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A B S T R A C T   

Understanding the precursors leading to rock fracture is crucial for ensuring safety in mining and 
geotechnical engineering projects. To effectively discern these precursors, a collaborative moni-
toring approach that integrates multiple sources of information is imperative. This paper 
considered a rock multi-parameter monitoring loading system, incorporating infrared radiation 
and acoustic emission monitoring technologies to simultaneously track the rock fracture process. 
The study delves into the spatiotemporal evolution patterns of infrared radiation and acoustic 
emission in rock under loading. Utilizing stress, cumulative acoustic emission count, and average 
infrared radiation temperature (AIRT), the paper establishes a comprehensive evaluation model 
termed “acoustic-thermal-stress” fusion information, employing principal component analysis 
(PCA). The research reveals that the sensitivity to rock sample damage response follows the 
sequence of cumulative acoustic emission count, AIRT, and stress. Furthermore, a novel method 
for identifying rock fracture precursors is proposed, based on the first derivative of the 
comprehensive evaluation model. This method addresses the limitations of single physical field 
information, enhancing the robustness of monitoring data. It determines the average stress level 
of fracture precursors to be 0.77σmax. Subsequently, the study defines the probability function of 
rock damage during loading and fracture, enabling the realization of probability-based warnings 
for rock fracture. This approach introduces a new perspective on rock fracture prediction, 
significantly contributing to safety monitoring and warning systems in mine safety and 
geotechnical engineering. The findings of this research hold paramount engineering significance, 
offering valuable insights for enhancing safety measures in such projects.   
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1. Introduction 

Initiating an exploration into the deepening depths of coal mining, it’s clear that mine safety production is navigating through 
formidable challenges. Notably, issues such as mine water inrush [1,2], rock burst [3], coal and gas outburst [4], and other dynamic 
disasters involving coal and rock have become more pronounced. The fundamental cause underlying these disasters lies in the 
heightened degree of internal damage within coal and rock formations as a consequence of mining activities. Research findings un-
derscore that the process of coal rock damage involves the simultaneous release and alteration of various forms of energy, including 
acoustic emission and infrared radiation [5–8]. A crucial proposition emerges: the scientific monitoring and early warning of 
early-stage coal rock damage could be instrumental in effectively controlling the onset of disasters and ensuring the overall safety of 
production processes. Therefore, delving into the analysis and extraction of distinctive characteristics of coal rock rupture precursors 
from a plethora of physical field information, encompassing phenomena like acoustic emission and infrared radiation, assumes pivotal 
engineering significance. This pursuit stands essential for advancing the domains of mine safety and geotechnical engineering, 
enabling robust safety monitoring, and facilitating timely warnings to avert potential hazards. 

Infrared radiation monitoring technology offers numerous advantages, including non-contact, non-destructive, real-time, cost- 
effectiveness, and high efficiency. As a result, researchers both domestically and internationally have embraced its application in 
studying rock damage, fracture monitoring, and early warning systems, yielding significant research breakthroughs [9,10]. Wu et al. 
[11–14] pioneered the concept of remotely sensed rock mechanics (RSRM) and presented experimental methodologies and findings 
regarding the correlation between infrared radiation and rock stress. Additionally, they outlined future research directions and 
highlighted key issues pertinent to the development of RSRM. 

To comprehensively analyze the characteristics of infrared radiation precursors during rock rupture, researchers have introduced 
various quantitative evaluation metrics over time. These include AIRT [14,15], extreme values (maximum and minimum temperature) 
[16,17], variance [18], differential infrared radiation variance [19], infrared image entropy [20], b-value of infrared radiation [21], 
high-temperature point scaling factor [22], skewness of temperature distribution [17,23], kurtosis of temperature distribution [23], 
roughness [24], and others. Through these measures, scholars have identified both qualitative and quantitative traits associated with 
rock rupture precursors. Furthermore, investigations have been conducted to understand the influence of water on the infrared ra-
diation temperature of load-bearing rocks. For instance, Cai et al. [25] and Shan et al. [23] conducted uniaxial compression experi-
ments on both dry and water-saturated rocks, revealing that the presence of water enhances the release of infrared radiation energy 
from rocks. Moreover, Li et al. [26] explored the fluctuation patterns of infrared radiation in coal rocks under gas influence, suggesting 
that infrared thermograms and temperature curves can effectively predict deformation and damage in coal rocks, aiding in the precise 
localization of dynamic hazards within coal formations. Additionally, studies by Li et al. [26] examined the changes in infrared ra-
diation emitted by coal rocks due to gas interactions, indicating the potential of infrared thermography in forecasting coal rock 
deformation and identifying areas prone to power-related disasters. Mineo et al. [27] utilized infrared thermography to indirectly 
assess rock porosity, while Liu et al. [28] delineated the effective infrared temperature fields associated with rock crack development. 
They introduced the concept of Infrared Energy Response of Damage (IERD) to characterize crack evolution within rocks and proposed 
an intrinsic model for rock damage. Overall, the application of infrared radiation monitoring techniques stands as a crucial tool in 
researching and developing precursor features essential for early prediction and warning of critical rock damage. 

