a shock-anticipatory response, like 
freezing or blinking the eye.

For most purposes, what matters in what follows is not the contingency but 
rather the communicated information. It measures the strength of the stochastic 
association.

What is in the Head

In the head are the percepts: the percepts of rates of reinforcement, informativeness, 
associations and their reliability. Percepts are produced by the computations that 
extract them from first-order sensory signals. The percept of a color, for example, 
is a 3-dimensional vector with signed scalar elements (Grassmann, 1853). The per-
cept of a face is a 50-dimensional vector, also with signed scalar elements (Chang 
et al., 2021; Chang & Tsao, 2017). These neurobiological vectors are not the distal 
stimuli to which they correspond. The percepts relevant to associative learning are 
extracted from counts and durations, neither of which is a sensory event. Counts 
require counting and durations require timing. Both are themselves elementary com-
putational operations. Gallistel (1990) reviewed the already extensive experimental 
evidence that much learned behavior depends on learned counts, learned intervals, 
and on rates, which are counts/durations. The literature has grown much larger in the 
interim.

There is now strong experimental evidence that perceived rates of reinforce-
ment are scalar functions of the measured rates of reinforcement, because, under 
easily arranged circumstances, the function that maps from measured rates of rein-
forcement to measured rates of responding is scalar over many orders of magnitude 
(Fig.  2). The scalar relation between measured reinforcement rate and measured 
response rate implies that the computations that produce percepts of rates of rein-
forcement are simpler than for either colors or faces:

(2)ΔH =
(
1 − ln�R|C

)
−
(
1 − ln�R|CS

)
= ln

�R|CS
�R|C

= ln
�R↔R|C
�R↔R|CS

= ln(�)

�̂R|CS = n̂R|CS∕T̂CS ≈ nR|CS∕TCS
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Fig. 2  a. Hopper entry rate as a 
function of expected reinforce-
ment rate in a Pavlovian delay-
conditioning protocol on dou-
ble-logarithmic coordinates. The 
red dots are for pokes during 
CSs plotted against the expected 
CS reinforcement rate. The 
black dots are poke rates during 
the never-reinforced intertrial 
intervals plotted against the 
reinforcement rate expected 
when in the test chamber (the 
contextual reinforcement rate). 
The scales span three orders of 
magnitude on both axes (repro-
duced from Figure 5 in Harris 
& Gallistel, 2024 by permission 
of the authors). b. The rate of 
adjunctive (unreinforced) floor 
scratching during intervals 
when reinforcement was not 
accessible plotted against the 
contextual rate of reinforcement 
in an operant protocol. (Repro-
duced from Killeen & Sitomer, 
2003, Fig. 7, p. 52 by permis-
sion of authors and publisher). 
c. Key pecking rates plotted 
against rates of reinforcement 
on concurrent variable interval 
schedules of reinforcement 
(Reproduced from Herrnstein, 
1961, Fig 2, p. 268 by permis-
sion of publisher)
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where and n and T denote cumulative count and cumulative duration. Variables with 
hats denote values for percepts in the head, where they are not directly measurable. 
The variables without hats are directly measured by counting and timing.

The rate of hopper entry during CSs signaling food reinforcement is a scalar 
function of the CS reinforcement rate (red data points in Fig.  2a). The rate of 
hopper entry during the never-reinforced intertrial intervals is a scalar function 
of the contextual rate of reinforcement present (black dots in Figs. 2a). The con-
textual rate is the rate a subject expects simply from being in the test chamber, 
without regard to whether the CS is or is not present. The scale factor, k , is the 
same in both cases, k ≅ 18.

A scalar relation spanning orders of magnitude between rate of responding and 
rate of reinforcement is evidence that brains compute and remember rates of rein-
forcement from experienced reinforcements separated in time by arbitrarily long 
intervals. The argument for this conclusion comes from measurement theory; it 
rests on two well-established experimental facts: 

(1) rates of responding are proportional to the rates reinforcement (Fig. 2) and; 
(2) the rates of learning are proportional to the ratios of rates of reinforcement 
(Fig.  4). Together, these results imply a ratio-scale representation of rate of 
reinforcement, a representation on which all the basic arithmetic operations are 
valid (Krantz et al., 1971; Krantz, 1972; Luce et al., 1990).

The computation of a rate implies a temporal map: when the first reinforcement 
in a context occurs, the brain must look back in time to compute the time so far spent 
in that context because the duration of its experience of the context is the denomina-
tor of the rate:

In Pavlovian and operant protocols, the context is the test chamber. Subjects may 
spend hours there prior to the first reinforcement (context habituation). In a Pav-
lovian protocol with partial reinforcement of the CSs, subjects must compute the 
cumulative duration of the CSs prior to the first reinforcement in order to compute 
the CS rate of reinforcement:

In a reinforcement learning protocol with a long delay between response and rein-
forcement (Gallistel & Shahan, 2024; Lett, 1975), the subject must also look back to 
the record of its most recent response to compute the prospective and retrospective 
informativeness ratios ( �):

 and 

�R|C = 1∕�R↔R|C

�R|CS = 1∕�R↔R|CS

�⃗� = 𝜆
R|⃗r∕𝜆R|C

𝜄 = 𝜆
r| �⃖R∕𝜆r|C
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The first informativeness ratio is the rate of reinforcement looking forward from 
a response divided by the contextual rate of reinforcement; the second is the rate 
of responding estimated by looking back from a reinforcement to the most recent 
response divided by the contextual rate of responding.

The temporal map is a time-stamped record of past events (Arcediano et al., 2003; 
Balsam & Gallistel, 2009; Cammaerts & Cammaerts, 2022; Chandran & Thorwart, 
2021; Eichenbaum & Fortin, 2003; Honig, 1981; Oprisan et al., 2018; Polyanskaya, 
2022; Sawa & Kurihara, 2014; Taylor et  al., 2014). The raw data record in many 
contemporary animal-learning labs instantiates the concept. It is a two-column data 
structure with time or duration stamps in the first column and event codes in the sec-
ond. Time stamps record the time as given by the computer’s clock. Duration stamps 
record the intervals between successive events. The time as given by a computer 
clock (a clock that knows nothing about days, weeks, or months, etc.) may be com-
puted by cumsumming the interevent intervals.

A brain may obtain cumulative elapsed time from a short-period oscillator that 
increments a counter at the completion of each cycle. Interval durations may be meas-
ured using either an array of processes that decay exponentially (Cruzado et al., 2019; 
Howard, 2018; Howard & Hasselmo, 2020) or as phase differences in arrays of oscilla-
tors with different periods (Gallistel, 1990, 2017a). The temporal map is updated event 
by event. Aristotelean associations don’t get updated in this model, because they do not 
exist.

The computations that mediate the perception of stochastic associations operate on 
the data in the map. The map makes possible looking back in time. Humans constantly 
use their memory to look back in time. So do nonhuman animals (Crystal, 2021)—as 
will be stressed in the section on the time-scale invariant Learning Rate Law.

How Associations are Perceived

The computation that maps the measured association out there in the world to the cor-
responding percept is simple, explicit, and devoid of free parameters. Consider a basic 
Pavlovian delay protocol like the one whose timeline is shown in the upper part of 
Fig. 1. The perceived association between the CS and reinforcement may be computed 
by:

In words, the perceived association, Â(CS, R) , is the log of the perceived infor-
mativeness, which is the log of the perceived rate of reinforcement during the CSs 
divided by the perceived rate of reinforcement in the experimental context. The per-
ceived variables, the ones with hats, are approximately equal to the hatless variables, 
which we can measure because they are publicly observable. In measurement theory 
terminology, Eq. (3a) asserts that brains have a ratio-scale representation of the infor-
mativeness of the prospective relation between CS onset and rate of reinforcement. 

