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Abstract: The design of nanophotonic structures based on deep learning is emerging rapidly in
the research community. Design methods using Deep Neural Networks (DNN) are outperforming
conventional physics-based simulations performed iteratively by human experts. Here, a self-
adaptive and regularized DNN based on Convolutional Neural Networks (CNNs) for the smart
and fast characterization of nanophotonic structures in high-dimensional design parameter space is
presented. This proposed CNN model, named LRS-RCNN, utilizes dynamic learning rate scheduling
and L2 regularization techniques to overcome overfitting and speed up training convergence and
is shown to surpass the performance of all previous algorithms, with the exception of two metrics
where it achieves a comparable level relative to prior works. We applied the model to two challenging
types of photonic structures: 2D photonic crystals (e.g., L3 nanocavity) and 1D photonic crystals
(e.g., nanobeam) and results show that LRS-RCNN achieves record-high prediction accuracies, strong
generalizibility, and substantially faster convergence speed compared to prior works. Although still
a proof-of-concept model, the proposed smart LRS-RCNN has been proven to greatly accelerate
the design of photonic crystal structures as a state-of-the-art predictor for both Q-factor and V. It
can also be modified and generalized to predict any type of optical properties for designing a wide
range of different nanophotonic structures. The complete dataset and code will be released to aid the
development of related research endeavors.

Keywords: nanophotonic structures; photonic crystal nanocavities; nanoscale lasers; deep learning;
modeling and characterization; neural networks; inverse design

1. Introduction

Artificial Intelligence (AI) has driven forward the development of countless research
disciplines. By applying deep learning on previous data, an AI system can predict future
events and make intelligent decisions at a level higher than human beings. At the frontier
of deep learning, Deep Neural Networks (DNN) has demonstrated strong robustness and
versatility against increasing model depth and data complexity [1,2] and has been widely
applied in fields such as facial recognition [3,4] and autonomous driving [5,6]. Excitingly,
recent advancement in DNN has given rise to many opportunities for the novel design of
nanophotonic and optoelectronic devices, and it has been a central research thrust in the
photonics community [7–22]. This is exemplified by our recent work [20], which modeled
2D photonic crystals using Convolutional Neural Networks (CNNs) and achieved very
high prediction accuracies.
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DNN has worked well for the following reason: A huge challenge during the design
of nanophotonic structures was to correlate the design parameters (e.g., locations, radius,
thickness, material selection, etc.) with optical properties (e.g., transmittance, modal
volume, power, resonant wavelength, etc.). This correlation was commonly established
by iterative physics-based simulations based on the researcher’s prior experience, which
is both resource demanding and time consuming. Data-driven methods based on deep
learning, on the other hand, can generate complex functions from mega-sized datasets and
fit underlying relationships among a large number of complex parameters. Therefore, with
enough training data, DNNs can capture this precise design parameter-to-optical property
correlation (and its inverse) with more accuracy and little time.

Some very recent works have proposed various DNN models to characterize the rela-
tionship between design parameters and optical properties of nanophotonic structures. Ma
et al. utilized a CNN model with an encode–decoder paradigm to characterize and design
metasurfaces and achieved a mapping from structural pattern to reflectance [12]. Singh et
al. applied fully connected (FC) layers to predict the band gap structure from given layer
thicknesses of photonic topological designs [13]. Chugh et al. used fully connected layers
to model waveguides and studied the relationship between their structural parameters
and effective index [15]. Asano et al. applied a CNN to correlate the air hole locations
with the Q-factor of a 2D photonic crystal and obtained a large Q-factor after iterative
optimization [10]. Wiecha et al. adopted a CNN to model plasmonic nanostructures and
was able to predict their near and far fields from an arbitrarily chosen geometry [18]. Chen
et al. modeled photonic metamaterials using an Artifical Neural Network and predicted
the absorbance and transmittance from given layer thicknesses [23]. Despite their demon-
strated results, all the prior works have failed to address the important issue of overfitting
and slow convergence speed that commonly arise in training DNNs. Moreover, most of
them only have a small design parameter space and an even smaller optical property space,
making their models inadequate for real-world design applications.