Acoustic emission technology is a powerful tool for detecting and locating internal cracks within coal rock formations. For instance, 
Ohno et al. [29] utilized acoustic emission parameters to effectively categorize the various crack patterns found in concrete structures. 
Similarly, Wang et al. [30] conducted research on anisotropic shale subjected to cyclic loading, uncovering its fracture modes and 
evolution laws, and delving into the associated failure mechanisms driven by different crack patterns. Meng et al. [31] explored the 
dynamics of energy accumulation, evolution, and dissipation during uniaxial cyclic loading and unloading at varying rates, analyzing 
the rock’s stress-strain behavior and acoustic emission characteristics throughout deformation and failure processes. Furthermore, 
Shan et al. [32] established a quantitative relationship between dissipation energy and acoustic emission parameters in coal rock, 
providing clear insights into the fracture behaviors of this material. In another study, Ding et al. [33] focused on coal-rock samples, 
extracting distinct acoustic emission signal characteristics. They devised a stress state criterion based on these signal features and 
employed a BP neural network for in-depth learning of the signal properties, thereby enabling the identification, classification, and 
prediction of coal-rock material behavior. These collective efforts highlight the versatility and significance of acoustic emission 
technology in the comprehensive understanding and management of rock mechanics and materials. 

Researchers have conducted extensive studies on the changes in infrared radiation and acoustic emissions during the destabili-
zation and damage processes of coal rock [34–38]. These studies have yielded valuable insights and findings. However, relying solely 
on information from a single physical field may result in inadequate monitoring and low reliability in early warning systems. For 
instance, while infrared radiation can effectively monitor surface temperatures, it only provides limited utility in critical monitoring 
and warning of coal-rock disasters. Nonetheless, it offers the advantages of non-destructive, non-contact, and remote sensing capa-
bilities [39,40]. On the other hand, acoustic emission analysis can pinpoint the internal locations of coal and rock ruptures [3,41,42], 
yet its effectiveness is often compromised by environmental interference, reducing its adaptability for early warning in critical disaster 
scenarios. Consequently, the fusion of these two sources of information for early warning analysis holds the potential to significantly 
enhance accuracy and reliability, offering a more robust approach to disaster prevention and mitigation [43–46]. 

This paper investigates the evolution characteristics of “acoustic-thermal-stress” information during the rock rupture process. It 
establishes a comprehensive evaluation model for the rock loading and rupture sequence, employing the principal component analysis 
method alongside acoustic emission cumulative ring counts, infrared radiation, and stress parameters. This analysis leads to the 
development of a method for identifying rock damage precursors based on the first-order derivatives of the comprehensive evaluation 
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model. This integrated approach harnesses the strengths of information from each physical field involved in the rock loading and 
rupture process, thereby enhancing the resilience of monitoring data. The proposed method introduces innovative ways and indicators 
for real-time observation of rock fissure development and damage, providing theoretical and experimental foundations for rock 
damage detection. These findings offer crucial insights for ensuring the safe and efficient execution of underground projects, including 
mines and tunnels. 

2. Materials and methods 

2.1. Sample Preparation 

The sandstone used in this experiment is formed by the segmentation of the whole rock in the same direction. The sample is a 
cuboid standard specimen of 50 mm × 50 mm × 100 mm. The two ends are polished with sandpaper, so that the roughness error of the 
end face is less than 0.05 mm, and the non-parallel error of the two sides is less than 0.03 mm. A total of 5 pieces are processed and 
numbered Ai (i = 1, 2, …, 5). 

2.2. Experimental procedure 

All samples were acclimated in the laboratory for a duration of 24 h preceding the commencement of the experiment. To ensure 
uniformity, the acoustic emission probe was affixed to the surface of the rock specimen, aligning its temperature with that of the 
laboratory environment at the onset of testing. Concurrently, the infrared camera was positioned approximately 1 m ahead of the 
specimen, with its lens situated at the same elevation as the central point of the loaded specimen surface, as illustrated in Fig. 1. It 
should be noted that the infrared radiation temperature during rock loading depends upon several factors among which the ambient 
temperature, air humidity and rock emissivity are the most important. Thus, to minimize disturbances due to these factors, all re-
searchers wore thermally insulated gloves throughout the experiment to prevent any thermal conduction between their body tem-
perature and that of the rock surface. The loaded specimen was situated on the loading platform of the press, while a reference 
specimen of identical dimensions was placed at a horizontally aligned position, 10 cm to the left of the loaded specimen. The press was 
loaded at a consistent displacement rate of 0.2 mm per minute, while the infrared camera operated at an acquisition rate of 10 frames 
per second. Synchronization between the press and the infrared camera was meticulously maintained to facilitate data acquisition 
throughout the duration of the test. 