(3a)Â(CS, R) = log
(̂
�
)
= log

�̂R|CS
�̂R|C

≈ log
�R|CS
�R|C
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The percept is approximately equal to the log of that ratio. It represents the amount 
of information that CS onset communicates about the expected wait for the next 
reinforcement.

For an operant example, consider the prospective association between a response 
and reinforcement when subjects respond on a variable interval (VI) schedule. A VI 
schedule sets up the next reinforcement at exponentially distributed intervals fol-
lowing the harvesting of the previous reinforcement. The prospective association is 
the log of the prospective informativeness of a response. The informativeness is the 
factor by which the response reduces the expected wait for the next reinforcement:

Or, parameterizing the exponential by rate rather than by mean:

In Eq. (3b), �R↔R is the average interval between reinforcements, and �r→R is 
the average interval looking forward from each response to the next reinforce-
ment (see Fig. 3).

Variable interval schedules sustain high and steady rates of responding. Responses 
are much more frequent than reinforcements (Fig. 3). To see if a response predicts a 
reinforcement, the brain looks forward in time (black arrows in Fig. 3). It compares 
the average of these forward intervals to the average interval between reinforcements 
(intervals between the open red circles). If the average interval looking forward from 
a response to the next reinforcement is substantially shorter than the average interval 
between reinforcements, then a response communicates information about where to 
find the next reinforcement.

To see if a reinforcement retrodicts a response, the brain looks back from 
reinforcements to the most recent response (red arrows in Fig. 3). If the average 
interval looking back is substantially shorter than the average interval between 
responses, then a reinforcement communicates information about where to find 

(3b)�A
(⃗
r, R

)
= log

�𝜇R|C
�𝜇R|⃗r

≈ log
𝜇R↔R

𝜇r→R

= log
(⃗
𝜄
)

(3b’)�A
(⃗
r, R

)
= log

�𝜆R|⃗r
�𝜆R|C

≈ log
𝜆R|⃗r
𝜆R|C

= log
(⃗
𝜄
)

* * * * ** * * * *O O O

Fig. 3  Prospective and Retrospective Informativeness when Subjects Respond on VI Schedules. Note. 
The black dots mark responses, the red open circles mark reinforcements. Black arrows are intervals 
looking forward from a response to the next reinforcement; red arrows are intervals looking back from a 
reinforcement to the most recent response
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the most recent response. The equation for the retrospective association between 
reinforcement and response is:

Or, again parameterizing by rate rather than by mean:

The retrospective contingency was 1 in the control conditions of the Gallistel 
et al. (2019) experiments with pigeons pecking on VI schedules, because a rein-
forcement and the peck that triggered it coincided in time. They had the same 
time stamp to within 0.01 s. When one found the stamp for a reinforcement in the 
data record, there was no uncertainty about where to find the stamp for the most 
recent response. The reinforcement communicated all the available information 
about response recency. The prospective contingency was 0; making a response 
communicated no information about when to expect the next reinforcement.

The role of retrospective contingency in this rate-based model of reinforce-
ment learning captures the intuition that reinforcements act backward in time in 
reinforcement learning (Timberlake, 1995). The temporal map also enables the 
brain of a rat to look back from its first experience of nausea, induced by radia-
tion delivered hours after it experienced a novel taste (Revusky & Garcia, 1970). 
The rats’ in the Revusky and Garcia radiation experiments first experience of nau-
sea occurred when they were months post weanling. The context was their post-
weanling experience in the laboratory. The interval from the nausea back to the 
novel taste was very small in comparison to the preceding months without nau-
sea (the comparison interval). One-shot taste-aversion learning with hours-long 
delays between taste and nausea is explained without fiddling the parameters of 
an hypothesized window of association (Logue, 1979). Poison-avoidance learning 
is simply another manifestation of the time-scale invariance of associative learn-
ing. What matters are the relative latencies, not their absolute values.

Sample Size and Reliability

The first reinforcement in a Pavlovian protocol makes possible the perception of an 
association between the CS and reinforcement because it defines two rates, the con-
ditional rate and the contextual rate. The same is true for the first reinforcement in 
an operant protocol; two relevant rates are immediately defined: the response rate in 
that context and the response rate estimated by looking back from reinforcements to 
the most recent response. Probabilities are not yet defined when there has been only 
one reinforcement and neither is correlation, which is the conventional measure of 
stochastic association. There is, however, the obvious issue of the extent to which 

(3c)�A
(
r, �⃖�R

)
= log

�𝜇r↔r

�𝜇
r| �⃖R

≈ log
𝜇r↔r

𝜇r←R

= log
(
𝜄
)

(3c’)�A
(
r, �⃖�R

)
= log

�𝜆
r| �⃖R
�𝜆r

≈ log
𝜆
r| �⃖R
𝜆r

= log
(
𝜄
)
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estimates of stochastic parameters obtained from a sample of size 1 may be relied 
on.

An information-theoretic measure of reliability, the nDKL statistic, can be com-
puted with a sample size of 1. This computation allows us to judge when one-shot 
learning is justified by strong evidence. The same computation is assumed to explain 
the circumstances under which brains draw the same conclusion.

The nDKL statistic is the Kullback-Leibler divergence (denoted by  DKL) of the 
conditional distribution from the unconditional distribution multiplied by the effec-
tive sample size (the n in nDKL):

The effective sample size is the first expression in parentheses in the middle of 
Eq. (4); it is a function of the reinforcement counts. In the case we are considering, 
both counts are 1, so the effective sample size is 0.5. The Kullback-Leibler diver-
gence is the expression enclosed in the second parentheses. The first term in the 
divergence is the log of the informativeness and the second term is the reciprocal of 
the informativeness. In the example, we have been considering (21,600s in the con-
text and 1s of noise before the shock), Equation (4) evaluates to 4.5 nats. (The nat is 
the unit of information when the base of the logarithm is e rather than 10 or 2.)

When there is no divergence, that is, when the informativeness ratio is 1, Peter 
Latham (Gallistel & Latham, 2022) proved that the nDKL statistic is distributed 
gamma(.5,1), which allows us to compute a corresponding p value: p=1-gam-
cdf(4.5,.5,1) = .0027. The odds are 370:1 against the hypothesis that the association 
between the noise CS and shock is just a coincidence.

The nDKL statistic is crudely analogous to a t test, which is the variance nor-
malized difference between the means of two samples scaled by the square 
root of the sample size. It is superior in several respects. First, it applies 
when n = 1. Second, the divergence between distributions is asymmet-
ric—nDKL

(
�R|CS||�R|C

)
≠ nDKL

(
�R|C||�R|CS

)
—whereas a difference between two 

means is symmetric. The asymmetry in a divergence captures the fact that it takes 
more data to detect a divergence in one direction than it does to detect it when it is 
in the other direction (Kheifets & Gallistel, 2012). The conventional test does not 
capture this fact.

The divergence has physical and neurobiological implications not possessed by 
a p value. When converted from nats to bits, the divergence is the average number 
of additional bits of memory required to encode the intervals from the conditional 
distribution on the erroneous assumption that they come from the contextual dis-
tribution (Cover & Thomas, 1991). This property of the divergence links the new 
conception closely to the notion that the purpose of associative learning is predic-
tion. In the literature on the information-theoretic approach to stochastic model 
selection, there is a theorem to the effect that the model that best encodes the data 
already seen best predicts the data not yet seen when proper account is taken of 
model complexity (Grünwald, 2005, Section 2.10).