For this work, the authors propose a smart deep learning model for designing nanopho-
tonic structures that is based on a self-adaptive and regularized CNN model (named LRS-
RCNN by us; meaning of the acronym provided in Section 2.2). As a proof-of-concept,
we applied the model to two different types of structures, 2D photonic crystals (e.g., L3
nanocavity) and 1D photonic crystals (e.g., nanobeam), both of which have been extensively
studied to enhance their optical properties and are widely adopted in a variety of nanopho-
tonic devices [10,22,24–43]. Nonetheless, the complexity of their periodic structures means
that neither one is easy to design. The L3 nanocavity has been previously investigated by us
using a CNN to predict only the Q-factor [20], and we adopted the same L3 design in this
work. LRS-RCNN will function as an accurate predictor for both the Q-factor and modal
volume V and after training, it is demonstrated that record-high prediction accuracies of
both optical properties were achieved with fast convergence. Finally, LRS-RCNN was able
to generalize extremely well to a fresh validation set previously unobserved by itself and
still predicted Q and V with high fidelity. In summary, this generalized approach has the
potential to enable the rapid design of nanoscale lasers and other nanophotonic structures
with any set of optical properties.

The main merit and contributions of the proposed model are as follows:

1. To the best of our knowledge, this is the first time V is modeled by a DNN model as an optical
property. V is crucial for reducing device footprints and having tight on-chip integration.

2. The employment of CNN empowers the algorithm through its unique advantage on recognizing
complex patterns and extracting hidden information from images.

3. The use of learning rate scheduling (also known as adaptive learning rate) can effectively
smoothen and speed up the convergence of the training process.

4. The use of L2 regularization can effectively reduce overfitting and improve the generalizibility
of LRS-RCNN.

5. It has a high-dimensional design parameter (DA) space with over 160 degrees of freedom.
A large DA space is a prerequisite for real-world design problems.



Nanomaterials 2022, 12, 1372 3 of 15

2. Methods
2.1. DNN Structure and Architecture

CNN is most powerful when it comes to image-related machine learning
tasks [1,2,4,6,44,45]. One could argue that nanophotonic structures such as photonic crys-
tals that seemingly are not related to images can indeed be treated as images, as extensively
discussed in our prior work [20]. Thus, one can set up the learning of the optical property
predictor as a CNN regression problem. Furthermore, CNN has the ability to compen-
sate for the deficiencies of FC layers when it comes to large design parameter spaces and
complex structures [9,20].

Figure 1 showcases the CNN model (i.e., LRS-RCNN) built for modeling 2D and 1D
photonic crystals in this work. LRS-RCNN consists of two convolutional layers and three
FC layers, with the input being a 3-channel N × 3× H ×W tensor containing user-defined
design parameters and the output being an N × 2 tensor containing predicted optical
properties (Q and V in our case). N represents the batch size, while H and W correspond
to the height and width of the nanophotonic structure, respectively. This specific formalism
allows LRS-RCNN to take in a large design parameter space of up to a few hundreds
of degrees of freedom (DOF) as input. A full list of the optimized hyperparameters of
LRS-RCNN is summarized in Table 1. Rectified linear unit (ReLU, f (x) = max(0, x)) is
used as it is both fast and free of vanishing/exploding gradient problems [2,46,47]. Average
pooling (AP) can accelerate and stabilize the training of DNN while padding is used to
preserve the size of the feature map to avoid information loss at the borders [2,47]. L2
regularization is used in backpropagation to reduce model overfitting [1,2]. Finally, an
adaptive learning rate was employed to gain robustness against gradient noise and generate
a smoother convergence [1,2,48]. The key working principles of CNN and average pooling
are schematically illustrated in Figure 2, where the convolution formula and the feature
size formula are also included.
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Figure 1. The DNN model (LRS-RCNN) to correlate the input (i.e., design parameters) with output
(i.e., optical parameters such as Q and V) of nanophotonic structures. LRS-RCNN consists of two
convolutional layers (Conv1 and Conv2), each accompanied by an averaging pooling (AP) operation,
and lastly three FC layers. LRS-RCNN tackles the prediction of optical properties as a deep learning
regression problem. The detailed specifications of the network and its hyperparameters are marked
on the diagram and/or listed in Table 1.
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Figure 2. Pictorial illustration of the working principle of convolutional neural networks (CNN) with
average pooling. Moreover, the formula for calculating the output feature size of a convolutional
operation is also shown.