In addition, the ambient temperature, air humidity and rock surface emissivity in the laboratory were recorded, which were 16 ◦C, 
52 % and 0.82, respectively. These physical parameters are set synchronously in the thermal imager to improve the monitoring ac-
curacy of infrared radiation temperature. In addition, all persons are prohibited from carrying out activities during the experiment 
until the end of the experiment. In order to prevent the thermal radiation caused by personnel walking affect the experimental results. 

2.3. Experimental equipment 

The experimental setup employs state-of-the-art equipment, including the MTS electro-hydraulic servo universal testing machine, 
renowned for its impressive maximum load capacity of 1000 kN. Complementing this machinery is the infrared thermal imaging 
system, specifically the VarioCAM HD head 880 model, crafted by InfraTec in Germany. This cutting-edge thermal imager stands out 
for its remarkable temperature measurement capabilities, spanning from − 40 ◦C to 1200 ◦C, with an exceptional temperature 

Fig. 1. Experimental schematic diagram.  
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sensitivity of 0.02 ◦C. Additionally, boasting an image resolution of 1240 × 768 pixels, it facilitates meticulous thermal analysis. 
Operating at a maximum image acquisition frequency of 30 frames per second, and with a measurement band extending from 7.5 to 14 
μm, this thermal imager offers unparalleled precision. 

Simultaneously, the experimental setup incorporates the use of an acoustic emission monitoring device, sourced from the PAC 
company and identified as the PCI-2 model. This advanced instrument showcases a bandwidth range spanning from 1 KHz to 3MHz. 
Equipped with a built-in 10-channel filter and an 18-bit A/D converter, it enables real-time monitoring and display of acoustic 
emission signals throughout the loading process. These sophisticated technical specifications provide researchers with the capability to 
capture and analyze acoustic emissions with utmost accuracy and comprehensiveness, enhancing the depth and precision of experi-
mental data collection. 

3. Experimental results and analysis 

To mitigate the potential inaccuracies arising from the discrete nature of the sample, we conducted a uniaxial compression test 
incorporating infrared radiation and acoustic emission monitoring at ambient temperature. The resulting stress-strain curves for each 
individual sample can be observed in Fig. 2, providing a comprehensive depiction of the experimental outcomes. 

The stress-strain evolution trends depicted in Fig. 2 exhibit striking similarity across all five specimens. Due to constraints on space 
within this paper, we have chosen to delve into the failure process of the A3 sample for detailed analysis. This specimen’s failure 
process will serve as a representative case for the broader trends observed in the experiment. 

3.1. Infrared temperature data denoising 

Fig. 3 presents a comprehensive flowchart delineating the denoising methodology employed in this study for infrared data. 
Grounded in preliminary findings that indicate the presence of both additive and multiplicative noise in rock infrared radiation data, 
the approach detailed in this paper integrates background denoising and wavelet threshold techniques to refine the data. 

The denoising process is a meticulous sequence of operations. It commences with the subtraction of the thermal image of a 
reference sample from the loaded sample to perform background denoising, thereby isolating the noise inherent to the measurement 
environment. This is followed by the application of an adaptive median filter, which is calibrated with a window size that varies 
between 3 and 5 pixels to accommodate the specific features of each thermal image sequence, enhancing the denoising efficacy. 

The capstone of the process is the application of one-layer wavelet decomposition to the infrared image sequence, harnessing the 
coif 4 wavelet basis function. This step employs wavelet soft thresholding, a technique that effectively eradicates both additive and 
multiplicative noise from the thermal images, yielding data of superior quality for subsequent analysis. 

For an in-depth exposition of the denoising methodology, as referenced [47], Fig. 3 offers a visual synopsis that captures the essence 
of each procedural step, highlighting the systematic approach taken to ensure the highest fidelity in the infrared temperature field 
sequence data. 

3.2. Temporal evolution of infrared radiation in rocks 

The infrared thermograms’ temperature values for each frame underwent statistical analysis to derive their average infrared ra-
diation temperature (AIRT). This AIRT serves as a crucial indicator for gauging the surface temperature change from the initial bearing 
to the eventual damage of the rock specimen. The calculation method of rock AIRT is: 

AIRT(p)=
1
m

1
n
∑m

x=1

∑n

y=1
[g(x, y, p)]

Fig. 2. Stress-strain curve diagram.  
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where, g represents the bearing rock temperature matrix after de-noising, x and y represent the matrix row and column indexes, and p 
represents the frame index. 