(4)nDKL

(
�R|CS||�R|C

)
=

(
nR|CS

1 + nR|CS∕nR|C

)(
ln
�R|CS
�R|C

+
�R|C
�R|CS

− 1

)
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The ability to predict data not yet seen depends on a brain’s statistical model. 
When the rate predicted by the CS is greater than the rate predicted by the con-
text, the brain has a poor model when it uses its representation of the contextual 
distribution to predict what will happen during CSs. The Kullback-Leibler diver-
gence measures how poor the contextual model is. The brain reduces memory 
load and improves its ability to predict the next reinforcement when it switches to 
a better model of the process generating the reinforcements during CSs.

A final reason to stress the fundamental role of informativeness in associative 
learning is that it determines the learning rate, when operationally defined as the 
reciprocal of reinforcements to acquisition. Strong evidence for this empirical law 
was first published more than 40 years ago. For some reason, it is rarely if ever 
mentioned in formalizations of the Aristotelean theory of associative learning.

The Learning Rate Law

In the late 1970s, the Gibbon lab and the Jenkins lab investigated the effect of 
varying the interval between CSs (the intertrial interval or ITI for short) on the 
rate of learning. The ITI had been largely ignored on the assumption that it was 
irrelevant because nothing happens during that interval in most protocols. It turns 
out, however, that the duration of the ITI has a dramatic effect on the learning 
rate. Jenkins and his co-authors wrote in the opening of their paper in the same 
volume: “The effect of trial spacing is so large that no theory of autoshaping [a 
form of Pavlovian conditioning] can be considered adequate unless it provides an 
account of how spacing exerts its effects” (Jenkins et al., 1981 p. 255).

The Gibbon lab varied both the ITI duration and the CS duration and discov-
ered that what mattered was not the duration of either by itself but rather the 
ratio of the cycle duration to the trial duration (Gibbon et  al., 1977)—the ratio 
now called the informativeness. When reinforcements occur only during the CSs, 
that ratio equals the ratio of the average cycle duration, �R↔R|C to the average CS 
duration �R↔R|CS . Gibbon and Balsam (1981) termed this the C/T ratio.

They plotted median reinforcements to acquisition as a function of informa-
tiveness (C/T) on double logarithmic coordinates (asterisks in Fig. 4a) and fit the 
data with several different regression models, the simplest of which is plotted 
along with their data and some of the data from the Jenkins et al. (1981) experi-
ments (open circles). Also plotted are data from an experiment by Balsam et al. 
(2024) with rat subjects and reinforcements scheduled by a Poisson process that 
ran only during the ITIs (open pink squares). The same regression model (top of 
Fig. 4a) describes all three data sets despite the differences in species and many 
protocol details.

The regression model has only one parameter, k. Its value has a simple and 
theoretically important interpretation; it is the informativeness that produces one-
trial acquisition in the median subject.

As the informativeness approaches 1 at the left end of the plot, its log, the 
association between the CS and reinforcement approaches 0, reinforcements to 
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acquisition tend toward infinity, and the reciprocal of reinforcements to acquisi-
tion (the learning rate, right axis) tends to 0. The curvilinear log-log plot obscures 
what becomes apparent when one replots the regression model on linear coordi-
nates as the learning rate versus informativeness. Taking antilogs on both sides 
and reciprocating both sides, one sees that the learning rate is a very nearly scalar 
function of informativeness (Fig.  4b). This maximally simple relation between 
the learning rate and the informativeness is the Learning Rate Law—Eq. (5).

(5)� = 1
/
RtoAcq =

(
1

k

)
� −

1

k
≅
(
1

k

)
�, 1 ≤ � ≤ k

Fig. 4  Note. a. Median rein-
forcements to acquisition as a 
function of informativeness, on 
double logarithmic coordinates. 
The regression model was fit to 
the asterisks only but it predicts 
the Jenkins out-of-sample data 
(open circles), which extend 
the empirical support to the 
analytic limit of acquisition after 
1 reinforcement. It also predicts 
the results from Balsam et al. 
(2024) with rat subjects and 
reinforcements only during the 
ITIs (open pink squares). b. The 
regression model plotted against 
linear coordinates to show the 
almost scalar relation between 
the learning rate and informa-
tiveness. c. Data from Harris 
and Gallistel (2024) experiments 
with rat subjects and R at termi-
nation of variable duration CSs 
(medians are the orange circles; 
small open circles are individual 
rats). The informativeness is the 
x axis in all three plots



217Perspectives on Behavior Science (2025) 48:203–239 

Equation (5) applies broadly, but the value for k is at least somewhat dependent 
on species and/or protocol details. Burke et al. (2023, their Fig. 1F) report reinforce-
ments to acquisition data for trace conditioning for water reinforcement in thirsty 
head-fixed mice at informativeness values of 60 and 600. The median RtoAcq in 
the � = 60 group was 92 with a range from 59 to 150 for individual subjects. In 
the � = 600 group, the median RtoAcq was 8.5 with a range from 5 to 14 for the 
individual subjects. Given RtoAcq and solving for k, we have k = RtoAcq(� − 1) . 
This formula gives k = 5428 [–1919 +3450] for the � = 60 group and k = 5092 
[–2097 +3294] for the � = 600 group. These calculations show first that the Law 
of the Learning Rate allows us to predict the data from one group given the data 
from another despite a tenfold difference in ITI (60s to 600s). They also show that 
the informativeness required for one-shot learning in a trace-conditioning protocol 
with head fixed mice undergoing neurobiological activity recording is about 20-fold 
greater than is required for ordinary conditioning in pigeon and rat. Further research 
can determine which factor explains the large difference in k: the species, the trace 
protocol, or the fixation of the head for the recording of neural activity. The general-
ization from the pigeon and rat data to these data and to rabbit eyeblink data (Gallis-
tel & Gibbon, 2000, their Fig. 10) means that the form of the law is well-established. 
It holds across wide differences in species and protocol. It goes unmentioned in 
reviews that focus on the Rescorla-Wagner model and its descendants (Esber et al., 
2025; Kang et al., 2024; Piray & Daw, 2021).

The law also applies to operant protocols (reinforcement learning)—with values 
for the one-shot learning constant, k, similar to those obtained from Pavlovian proto-
cols. Inspired by the Pavlovian findings, Gallistel and Shahan (2024) found one-shot 
learning of an operant lever-press response in rats. They reduced the contextual rate 
of reinforcement and the subjects’ rate of responding by prolonged context extinc-
tion prior to the first appearance of the lever. When the lever finally appeared, a 
press by an experimental subject triggered reinforcement after a 2-min delay in a 
first experiment and after a 16-min delay in a second. Presses made during the delay 
had no effect. Yoked controls received reinforcements at the same times, but their 
presses were without effect. In most pairs, the experimental subject pressed more 
frequently than the yoked control after the first reinforced press (Fig. 5).

The slopes of the experimental subjects’ cumulative response records in Fig. 5—
their press rates—immediately exceeded those of their yoked controls in most pairs, 
which indicated that the experimental subject perceived the association on its first 
occurrence and immediately decided to act on it. The prospective and retrospec-
tive informativeness of responses and outcomes for experimental subjects were in 
the range of 6 to 32. These values produce one-shot conditioning in some subjects 
in Pavlovian protocols (small open circles in Fig.  4c). The nDKL measure of the 
strength of the evidence reached conventional levels of significance for experimental 
subjects within the first few reinforcement-triggering responses. In short, this model 
provides a quantitatively consistent model of associative learning in Pavlovian and 
operant (reinforcement learning) protocols.