Table 1. Hyperparameters of LRS-RCNN.

Hyperparameter Value Hyperparameter Value

Conv1 20 3 × 3 kernels + 1 × 2 AP FC1 240 neurons

Conv2 40 3 × 3 kernels + 1 × 2 AP FC2 120 neurons

Paddings 1 FC3 50 neurons

Activation function ReLU No. of Epochs 700

Training batch size 64 Test batch size 100

Optimizer SGD Initial learning rate 0.01

Momentum 0.5 L2 regularization λ 0.001

Nanobeam’s (H, W) (1, 13) Learning rate scheduler ReduceOnPlateau

L3’s (H, W) (5, 12) Loss function MSE

2.2. Algorithm Description and Approach

Figure 3 schematically illustrates the full deep learning algorithm for designing
nanophotonic structures by LRS-RCNN. DNNs generally need large datasets for it to
effectively learn meaningful experiences and patterns that can aid in the prediction of
future events. To generate a training dataset, one chooses the specific structure of interest,
randomly fluctuates its design parameters (locations, radii, thicknesses, materials, refractive
indices, etc.), and runs Lumerical FDTD [49] simulation to compute the corresponding
optical properties (Poyting vector, Q-factor, reflectance, transmittance, resonant frequency,
etc.). For our applications, we chose the target photonic crystals and generated 12,750 data
samples in FDTD. A simulation of these 12,750 samples was completed in about two weeks;
however, the actual time length may vary depending on the type of structures and the
computing resources one possesses. We should stress that all data were strictly generated
from simulations, and no experimental data/images were produced/used in this work.

After initial data collection, the algorithm follows a 3-step process, as shown in
Figure 3: preprocess and split the data, train and optimize the model, and lastly validate
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the model. Specifically, the dataset is first normalized to have unit standard deviation and
then randomly split into three sets—a training set (10,000 data points), a test set (2500 data
points), and a validations set (250 data points). These three sets are randomly split up to
guarantee that all data features are uniformly distributed to enhance the generalizibility of
our model [2]. Normalization was necessary because the input values are on the order of
10−9 and would have led to vanishing gradients in the training process. During training,
one evaluates the training results with the test dataset and closely monitors losses over
entire epochs. Care should be taken to ensure the model does not overfit or underfit, both
of which are undesirable cases in machine learning [1,2]. After training is complete, as the
final step, one should validate the correctness of the learned model by using the validation
dataset by checking for signs of any overfitting. It is important to note that the validation
data should not have been seen by the model beforehand.

Nanophotonic
structures

L3 photonic crystal

Nanobean

DFB laser
Topological
Metamaerial

Plasmonics nanostructures
power splitter

...

Simulation sowftware

Nanophotonic structure
FDTD simulation data

Preprocessing and splitting

Training dataset Test dataset Validation dataset

Step 1

Step 2
Step 3

LRS-RCNN model training
Yes

No

Parameter optimization Validation Results

Trained LRS-RCNN model
Accurate

No overfitting?
No underfitting?

n

Metamaterial

Figure 3. LRS-RCNN algorithm for modeling nanophotonic structures, implemented with a multi-
step process: choose the desired structure, randomly fluctuate its design parameters and compute
the optical properties in FDTD (pre-training steps), preprocess the dataset (step 1), train the model
(step 2), and finally validate the model (step 3). Not shown in the diagram are the adaptive learning
rates and L2 regularization, which are both core components of this algorithm.

To realize smart and rapid design of nanophotonic structures, we utilized two impor-
tant techniques that are quintessential parts of the LRS-RCNN algorithm:

1. Adaptive learning rate through learning rate scheduling and, thus, the “LRS” in LRS-
RCNN. Adaptive learning rate works by dynamically reducing the learning rate when
training slows down or a metric hits a plateau and has the power of gaining robust-
ness against gradient noise and inducing a smoother and faster convergence [1,2,48].
While there is a multitude of learning rate schedulers available, Reduce-On-Plateau
was selected in this work due to its stable and consistent behavior according to
our experiments.