Illustrated in Fig. 4 is the AIRT curve plotted against stress for specimen A3, with analogous trends observed across other speci-
mens. In the loading phase of rock specimen A3 depicted in Fig. 4, there’s a distinct linear increase in AIRT, with a sudden surge upon 
the specimen’s ultimate failure. However, the trajectory of AIRT alterations varies across different loading stages. 

As shown in Fig. 4, the AIRT during the loading process of sample A3 exhibits a nearly linear upward trend. When the sample 
ultimately fails, there is a sudden increase in AIRT. However, the trends of AIRT variation in different loading stages are not the same. 
In the compaction stage (Stage I), the internal inherent fractures of the rock are gradually compacted, causing the escape of gas from 
internal pores, fractures, micro-cavities, etc. This gas escape process consumes some energy, thus resulting in a temporary decrease in 
AIRT [38]. However, as the rock is gradually stressed, internal particles and mineral crystals undergo dislocation slip and frictional 
heating, causing AIRT to slowly rise after a slight decline. Therefore, the variation of AIRT in this stage is mainly related to the 
desorption-escape effect of original gases in the rock and the frictional heating effect between particles [48]. In the stage of linear 
elastic deformation (Stage II), stress increases linearly with time, and the elastic deformation of the rock under uniaxial compression 
can be regarded as an isentropic reversible process. The physical temperature approximately linearly correlates with stress changes, 
hence AIRT in this stage is linearly positively correlated with stress, mainly related to the thermoelastic effect [49–52]. In the plastic 
deformation stage (Stage III), due to rapid development and expansion of internal cracks in the rock, which gather to form macroscopic 
fractures, this process is an irreversible thermodynamic process of energy dissipation. During the process of crack propagation, the 
initially stored elastic energy is converted into fracture energy, kinetic energy, and heat energy. Particularly in the vicinity of the crack 
tip region, heat is generated, leading to a local temperature rise and a rapid increase in AIRT [17,51,53]. In the post-peak deformation 
stage (Stage IV), before the sample structure is destroyed, cracks further develop, and AIRT continues to rise. When the sample 
structure becomes unstable and fails, there is a sudden increase in AIRT. 

Fig. 3. Denoising process diagram.  

Fig. 4. Stress vs. AIRT curves of A3 specimen. ①pore gas desorption-escape effect,②thermoelastic effect, ③friction heat effect, ④crack extension 
heat effect. 
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3.3. Evolution law of acoustic emission 

The cumulative ringing count index serves as a crucial tool for examining the acoustic emission characteristics during the process of 
rock loading and fracturing. This index enables a comprehensive analysis of how the rock undergoes damage evolution throughout the 
loading and fracturing phases. A higher cumulative ringing count indicates a more severe level of internal damage. As depicted in 
Fig. 5, initially, there’s a minimal occurrence of acoustic emission ringing during the initial loading stage. During the subsequent 
online elastic deformation phase, there’s a gradual increase in the cumulative ringing count. However, as the deformation progresses 
into the nonlinear stage, there’s a rapid escalation in the cumulative ringing count, signifying intensified damage. Upon entering the 
post-peak deformation stage, fracture development intensifies further, leading to the instability and eventual destruction of the rock 
sample, culminating in the peak cumulative ringing count. 

4. Multivariate functional characterization of “acoustic-thermal-stress” information 

The process of loading rock induces responses in various physical fields, including acoustic emission (AE) and infrared radiation 
(IR), among others. Integrating and analyzing multiple monitoring data such as “acoustic-thermal-stress” not only enhances our un-
derstanding of the specimen’s rupture process and the ability to identify precursors but also eliminates redundant information across 
these fields. This integrated approach holds significant importance in deciphering the mechanisms underlying rock rupture and 
improving precursor detection, thereby aiding in timely warnings. 

4.1. Multisource information normalization 

Significant variations exist in both the scale and significance of the multivariate monitoring data produced during the rock loading 
process. This makes it challenging to swiftly, intuitively, and precisely assess the response characteristics of each physical aspect 
related to rock fracture and joint analysis. Employing a data normalization technique allows for the attainment of dimensionless 
multivariate information, thereby accentuating the patterns of change across multiple fields. This normalization process enables a 
more streamlined and insightful understanding of the complex interplay of factors involved in rock mechanics, facilitating more 
informed decision-making and analysis. 