In the Gallistel and Shahan experiments with long-delay reinforcement, an 
act-outcome association experienced only once produced operant responding 
despite a delay of reinforcement more than four orders of magnitude longer than 
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Fig. 5  Cumulative Lever Presses versus Training Time Plotted in Black against the Left Axes; Cumula-
tive Reinforcements versus Training Time Plotted in Green against the Right Axis. Note. Solid black 
plots are experimental subjects’ data; dashed black are yoked controls. Duration of dead delay between 
press and reinforcement indicated at top of columns. (A version without the plot of reinforcements 
appears as Fig. 1 in Gallistel & Shahan, 2024)
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the conventional delay (< 0.1s). Lett (1975) demonstrated learning of the correct 
response in a T maze with a 1-hr interval between the correct response and food 
reinforcement. To prevent explanation by secondary reinforcement, he removed his 
rat subjects from the chosen arm immediately and returned them to the stem for 
reinforcement or nonreinforcement after 1 hr.

In short, prospective and retrospective associative learning are time-scale invari-
ant. The long-held belief that there is a critical window for the formation of an 
Aristotelean association, reiterated in most secondary sources as established fact, is 
simply false. When informativeness is made large enough, most subjects learn after 
one or two reinforced CSs or reinforced responses, no matter how long the interval 
between the two events. This is not learning by gradient descent (Richards & Kord-
ing, 2023).

The approximately scalar dependence of the learning rate on time-scale-invariant 
informativeness has far-reaching practical and theoretical consequences. As a practi-
cal matter, researchers who crowd trials together in the hope of shortening training 
time defeat their purpose. The duration of the training required for a conditioned 
response to appear is determined by the choice of the mean latency from CS onset 
to reinforcement. With a 5-s CS duration and a 20-min average interval between 
reinforced CSs (an informativeness of 250) and a session length just longer than 
the wait for the 2nd CS (roughly 40 min), a majority of subjects will make a con-
ditioned response on the 2nd presentation of the CS (one-shot conditioning). Most 
subjects will have done so by the end of the second session (4 CS-reinforcement 
associations). Shortening the intertrial interval to 5 s produces an informativeness of 
(5 + 5)/5 = 2, which moves the regression in Fig. 4 into the region where it curves 
upward toward infinity (0 learning rate). Therefore, the number of reinforcements 
required will increase by more than a factor of 60. Training will take longer than the 
40–80 min it would have taken using well-spaced trials. The reason most researchers 
think associative learning is slow is because they are impatient and they erroneously 
assume their subjects will take less time to acquire if they give them lots of trials in 
little time.

There is another way of putting this counterintuitive fact: suppose that for a given 
mean CS duration and mean intertrial interval, the median subject begins to respond 
after 48 reinforced trials. If one takes another group and presents them with eight 
times fewer trials spaced eight times more sparsely, they acquire after the same 
amount of training time as the first group (Burke et al., 2023; Gottlieb, 2008); that 
is, they acquire after eight times fewer reinforcements. When Gottlieb tried to pub-
lish this result—which he had replicated in six versions of the experiment, some 
within- and some between-subjects—an anonymous reviewer wrote, “Only a few 
crazies in Gallistel’s lab could believe that the number of reinforcements doesn’t 
matter.”1 I mention this to emphasize the extent to which most of the research com-
munity erroneously believes that many trials and short intervals between events are 
the key to rapid associative learning. That is true for large language models running 
on super computers but not for associative learning running in brains.

1 And this despite the fact that a majority of Gottlieb’s six experiments were done in Rescorla’s lab.
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The approximately scalar relation between informativeness and the learning rate 
explains another equally counterintuitive experimental result: Partial reinforce-
ment—interspersing reinforced trials with unreinforced trials—has no effect on the 
number of reinforcements required for the acquisition of the conditioned response 
(Gibbon et  al., 1980). Partial reinforcement decreases the conditional rate, �R|CS , 
and the contextual rate, �R|C , by the same factor. Their ratio, the informativeness, is 
unchanged, and so, therefore, is the learning rate. The CS and the reinforcement are 
equally strongly associated; only the time scale has changed—and associative learn-
ing is time-scale invariant!

Perhaps the most counterintuitive experimental result predicted by the Learning 
Rate Law is that partial reinforcement in trace conditioning reduces reinforcements 
to acquisition (Burke et al., 2023). The gap between CS offset and reinforcement is 
the reinforcement-predicting state in trace conditioning (Balsam, 1984; Balsam & 
Gibbon, 1982). Put another way, reinforcement is associated with CS offset at the 
beginning of the gap state. On trials when no reinforcement follows, there is no gap 
state, so those trials do not enter the computation of the rate of reinforcement during 
the gaps. The informativeness of a gap is the ratio between the gap rate of reinforce-
ment, 1/gap duration, and the contextual rate. The contextual rate is the cumulative 
reinforcement count divided by the cumulative duration of the intertrial intervals, 
whether an ITI contains a gap state or not. Partial reinforcement reduces the con-
textual rate without affecting the gap rate, thereby increasing the informativeness, 
which reduces reinforcements to acquisition.

The counterintuitive experimental results just summarized are hard to reconcile 
with the Aristotelean conception of associative learning. So is one-shot learning 
because Eq. (1) is a model for gradient descent. Some modelers in the Aristotelean 
tradition believe that if a process is not gradient descent, it is not a neurobiologi-
cal learning process (Richards & Kording, 2023). Gradient descent in a billion-
dimensional weight space is what the back-propagation algorithm in large language 
models does. It is slow because the changes on any given trial must be small. This 
perhaps explains why the Learning Rate Law, time-scale invariance and one-shot 
learning are rarely if ever mentioned in reviews of formal models of the Aristotelean 
association-forming process.

Assignment of Credit

Rescorla and Wagner sought an explanation of the assign-of-credit results in asso-
ciative learning experiments when they developed Eq. (1), the delta-rule updating 
equation that has dominated formal modeling (Esber et al., 2025). The assignment-
of-credit problem is to determine which predictors get credit for a reinforcement. 
More than one predictor is generally present because CSs, responses and reinforce-
ments occur in some context and the context competes with the CS or the response 
for credit. When the rate of reinforcement is the same whether the CS is present or 
not, the context gets credit for the reinforcements that occur during the CS (back-
ground conditioning; Rescorla, 1968). If a new CS is presented in compound with 
an already conditioned CS, the new CS gets none of the credit (blocking Kamin, 
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1969). If two CSs are always presented together, one of them gets all of the credit 
(overshadowing: Kamin, 1969; Reynolds, 1961). When one CS accounts for all the 
explainable variance, it gets all the credit even though it is reinforced no more fre-
quently than the other two (relative validity: Wagner et al., 1968). Subjects seem to 
have a statistician in their brain telling them which CSs best predict. Rescorla and 
Wagner were trying to describe formally the brain process that enables this display 
of intelligence.

Equation (1) has two free parameters, the learning rate, � , which is a scalar and 
the asymptotic association, Λ(R) . The latter is a vector-valued function of R; it has 
a positive value (typically 1) on reinforced trials and value 0 on unreinforced trials. 
In descendants of Eq. (1), there are many more free parameters (Honey et al., 2020; 
Piray & Daw, 2021; Vogel et  al., 2019). They are adjusted during simulations to 
produce results resembling those obtained experimentally. They are rarely estimated 
experimentally, unlike k in the Learning Rate Law. The indefensible assumption 
that made Rescorla and Wagner’s simulation of Rescorla’s contingency-not-pairing 
results appear to work, which has remained almost unchallenged for decades, should 
raise suspicions about contemporary simulations that take advantage of even more 
free parameters.

There are no difference equations and no free parameters in the rate-based infor-
mation-theoretic approach to associative learning. Because independent rates are 
additive, assignment of credit reduces to solving the relevant system of simultaneous 
equations. The observed rates of reinforcement are the known (directly observed) 
quantities on the right in these equations. The rates to be attributed to the possible 
predictors appear on the left under hats and multiplied by hatted coefficients. The 
coefficients are temporal probabilities, the ratios of two cumulative durations. For 
example, TCS

TC
 , which is the cumulative duration of the CS divided by the cumulative 

duration of the context, is the probability that reinforcements randomly distributed 
in the context will fall in a CS. The system of equations is solvable because the sum 
of the rates attributed to the different possible predictors when multiplied by the cor-
responding temporal probabilities must equal the observed rates.

The rate observed during the CSs is �R|CS = n
R|CS∕TCS , where nR|CS is the cumu-

lative count of reinforcements during the CSs and TCS is cumulative CS duration 
(where cumulation extends across sessions). The rate observed in the context is 
�R|C = n

R|C∕TC , where nR|C is the sum of the reinforcements during CSs and the 
reinforcements in their absence (during the intertrial intervals). The system of simul-
taneous equations is

and

TC

TC
�̂C +

TCS

TC
�̂CS = �R|C

TC|CS
TCS

�̂C +
TCS

TCS
�̂CS = �R|CS.
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The first equation says that the contextual rate on the right, �R|C , equals the rate to 
be attributed to the context itself, �̂C , plus the fraction of the time the CS was pre-
sent, TCS

TC
 , times the rate to be attributed to the CS, �̂CS . The second says that the 

observed CS rate on the right, �R|CS , is the sum of the rate attributed to it and the 
rate attributed to the context, �̂C , because, when the CS is present, so is the context.

In matrix form, the system of equations is written

In the conventional notation for a matrix equation, this becomes wonderfully 
compact:

where �̂R denotes the column vector of attributed rates (the unknowns), �−1 denotes 
the inverse of the conditional probability matrix, and �R is the column vector of 
observed rates of reinforcement (the knowns).

The elements of the matrix are the coefficients of the equations. The coef-
ficients are the conditional temporal probabilities of the potential predictors. 
Unlike the most common probabilities, which are ratios of unitless counts, tem-
poral probabilities are ratios of cumulative durations. The temporal units cancel, 
leaving unitless, time-scale-invariant temporal probabilities. The temporal prob-
abilities are observed, hence measured. The model assumes hatted variables in 
the head approximately equal to the observed probabilities.

The upper left coefficient, TC
TC

 , in the matrix in Eq. (6a) is the probability that the 
context is present conditional on its being present, which is, of course, 1. The upper 
right coefficient, TCS

TC
 , is the probability of the CS being present at randomly chosen 

moments when in the context. When there are no reinforcements other than during 
the CS, this ratio is the reciprocal of the informativeness. The lower left coefficient, 
TC|CS
TCS

 , is the probability that the context is present when the CS is present; it is 1 
because the CS occurs only in the test chamber. The bottom right coefficient is the 
probability that the CS is present given that it is present, which is, of course, 1.

The –1 exponent on the matrix denotes inversion. The matrix is inverted by the 
Gaussian row-echelon elimination algorithm, now built into spreadsheets and sci-
entific programming languages. The inverted matrix is a mathematical machine; 
it takes observed rate vectors as input and outputs attributed rate vectors. Like all 
mathematical machines, its gears are the basic binary operations in arithmetic (± 
and ×/÷).

For illustration, consider the application of Eq. (6a) to Rescorla’s contingency-
not-pairing experiment, in which he employed the truly random control (Rescorla, 
1968)—see Fig.  1: an “experimental” group was shocked at a rate of approxi-
mately 0.25/min only during 2 min-long tone CSs that were separated on average 
by roughly 18 min. The “truly random control” group—the group of principal 
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interest—was shocked at the same rate throughout each session, whether the CS 
was present or not. The rats in the experimental group learned to fear the CS; the 
rats in the “control” group did not—although they got the same temporal pairings 
between CSs and shocks as the experimental group got. They did, however, learn 
to fear the chamber. They resisted being placed into it.

For both groups, the CS was present 1/10th of the time, so for the matrix we have:

Notice that the only element of the matrix not equal to 1 is the reciprocal of the 
informativeness. In the new conception of associative learning, informativeness 
appears almost everywhere. It ties different problems and results together con-
ceptually. For the experimental group, the contextual rate of reinforcement was 
1/10th of the CS rate, so we have:

Credit for the shocks is attributed entirely to the tone CS. For the truly random 
control the observed rates are both 0.25, so we have:

Credit for the shocks is attributed entirely to the test chamber (the context). Any-
one with access to a spreadsheet can verify these computations; no simulation is 
required.

The rate of reinforcement attributed to the context in the experimental group is 
not the same as the contextual rate of reinforcement; the attributed rate is 0, whereas 
the contextual rate is 0.025. The nonzero contextual rate of reinforcement explains 
why the rats in the experimental group resisted being put into the test chamber even 
though they attributed 0 rate of shock to it. They feared the chamber because it pre-
dicted the CSs during which they sometimes got shocked.

This model of credit assignment distinguishes between what can be expected in a 
context—the contextual rate of reinforcement—and the rate attributed to the context 
itself. The distinction inheres in the mathematics, because the contextual rate is one 
of the knowns in the system of simultaneous equations. If a subject does not esti-
mate it, the subject cannot solve the assignment of credit problem. Its inclusion in 
the model enables this model of credit-assignment to explain the black data points in 
Fig. 1; the rats’ response rate during the ITIs depends on the contextual rate of rein-
forcement, not on the rate attributed to the context. The simple mathematics in the 
new conception connect seemingly unrelated results. They integrate concepts and 
results.

Equation (6b) explains all of the results that Eq. (1) is claimed to explain (Gallistel, 
1990, ch. 13)—and some results that it is acknowledged not to explain, notably retro-
active blocking and unblocking (Blaisdell et al., 1999; Matzel et al., 1985). Equation 
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(1) does not explain Rescorla’s (1968) results; nor do subsequent delta-rule updating 
models inspired by it. His scheduling of reinforcements with a Poisson process made 
it impossible to specify when nonreinforcements occurred and, a fortiori, how many 
there were (Gallistel, 2021b). Any model that decrements something when and at the 
time when a reinforcement fails to occur cannot explain those results.

Equation (6b) is explicit and parameter-free, unlike the generally unsolved dif-
ference equations in parameter-rich delta-rule updating models (Honey et al., 2020; 
Rescorla & Wagner, 1972; Vogel et al., 2019). There is no wiggle room. It predicts 
reinforcement-by-reinforcement in real time the evolution of attributions in indi-
vidual subjects. It is a direct consequence of the insight that associative learning 
is driven primarily by the perception of relative rates of reinforcement, not by the 
updating effects of reinforcements and nonreinforcements on Aristotelean associa-
tions. Because attributed rates are directly manifest in measurable rates of respond-
ing (Fig. 2), we can track them in real time in individual subjects.

Equation (6b) is relevant in Pavlovian protocols where the subject’s behavior has 
no effect on the communicated information between CSs and reinforcements. In 
operant protocols, assignment-of-credit is solved by the perception of the informa-
tion communicated between responses and reinforcements. The operant contingen-
cies depend on the subject’s behavior. In both types of protocols, informativeness 
is the crucial variable. The log of informativeness measures the association and the 
nDKL measures the strength of the evidence for it.