The value domain of rock stress, acoustic emission, and thermal radiation data is denoted as [Min, Max]. Equation (1) shows the 
mathematical expression for normalizing the linear function. 

yu(x)=
x − Min

Max − Min
(1) 

In this equation, “u" denotes the count of multivariate parameters. "x" and “y" represent the stress, acoustic emission, and infrared 
radiation multivariate experimental data, respectively, both before and after undergoing normalization through a linear function. 
"max” and “min” signify the highest and lowest values within the acoustic emission, infrared radiation, and stress data, respectively. 

Fig. 6 illustrates the acoustic, thermal, and stress data of the specimen post-normalization. It is evident from the figure that the 
underlying interrelationships and trends among the multi-source data persist unchanged following the normalization process via the 
linear function. 

4.2. Multisource information function characterization 

The function serves as a powerful tool for quantitatively representing complex information across multiple variables throughout 
the process of rock loading. By observing shifts in posture and numerical values within this multivariate information function, it 
elucidates the patterns of change within the information set and reveals correlations between each parameter. This is crucial for 
effectively analyzing and identifying precursor signals of rock rupture. To accomplish this, we utilize rational functions, Gaussian 
functions, and polynomials to model the acoustic, thermal, and stress data leading up to the peak loading of rock samples. Through 

Fig. 5. Relationship curves of stress, cumulative ringing count and time of A3 specimen.  
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fitting these functions and assessing correlation coefficients, we determine that rational functions provide a better fit for AIRT data, 
while Gaussian functions are more suitable for accurately modeling cumulative ringing counts and stress data. 

AIRT data were fitted using a rational function. The mathematical expression for the rational function is given in Equation (2). 

f(x)=
∑n+1

j=1 pjxn+1− j

xm +
∑m

j=1qjxm− 1 (2)  

in this context, the function f(x) represents the axial stress experienced during the loading process of the rock specimen. The variables 
m and n represent the number of occurrences of the highest x term in the denominator and numerator of the rational function, 
respectively. Additionally, pj and qj denote the coefficients associated with the x term. To ensure consistency across different rock 
samples and maintain a correlation coefficient of at least 0.90 for the fitted curves, m and n are set to 2 and 3, respectively. 

A Gaussian function was employed to fit the cumulative ringing counts and stress data. Notably, the second term yielded the highest 
correlation coefficient among the fitted functions. Equation (3) mathematically represents the Gaussian function. 

f(x)=
∑s

i=1
ai exp

(
− ((x − bi)/ci)

2
)

(3) 

The curves after fitting the acoustic, thermal, and stress information for the loading phase before the rock peak using Gaussian and 
rational functions are shown in Fig. 7. 

5. A comprehensive evaluation model for multi-information fusion analysis 

5.1. Principal component analysis 

The intricate interplay among stress fields, acoustic emissions, temperature variations, and other monitoring parameters consti-
tutes a complex yet informative tapestry that delineates the history and progression of rock fractures. Amidst this intricate web of data, 
Principal Component Analysis (PCA) emerges as a prominent algorithm celebrated for its prowess in condensing high-dimensional 
datasets into more digestible forms. By compressing the data’s dimensionality while striving to retain its essential features, PCA 

Fig. 6. Normalized values of multi-source data during loading of A3 specimens.  

Fig. 7. Gaussian and rational function characterization curves for acoustic, thermal and stress data of A3 specimen.  
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offers a pathway to craft a more succinct representation of the original dataset. 
This process of dimensionality reduction not only simplifies the convoluted structure of multivariate monitoring data but also 

facilitates the integration of diverse sources like stress fields, acoustic emissions, and temperature variations. Through this fusion, a 
comprehensive array of indicators emerges, encapsulating the multifaceted dynamics of rock fracture phenomena. These amalgamated 
indicators furnish researchers and analysts with a clearer and more comprehensive comprehension of the underlying mechanisms 
propelling rock fractures forward. 

Furthermore, the consolidation of monitoring information into a unified set of indicators not only facilitates the analysis of rock 
fracture phenomena but also streamlines data processing and interpretation. This streamlined approach enhances the efficiency and 
accuracy of fracture assessment and prediction methodologies, thus driving advancements in the realms of geosciences and rock 
mechanics. Hence, PCA serves as an invaluable tool in unraveling the complexities inherent in rock fracture problems, laying the 
groundwork for innovative solutions and profound insights. 

In response to rock rupture, stress, AIRT (Acoustic Impulse Response Technique), and cumulative ringing counts are chosen as the 
primary analytical indicators of stress, acoustic emission, and temperature fields. The mathematical models derived from stress, 
acoustic, and thermal data in the preceding section are sampled at regular intervals with a time step of 1 s to construct the sample 
matrix. This matrix comprises column vectors representing stresses, AIRT, and accumulated ringing counts. Equation (4) mathe-
matically represents the simple matrix of the specimen. 