Change‑Detection

Estimating a rate by dividing the count by the duration over which events were 
counted implicitly assumes the rate was constant during the count. The same sta-
tionarity assumption is implicit when estimating a probability. In fact, however, rates 
and probabilities may change. The classic example in the experimental study of 
associative learning is extinction; when Pavlov stopped delivering food at the termi-
nation of the CS, his dogs eventually stopped salivating to it.

It has always been understood that Hullian models, including the Rescorla-Wag-
ner model and contemporary delta-rule updating reinforcement learning models 
inspired by it, do not explain long-standing experimental results on extinction and 
recovery from it (Gleitman et  al., 1954; Kang et  al., 2024; Kimble, 1961; Niv & 
Schoenbaum, 2008). Consider the simplest example in which one delivers reinforce-
ments on a Poisson schedule in a test chamber and then stops doing so, either mid-
session or at the start of a new session. During the period when the reinforcements 
randomly occur, subjects run around looking for them. The rate at which they run 
around is proportional to the rate of reinforcement. When one stops delivering rein-
forcements, they eventually stop running around (Killeen, 2023; Killeen & Sitomer, 
2003; Lea & Dow, 1984). One is inclined to attribute the change in their behavior 
to the causal effects of nonreinforcements, that is, to a failure of expectations, with 
each failure decrementing the association between the context and reinforcement. 
But when the reinforcements were randomly scheduled, this attributes causal effi-
cacy to immaterial ~R’s, “events” that have no sensory effects and whose times of 
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occurrence cannot be specified. When that is true, the ~R’s cannot be counted and a 
~R cannot cause the decrementing of net associative strength. Once again, the prob-
lem is that Eq. (1) takes no account of the durations of the intervals between events.

The most challenging experimental result is the partial reinforcement extinction 
effect (Kimble, 1961, p. 286ff). If ~R’s decrement net associative strength, intermin-
gling unreinforced CS presentations with reinforced presentations should weaken 
the association at the end of training. It should then require fewer consecutive unre-
inforced CSs to produce extinction. For decades, the opposite has been known to be 
true. Partial reinforcement increases the number of consecutive unreinforced trials 
required to meet some criterion of extinction. The effect is scalar. When only 1 in 10 
training trials is reinforced, it takes 10 times as many consecutive unreinforced CS 
presentations to produce extinction (Gibbon et al., 1980).

Subjects responding on concurrent variable interval schedules in which the rela-
tive rates of reinforcement change frequently approximate ideal detectors of the 
changes in the relative rates. They adjust to them abruptly and about as quickly as if 
they were getting advice from a statistician (Gallistel et al., 2001). This implies that 
brains deal with nonstationarity by applying a good real-time parsing algorithm to 
the data in the temporal map. The algorithm detects changes and reports an estimate 
of when in the past they occurred. This report makes it possible to truncate the data 
on which the current estimate of a rate or probability is based at the point just after 
the most recent change.

From this perspective, changes are themselves events and are recorded as such 
on the temporal map, thereby enabling the brain to detect simple patterns in the 
changes (Higa et al., 1991; Ricci & Gallistel, 2017). Truncating the data on which 
the current estimate of a rate or probability is based prevents it from becoming an 
average over epochs in which there were two very different rates, neither of which 
would be correctly represented by the current estimate if it ranged over data from 
both epochs. Because they do not parse a temporal map, models inspired by Eq. 
(1) average across changes. They do not, therefore, correctly predict extinction and 
other examples of the behavioral changes that occur in response to changes in the 
parameters of stochastic processes (Lea & Dow, 1984).

The key to effective change-detection is to realize that the point slope of a cumu-
lative record of events is the event rate at that point in time. A cumulative record of 
reinforcements is a plot of the count as a function of time (or, for probability change 
detection, as a function of trials). A change in the event rate creates a noticeable 
elbow in the cumulative record (Gallistel et al., 2004; see the cumulative records in 
Fig. 5.)

A simple real-time elbow-detecting algorithm uses Eq. (4), the formula for the 
nDKL, the statistic that measures the reliability of an association. I have already 
assumed that the brain computes it reinforcement by reinforcement to judge the 
reliability of perceived associations. As long as the rate has not changed, the nDK 
values bounce around beneath the gamma(.5,1) probability density distribution (see 
Peter Latham’s Appendix to Gallistel & Latham, 2022). When the estimates of a 
rate of reinforcement span a change, the current estimate will no longer be consist-
ent with earlier estimates. If the change was to a lower rate (a downward elbow in 
the cumulative record), the current estimate will be bigger than the actual current 
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rate and smaller than the pre-change rate—and vice versa if the change was to a 
higher rate (an upward elbow).

The change-detecting algorithm uses Eq. (4) to compare the sequence of previous 
rate estimates (in the numerator of the informativeness ratio) to the current rate esti-
mate (in the denominator). The nDKL‘s get steadily larger up to the point in the tem-
poral map where the change occurred; then they decline all the way to the current 
time. The location of the maximum in the nDKL sequence estimates the point in the 
past where the change occurred; it coincides with the elbow. The brain sets a deci-
sion criterion on the maximum. When the maximum exceeds the criterion, the algo-
rithm reports a change and where it occurred. Thereafter, the data on which the cur-
rent rate estimate is based go back only to just after that most recent change point.

Because the algorithm operates on an nDKL vector the formula for modelling 
change detection is:

The  DKL function embedded in the imax function is distribution-specific; the  DKL 
in Eq. (7) has one form for changes in rate and a different form for changes in prob-
ability. Let t = [t0, t1,… , ti,… , tn, t ] be the time-stamp vector for reinforcements. Its 
elements are t0 , the time at which the count of reinforcements began, ti , the time of 
each counted reinforcement, and t , the current time. Let i = [1,2,… , n] be the inte-
ger indices for the elements of t . Then

is a reinforcement-by-reinforcement vector of reinforcement rate estimates;

is the rate estimate as of the current time t ; and

is the vector of effective sample sizes.
To compute a change point for a probability, the brain does not count reinforce-

ments that failed to occur. The probability estimation process counts events strongly 
associated with reinforcements, for example, the CS offsets in a Pavlovian delay-
conditioning. In those protocols, every reinforcement coincides with a CS offset 
(whereas the reverse is not true if CSs are only partially reinforced). The retrospec-
tive contingency is 1, because for every reinforcement there is a CS offset with the 
same time stamp. In that case, t is the vector of CS-offset times, not reinforcement 
times. Associated with it is the equinumerous vector nR , which gives the count of 
the reinforcements that have coincided with the trial offsets. Then

(7)i = imax(n�KL, k)

[
max
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n�KL

)
> k

0 otherwise

]
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is the vector of estimates for pR(i) , the probability of reinforcement, as of the ith 
trial, and

is the current estimate. When estimating rate changes, we then have:

and when estimating probability changes, we have:

When there has been no change in the rate, the elements of n�KL in Eq. (7) are 
distributed gamma(.5,1) (Gallistel & Latham, 2022). The index returned by the imax 
function when it detects a change estimates the reinforcement, hence the ti , at which 
the change occurred. The only parameter in this model of change detection is the 
decision criterion. When Eq. (7) is applied to extinction data, it estimates the deci-
sion criterion. Thereafter, the decision criterion is no longer a free parameter.

Although rate of reinforcement plays the central role in the reconceptualization 
of associative learning, subjects do estimate probability of reinforcement when it is 
defined. Estimated probability of reinforcement plays a role in determining various 
aspects of the resulting behavior (Mallea et al., 2024). For example, the change in 
the probability of reinforcement is the key variable in the extinction of Pavlovian 
delay conditioning (Bouton et al., 2014; Harris & Andrew, 2017) because reinforce-
ments, when they occur, coincide with CS terminations, so the retrospective contin-
gency is 1.

Equation (7b) predicts the scalar effect of partial reinforcement on trials to extinc-
tion in pigeon autoshaping (Fig. 6), a challenge that has long defeated formal models 
of associative learning.

In this model, changes are themselves events, stored in the temporal map. Extinc-
tion is the process of learning that what was once true is no longer true. In other 
words, that was then, this is now. The passage of time and any event that indicates 
further change induces the temporary return of behavior—on the assumption that 
perhaps what once was may have returned to currency (spontaneous recovery, 
renewal, reinstatement).

Departure‑Rate Equation

In a concurrent VI protocol, the longer the subject dwells at Location I, the more 
certain it is that a switch to Location J will produce immediate reinforcement. If 
choosing the other location is conceptualized as a choice strengthened in proportion 

p =
nR

i

p(n)

(7a)n�KL(i) = ne

[
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�(t)
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to the immediacy of its reinforcement, and if the elapsing duration of a stay at a 
location is taken to be a discriminative stimulus, then the tendency to switch to the 
other location should increase with the prolongation of a stay. In fact, however, it 
does not; dwell times (visit durations) are exponentially distributed (Gallistel et al., 
2001; Gibbon, 1995; Heyman, 1979; Mark & Gallistel, 1994); the hazard function is 
flat; the momentary probability of departing for the other location does not change 
as the duration of a stay gets longer. This discovery led Heyman (1982) to suggest 
that time allocation when foraging among different locations was not conditioned 
behavior; it was a product of an innate policy.

Subsequent experiments by Belke and Gibbon revealed the policy. The first element 
of the policy is to schedule departures with a Poisson process to make visit durations 
exponentially distributed. Visiting different locations is motivated as much if not more 
by information gathering than by food gathering. By visiting locations, subjects learn 
the distribution of interreinforcement intervals at each location. If there is a periodic-
ity in their visit schedule, there is risk of aliasing. Aliasing occurs when the sampling 
period is similar to a period in the distribution of interreinforcement at the sample loca-
tion, as there is, for example, when there is a fixed-time schedule of reinforcements. 
Aliasing makes the wagon wheels appear to turn backwards in the movies when the 
stage pulls into town and slows down. The backward turning illusion occurs when the 

Fig. 6  Omitted Reinforcements to Extinction Plotted against Trials per Reinforcement during Training. 
Note. Dashed plot derived by applying a level curve to Gibbon et al. (1980, Fig. 4, p. 49). Dots connected 
by a solid line are the omitted reinforcements to extinction predicted by applying Eq. (8b) to simulated 
sequences of binary training data at the 4 different values for probability of reinforcement (.75, .5, .33, 
and .1) followed by a long extinction sequence of nonreinforcements (‘0’s). There were 16 simulations 
at each of the 4 probabilities of reinforcement. The assumed decision criterion was 3.3 nats, which cor-
responds to odds of 100:1 against the null (no-change) hypothesis
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frame rate in the camera is close to the wheel rotation rate. Exponentially distributed 
visit durations whiten the data, thereby preventing aliasing.

The second element in the policy is to scale the rate constants of the Poisson pro-
cesses by the contextual rate of reinforcement. This adjusts the rate of running around 
to the overall frequency of reinforcement in a context. When reinforcements are scarce, 
it makes no sense to run around rapidly; when times are good, it makes no sense not to.

The third element in the innate policy is to proportion dwell durations to expected 
reinforcement rates (the Matching Law; Herrnstein, 1961). This equates the returns 
at the different locations, the amount of reinforcement per unit time invested in visit-
ing them. It also comes close to maximizing overall return (Heyman & Luce, 1979). 
It is an evolutionarily stable strategy because no policy adopted by competitors can 
do better than this policy (Charnov, 1976).

The elements of an efficient information-gathering policy were drawn together by 
Gibbon in his Markov-process model (Gibbon, 1995, his Fig. 2), which yields Eq. 
(8), the Dwell Time Equation:

where I and J denote locations or mutually exclusive states between which subjects 
are free to switch back and forth;

�D|I  denotes the departure rate at one of them (departure count/cumulative 
dwell time);

�D|I  denotes its reciprocal, the mean dwell time;

�R|I and �R|J  are the reinforcement rates (≈VI parameters);

�C  is the cycling rate (cycles/time);

k  is the constant of proportionality between the contextual rate of rein-
forcement and the cycling rate:

and �R|J
�R|I+�R|J

 is the reinforcement rate at J relative to the contextual reinforcement rate.
Herrnstein’s matching Law follows by simple substitution:

as does the equation for the cycling rate as a function of the two reinforcement rates 
(see Fig. 7 for plot):

(8)
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,
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Equation (8) explains the counterintuitive results obtained first by Belke (1992) 
and again by Gibbon (1995). The Belke-Gibbon experiments measured what econo-
mists call revealed preference. They trained pigeons on two concurrent VI protocols. 
In each protocol, the pigeons switched back and forth between two “locations:”2 
between the blue and red in one protocol (left side of Fig. 8) and between the green 
and yellow in the other (right side of Fig. 8). A VI 40s schedule was common to 
both protocols. It was associated with the red in one concurrent pair and with the 
green in the other. The alternative to VI40s in the red-blue pair was two-fold richer 
(VI20s); in the green-yellow pair, it was two-fold poorer (VI80s).

Belke tested well-trained birds for their revealed preference between the red and 
green locations, which were associated with the same VI 40s reinforcement rate but 
in different pairs, hence different contexts. He did this by presenting them as the 
only “choices” on short probe sessions with no reinforcements. The pigeons “pre-
ferred” the green 4:1; they dwelt there four times longer and made four times as 
many pecks. Gibbon (1995) replicated this finding. He extended it, by also testing 
the birds for their “preference” when the choice was between the blue (VI 20s) and 
green (VI 40s). They “preferred” green 2:1, even though it was associated with a 
rate of reinforcement only half as good as the alternative.

There are scare quotes around “preferred” and “preference,” because, on the 
model in Eq. (8), the pigeons were not choosing between the alternatives offered. At 
each location during the revealed preference tests, they ran the same Poisson process 
they ran at that location during training. When it timed out, they left. They then went 

(8b)�C =
1

�D|1 + �D|2
=

1
1

�R|2
+

1

�R|1

Fig. 7  Normalized cycling rate 
as calculated from Eq. (8b), 
plotted against the ratio of the 
lower rate of reinforcement, 
λ
R
|I , to the higher, λ

R
|J . Note. 

See Alsop and Elliffe’s (1988, 
their Fig 4, p. 28) for plots of 
comparable experimental results

2 Scare quotes are because in these experiments the pigeons used a change-over key to change the color 
and the associated VI schedule on the main key, the key that on which pecks triggered the feeding oppor-
tunities set up by whichever of two VI schedules was operative. A single peck on the change-over key 
changed the color of the VI key and put the associated VI in force after a short delay.
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to the other active location. There, too, the average duration of their stay remained 
the same as during training.