F= [X1,X2,X3] =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.00604

0.00632

⋮

0.23581

− 0.00101

0.00111

⋮

0.49678

0

0

⋮

1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4)  

where X1, X2, and X3 denote the column vectors of equal time steps consisting of stress, AIRT, and cumulative ringing counts, 
respectively. f is a two-dimensional matrix of specimens T × 3, denoting the sample matrix of the specimens. t is the number of rows of 
the sample matrix, i.e., the maximum number of integer seconds of the experimental duration. 

The data were first standardized with a mean of 0 and variance of 1 for each column in the sample matrix. Equation (5) mathe-
matically represents the data standardization. 

Xʹ
i =

Xi − μ
σ (5)  

Where, μ and σ are the mean and variance of the information values in each column of the sample matrix, respectively. Xí is the 
normalized column vector. 

The matrix of correlation coefficients was obtained for the sample matrix after specimen standardization. The correlation coeffi-
cient matrix for rock sample A3 is shown Equation (6). 

η=

⎡

⎣
1 0.9483 0.4892

0.9483 1 0.3845
0.4892 0.3845 1

⎤

⎦ (6)  

where, η is the correlation coefficient matrix. 
The eigenvalues of the correlation coefficient matrix are derived using the formula outlined in Equation (7). These eigenvalues 

serve as indicators of the amount of stress, acoustic, and thermal information effectively captured in the rock loading process by the 
corresponding features. A higher eigenvalue signifies a greater representation of such information. Principal components are then 
identified based on the criterion that their eigenvalue exceeds 1 or that the cumulative contribution rate of eigenvalues reaches at least 
85 %, as expressed in Equation (8). This method ensures the selection of significant components that comprehensively characterize the 
underlying data patterns. 

|η − λkE| =0 (7)  

∑m

k=1
λk

∑3

k=1
λk

×100% ≥ 85% (8)  

where, λk is the eigenvalue of the correlation coefficient matrix, k = 1, 2, 3. And E is the unit matrix. 
Based on the outlined calculation procedure, the eigenvalues and corresponding contribution rates of the correlation coefficient 

matrix for A3 rock samples were computed, and the results are presented in Table 1. Due to space constraints, the correlation coef-
ficient matrix and contribution rates for all rock samples are not provided here; however, the same methodology was applied to the 
remaining rock samples. By adhering to the criterion that the cumulative contribution rate exceeds 85 %, it is deduced that two 
principal components effectively capture the multicomponent behavior during the rock loading process. In essence, this implies that: 
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g1 = a11X1 + a12X2 + a13X3 (9)  

g2 = a21X1 + a22X2 + a23X3 (10)  

where g1 and g2 are the function models corresponding to the two principal components, and X1, X2 and X3 are the stress, AIRT and 
cumulative ringing counts, respectively. aij (i = 1, 2; j = 1, 2, 3) denotes the factor loading coefficients corresponding to the two 
principal components. From Eqs. (9) and (10), the integrated rock evaluation model can be obtained as: 

g=
s1

s1 + s2
g1 +

s2

s1 + s2
g2 (11)  

where g denotes the integrated evaluation model of load-bearing rocks, and s1 and s2 denote the contribution of principal component 1 
and principal component 2, respectively. 

Based on Eqs. (9)–(11), Equation (12) shows comprehensive evaluation model. 

g=0.4342X1 + 0.3840X2 + 0.5493X3 (12) 

Fig. 8 illustrates the weight coefficients assigned to each parameter in the comprehensive evaluation model for individual samples. 
Upon observing the overall distribution, it becomes evident that the weight coefficient attributed to the cumulative ringing count 
stands out as the most significant, followed by AIRT and stress, respectively. Consequently, the order of specimen failure strength can 
be deduced as follows: cumulative ring count holds the highest significance, succeeded by AIRT and stress. 

To elaborate further, a comprehensive evaluation model for assessing the damage incurred by uniaxially loaded rock was devised 
utilizing stress, acoustic, and thermal data through the principal component analysis method. The essence of this model lies in the 
cumulative aggregation of stress, acoustic emission, and infrared radiation parameters, each multiplied by their respective weights. 
This model serves as a crucial reference point for the monitoring and early detection of potential rock fracture instability, offering 
valuable insights into preventive measures. 

5.2. Multi-information fusion for early warning and probability of rock fracture precursors 

The turning point in the state of rock damage occurs when the posture of the function curve changes at the extreme value point and 
the stationary point. This pivotal moment in rock fracture evolution is crucially indicated by the nonlinear shifts in the multivariate 
monitoring information function, as illustrated in Fig. 6. These extreme and stationary points serve as fundamental markers for 
delineating different stages of rock fracture evolution. This study employs a rational function to effectively model the comprehensive 
evaluation curve. Notably, the best fitting is achieved using a rational function with a denominator of 2 and a constant term as the 
numerator, yielding a fitting correlation coefficient of at least 0.95. Fig. 9 depicts the fitting curve, along with the first-order and 
second-order derivative curves of the comprehensive evaluation model for all five rock samples. The first-order derivative holds 
physical significance as it denotes the rate of change of the comprehensive evaluation model curve, providing insight into the model’s 
sensitivity to the rock loading rupture process. The extremum of the first-order derivative signifies a transition in sensitivity state, 
indicating critical shifts in the rock’s response to loading. 

As depicted in Fig. 9, the curves obtained from the comprehensive rock evaluation model exhibit a distinctive pattern characterized 
by an initial rapid increase followed by a gradual ascent, while the first-order derivative curves take on an inverted “V" shape. This 
inverted “V" shape is indicative of critical points in the rock samples’ behavior. The specific timing and stress levels corresponding to 
these critical points for each rock sample are detailed in Table 2. For instance, rock samples A1, A2, A3, A4, and A5 reach their extreme 
points at 686s, 724s, 656s, 872s, and 507s, respectively, with corresponding stress levels of 0.78 σmax, 0.72 σmax, 0.77 σmax, 0.93 σmax, 
and 0.65 σmax. Upon averaging, the precursor stress level is determined to be 0.77 σmax. Consequently, the extreme value point 
identified in the first-order derivative function of the comprehensive evaluation model serves as a crucial precursor warning point for 
rock damage. 

This paper defines the rupture period as the interval encompassing the loading phase from the initiation of rupture to the 
attainment of peak stress, aiming to comprehensively scrutinize the damage characteristics of rocks. Identifying the damage precursor 
serves as a pivotal reference for temporal monitoring and preemptive measures against potential rock engineering hazards. 
Furthermore, delving into the rupture period facilitates the monitoring of the metamorphic progression of rocks. Utilizing the energy 
superposition method, the post-rupture phase in rock behavior is construed as an aggregation of acoustic emission and infrared ra-
diation data energy. As the energy accumulation approaches its threshold, represented by the peak stress, the load-bearing capacity of 
the rock progressively diminishes. By employing the energy superposition method, this study derives expressions for the energy of 
acoustic emission and infrared radiation data during the rupture period. 

Table 1 
Characteristic value and contribution rate of sample A3.  

ηA3 eigenvalue rate of contribution (%) Cumulative contribution rate (%) 

2.2534 75.1143 75.1143 
0.7022 23.4050 98.5193 
0.444 4.4807 100  

Q. Gao et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e30660

10

E(t)=
∑t

0
(a1X1 + a2X2 + a3X3)

2 (13)  

in equation (13), E(t) is the total energy of the acoustic-thermal-force information during the rock rupture period, and t is the rupture 
time. X1, X2, X3 are the time-dependent acoustic-thermal-force parameters. 

The total energy expression of “acoustic-thermal-force” information in the rupture phase is taken as the probability density value. 
According to the formula of probability theory and mathematical statistics probability distribution function, the expression of damage 
probability in the rupture stage of rock samples is: 

P(t)=
∫ t

0 E(x)dx
∫ T

0 E(x)dx
(14)  

where P(t) is the probability of destruction of the rock specimen at any moment during the rupture process and T is the time corre-
sponding to the peak stress. 

At the instant when time (T) equals ‘t’, the rock reaches its maximum stress-bearing capacity. Subsequently, during the post-peak 
deformation phase, the rock’s ability to bear stress steadily diminishes, and at the peak stress point, the probability of rock specimen 
damage is confirmed as 1. Utilizing Equation (14), the damage probability density curve of the rock specimen is computed. As depicted 
in Fig. 10, the progression of the rock’s damage probability, as per the comprehensive evaluation model, demonstrates an almost 
exponential growth trajectory. Specifically, the damage probability of specimen A3 during the initial phase of rupture registers at 0.44. 
By scrutinizing the evolution of the damage probability curve throughout the rupture period, it becomes feasible to ascertain the 
damage probability of the rock at any given moment during this period. 

6. Discussion 

The variation of infrared temperature on the surface of rocks is a comprehensive response to rock deformation and fracturing [54]. 
Scholars have categorized it into factors such as gas escape, thermoelastic effect, and crack propagation thermal effect. These factors 
have varying degrees of influence at different stages, collectively resulting in changes in the demonstrated surface infrared radiation 
temperature. it is represented by Equation (15). 

ΔT=ΔT1 + ΔT2 + ΔT3 (15)  

In the equation, ΔT represents the change in infrared temperature on the surface of rocks, while ΔT1 represents the change in infrared 
temperature caused by the thermoelastic effect on the rocks. This effect is related to the stress state of the rock during the elastic 
deformation stage [54,55] and can be shown mathematically, as given in Equation (16). 