Equation (8) explains their results with quantitative rigor. Solving it for the dwell 
times, we have:

Ignoring k, which is the same in all three cases, we see that the dwell time asso-
ciated with green is four times longer than that associated with red and two times 
longer than that associated with blue. The longer dwell times are a consequence of 
the longer cycling time in the poorer pair of VIs. The alternative to the VI40s rate in 
the richer pair was a VI 20s, whereas for the poorer, it was a VI 80s. The resulting 
large difference in the contextual rates of reinforcement produced faster cycling in 

�D|red =
1

k�R|blue =
1

k
20s

�D|green =
1

k�R|yellow =
1

k
80s

�D|blue = 1

k�R|red =
1

k
40s

Fig. 8  The Belke (1992) and 
Gibbon (1995) Revealed-Prefer-
ence Experiments. (The colors 
in Fig. 8 are those used by Belke 
and by Gibbon, except that blue 
in Fig. 8 replaces their white. 
They used a change-over key 
protocol. Unlike in this illustra-
tion, the alternative key was not 
visible when a subject was peck-
ing at a given key color.)
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the rich-pair context and slower cycling in the poor-pair context. Faster and slower 
cycling translate into shorter and longer dwell times, which is why, to quote Gib-
bon’s title, “Arousal makes better seem worse.” The “seem” in this quote refers to 
our perceptions, not those of the pigeons. We compare the rates of reinforcement 
at the two locations, between which we suppose them to have been choosing. The 
experimental results show that they were not comparing nor choosing; they were 
leaving when the Poisson process that schedules departures timed out. Here, too, it 
is relative rates—in this case, the departure rates—that enables us to understand the 
underlying process, not choice probabilities.

Conclusions

Reconceptualizing associative learning as the perception of measurable temporal 
associations yields a mathematically coherent quantitative understanding of a wide 
range of experimental results, many of which have resisted quantitative explanation 
for decades. The key to the reconceptualization is the realization that for a brain to 
perceive a temporal association it must compute the informativeness ratio between 
two observed rates, a conditional rate, and the relevant contextual rate. This shifts 
the focus onto rate of reinforcement and rate of responding rather than probability of 
reinforcement and probability of response.

The shift in focus brings with it a major methodological benefit, because, under 
many circumstances, there is a scalar mapping from measured rates of reinforce-
ment to measured rates of responding (Fig. 2). When this is true, we measure the 
brain’s representation of a quantitative fact about its experience (rate of reinforce-
ment) when we measure rate of responding. For research on the neurobiological 
bases of associative learning, this is a gift.

The ubiquitous role of informativeness brings to the study of associative learning 
the power and elegance of information theory because the log of informativeness is 
the information communicated between temporally associated events—Eq. (3). 
Informativeness is also the variable in the formula for measuring the strength of the 
evidence for temporal association—Eq. (4). It is also the variable in the change-
detection equation—Eq. (7)—which gives us a rigorous quantitative explanation of 
the partial-reinforcement extinction effect. Informativeness determines the learning 
rate—Eq. (5). The reciprocal of informativeness, p(CS) = TCS

TC
 , is the key element of 

the � matrix in credit assignment—Eq. (6a).
Equation (5), the Learning Rate Law, may be rewritten as a trade-off function:

In this form, the equation says that the product of the number of reinforced CSs, 
nR , and CS informativeness (� − 1) must exceed k for a subject to decide to increase 
its rate of responding when being trained on a simple Pavlovian protocol in which 
the CS predicts reinforcement. The equation specifies combinations of measured 
stimulus variables—nR and �—that have a constant behavioral effect—the onset con-
ditioned responding. The empirical function for omitted reinforcements to extinction 

nR(� − 1) = k
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as a function of trials/reinforcement during training—the dashed plot in Fig. 8—is 
also a trade-off function. The stimulus variables are the ~R/trial during training and 
the number of consecutive ~R trials during extinction.

Trade-off functions have singular importance in behavioral neuroscience, because 
the behaviorally obtained function must obtain for every neurobiological variable 
in the causal path from the point in the brain where the effects of the two stimulus 
variables combine to observable behavior (Gallistel et al., 1981). For example, the 
scotopic spectral sensitivity function obtained from the verbal responses of human 
subjects superimposes on the in situ spectral sensitivity of rhodopsin, because the 
signal detected by the human observer is jointly determined by the light intensity, 
its wavelength and the absorption spectrum of rhodopsin. A simple trade-off experi-
ment makes the absorption spectrum of the key molecule at the beginning of the 
causal cascade evident in the behavioral data. Satisfying a behavioral trade-off func-
tion is a powerful test for a linkage hypothesis, for example, the hypothesis that the 
isomerization of rhodopsin is the first stage in scotopic vision. A linkage hypothesis 
identifies a behaviorally defined variable (e.g., scotopic spectral sensitivity) with a 
variable defined by physical chemistry (the absorption spectrum of rhodopsin; see 
Teller & Pugh, 1983, for further discussion of linkage hypotheses).

Suppose, for example, one were to conjecture that the mesolimbic dopamine sig-
nal encodes the decision variable for adjusting response rate to the change in rein-
forcement rate predicted by a CS. On that linkage hypothesis, the neurobiological 
effect of informativeness and the effect of the number of reinforcements must com-
bine to produce a signal whose value equals a constant when conditioned behavior 
appears. One reinforcement with high informativeness must produce the same signal 
as several hundred with low informativeness. If this is not the case, then the link-
age hypothesis fails. None of the linkage hypotheses proposed for the mesolimbic 
dopamine signal has been subject to such a strong test (see Namboodiri, 2024, for 
review).

The reconceptualization of associative learning changes the ontological status of 
“association” in the cognitive and neurosciences. Associations are no longer hypo-
thetical mental entities often linked to postulated changes in interneuronal connec-
tions in brains (Brown et  al., 1990). Associations are measurable statistical facts 
about the distribution of events in time. They exist independently of minds and 
brains.3

The percept of a temporal association is no more itself an association than a color 
percept is a surface reflectance spectrum. The percepts on which intelligent behavior 
in associative learning depends are symbols in memory. They represent perceived 
quantitative facts about the environment in which behavior unfolds, such as the con-
ditional and unconditional rates of reinforcement. Quantity-specifying symbols are 
the information-carrying physical stuff on which a brain’s computational machinery 
operates to generate behavior (Gallistel, 1990, 2021a, b; Gallistel & King, 2010).

3 This assumes scientific realism, the belief that minds are embedded in a world in which events unfold 
in time and space, as they do in the theories of physicists.
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The change in the ontological status of “association” within the neurobehav-
ioral study of associative learning has broad implications. It undermines the con-
ceptual foundations for current efforts to determine the neurobiological basis of 
memory. Most such efforts use Pavlovian protocols to instill engrams (Poo et  al., 
2016; Schultz, 2015). They take for granted the motto of the Society for Neurosci-
ence—“Neurons that fire together, wire together” (Shatz, 2019). They look in brains 
for the neurobiological realization of the associative bonds first posited by Aristo-
tle, embraced by British empiricists millennia later, and made the core concept in 
behaviorist cognitive science (McClelland et al., 1986).

The realization that associative bonds do not explain Pavlovian and operant/rein-
forcement learning also calls into question connectionist approaches to cognitive 
science (Maurer, 2021). It undermines the claim that Large Language Models do 
what they do because they work in the same way brains work (Xu & Poo, 2023). 
Those who make these claims take it for granted that associative bonds are the foun-
dation of biological intelligence. They correctly insist that associative bonds are not 
symbols: they do not encode anything, nor are they elements in a symbol processing 
system (Heaven, 2023). Connection weights are the conceptual stuff of Large Lan-
guage Models but they are not the explanation for associative learning as a biologi-
cal phenomenon.4
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