ΔT1 = γβ− 1TΔ(σ1 + σ2 + σ3) (16)  

where, T represents the physical temperature of the rock, γ denotes the transfer factor, and β is a constant related to the emissivity of 
the rock surface and thermoelastic effect. σ1, σ2, and σ3 respectively represent the first, second, and third principal stresses. 

ΔT2 represents the temperature change caused by the initial crack propagation and the generation of new cracks, which consumes 
energy. Meanwhile, ΔT3 represents the temperature change on the rock surface caused by the heat generated from the friction between 
internal cracks, microcracks, and mineral crystal particles under external loading. 

Fig. 8. Coefficient of comprehensive evaluation model.  
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The three components mentioned above are various phenomena resulting from the interaction between the internal state and stress 
state of the rock itself, which converge to the changes in infrared temperature on the rock surface. This also involves the internal 
temperature transfer mechanism, where the temperature of each position on the rock surface is influenced by the temperatures at 
various positions inside the rock [28,56]. 

Rock damage represents a complex nonlinear process primarily induced by underground engineering activities. The intricacy of 
this destructive process is further exacerbated by the diverse environmental factors surrounding it, including water, gas, and impact 
ground pressure. Initial defects within rocks, such as micropores and microcracks, serve as the starting points for damage, gradually 
intensifying under external forces. This progression causes the stress-strain relationship of the material unit to deviate from its linear 

Fig. 9. Fitting curve and derivative curve of the comprehensive evaluation model.  
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nature, ultimately manifesting the fundamental property of nonlinearity [57]. 
The nonlinear characteristics inherent in rocks contribute to the amplification of rupture behavior variability, resulting in the 

release of multi-physical field information during the rupture process. This complexity and variability pose significant challenges to 
safety monitoring efforts. Furthermore, various physical field information is influenced by distinct environmental conditions. Hence, 
the approach of multivariate information fusion analysis emerges as a promising methodology for field applications, promising 
improved adaptability of fused information to the work site environment, as well as enhanced robustness and reliability of monitoring 
and warning outcomes [33,58]. 

In light of these challenges, it becomes imperative to thoroughly consider the influence of multiple physical factors on monitoring 
effectiveness in future research endeavors. The authors plan to delve into exploring the fracture damage characteristics of rocks using a 
combination of research methods, including rock fine-scale damage mechanics and probabilistic statistical approaches. The objective 
is to establish a comprehensive multi-physics field model that reflects the nonlinearity, randomness, and coupling effects inherent in 
the rock damage evolution process. Such a model will not only advance our understanding of rock damage but also provide crucial 
guidance for safety monitoring and early warning systems in diverse engineering fields, including mining and geotechnical 
applications. 

Fig. 9. (continued). 

Table 2 
Statistical parameters of rock samples.  

Sample 
number 

Peak 
stress/Mpa 

Peak stress 
time/s 

Elastic 
modulus/Gpa 

Time corresponding to the maximum 
point of the first derivative/s 

Maximum point 
corresponds to stress/Mpa 

Maximum point 
stress level 

A1 54.50 843.3 4.8 686 42.35 0.78 
A2 48.25 854.9 2.98 724 34.86 0.72 
A3 37.73 754.7 3.08 656 29.03 0.77 
A4 35.62 916 2.62 872 33.264 0.93 
A5 38.92 654.9 3.94 507 25.364 0.65  
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7. Conclusions 

The following conclusion are drawn. 

• Through the application of Principal Component Analysis (PCA), this research has successfully developed a comprehensive eval-
uation model that quantifies the influence of acoustic emission indicators, infrared radiation indicators, and stress on the rock 
loading rupture process. This model provides a robust theoretical framework for the identification of rock rupture precursors. The 
model reveals that the sensitivities of the physical fields to the damage response of rock specimens, in descending order, are cu-
mulative ringing counts, AIRT, and stress.  

• Addressing the variability in the response of individual physical fields to the rupture of loaded rocks, this study introduces a novel 
approach to pinpointing the precursors of rock damage. By identifying the extreme value point of the first-order derivative function 
from the “acoustic-thermal-force” comprehensive evaluation model as the warning sign of imminent rock damage, the method has 
determined that the average stress level at which these rupture precursors occur is 0.77σmax.  

• This research further explores the “acoustic-thermal-force” information fusion analysis during the rupture phase of rocks, from the 
onset of rupture precursors to the peak stress. An expression for the total energy of the integrated “sound-heat-force” information 
has been formulated based on the energy superposition method. This allows for the determination of the probability density of rock 
damage at any given moment within the rupture period, thus achieving a probabilistic warning system for rock rupture. 
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