2. L2 Regularization and, thus, the “R” after the hyphen in LRS-RCNN. When there is
a complex model with a large number of features in the dataset, L2 regularization
can be used in backpropagation to address the common overfitting issue and boost
generalizibility [1,2]. It works by adding a squared penalty term associated with
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weight parameters (W) to the loss function, as shown in Equation (1), where λ controls
how much one would like to penalize large weights. The Error term corresponds to
MSE in Equation (2).

Regularized Loss = Error(xi, x∗) + λ
N

∑
i

W2
i (1)

Although both techniques have been rarely adopted in the literature, they have brought
about tremendous benefits and improvement to the deep learning algorithm as shown later
in this article.

Next, the stochastic gradient descent (SGD) optimizer was used to minimize the loss
function, which is the mean squared error (MSE). Equation (2) calculates the MSE that is
defined as the averaged distance between the value xi predicted by LRS-RCNN and the
target value x∗. x here could represent any optical properties associated with the chosen
structure. x∗ is also commonly referred to as the “label” in machine learning terminology.
In Equations (1) and (2), N is the batch size. An accurate predictor with low loss and fast
convergence can be realized by optimizing the network hyperparameters listed in Table 1.

MSE =
1
N

N

∑
i
(xi − x∗)2 (2)

Lastly, the quality of the trained LRS-RCNN will be assessed by a performance metric
commonly used in deep learning: the prediction error εpred. εpred represents the relative
difference between xi and x∗ (Equation (3)). In other words, εpred = 100% − prediction
accuracy. Both Equations (2) and (3) are part of the closed-loop in Step 2 of Figure 3 for
optimizing the model.

εpred =
|xi − x∗|

x∗
× 100% (3)

3. Results and Discussion

The full-fledged LRS-RCNN model, once properly trained and validated, can be
applied as a smart tool to rapidly predict the optical properties of nanophotonic structures.
Here, we take a nanobeam and an L3 nanocavity (Figures 4 and 5, respectively) as two
examples to demonstrate the power of LRS-RCNN. Figure 4 shows our initial nanobeam
design similar to [36,37], where Figure 4a is the SEM image of an actual InP nanobeam
fabricated by us. Figure 4b illustrates the original design parameters including semi-minor
axis, semi-major axis, lattic constant a, and number of holes, while Figure 4c showcases
the corresponding Ey filed profile, Q-factor, and modal volume V. Figure 4d illustrates
how the holes have been randomly shifted relative to Figure 4b to generate the dataset
as laid out in Section 2.2. The details of the dataset generated are summarized in Table 2.
Similarly to nanobeams, Figure 5 shows our initial L3 nanocavity design where Figure 5a
contains the original design parameters and optical properties and Figure 5b,c are two
samples in the dataset with randomly shifted holes. The L3 nanocavity dataset is also
summarized in Table 2. Since nanobeam has 13 holes on each side (symmetrically shifted)
and each hole has three design parameters, there is a total of 39 DOFs; by the same token,
the L3 nanocavity is calculated to have 162 DOFs (the complete dataset and its detailed
description can be found at [50]).
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Table 2. Specifications of the dataset, generated according to Section 2.2, for training LRS-RCNN
(DA = design parameter, OP = optical property, and DOF = degree of freedom). Left panel: nanobeam;
right panel: L3 nanocavity. DAs such as “x locations” and “r” refer to the x coordinate and radius of
each individual air hole, respectively. Corresponding OPs are computed by FDTD simulation.

Nanobeam DAs Nanobeam OPs L3 DAs L3 OPs

r1 Q-factor x locations Q-factor

r2 Modal volume V y locations Modal volume V

x locations r

DOF = 13× 3 = 39 DOF = 54× 3 = 162

(a)

(b)

(c)

a = 337nm

r
r

2

1

outer hole
r1 = 96.38nm
r2 = 144.57nm

Q = 8.43×104
V = 0.0019(λ/n)

3

5μm

ellipse

inner hole
r1 = 96.38nm
r2 = 103.12nm

   109.86
   116.60
   123.34

Min
Max

Ey field profile

(d)
x

y

 Blue: original   Red: shifted 

Figure 4. Nanobeam structure. (a) SEM image of an actual fabricated nanobeam by us. (b,c) The initial
structure’s design parameters and optical properties, respectively. As shown, holes are elliptically
shaped with r1 and r2 as its two axes. (d) A sample in the dataset with randomly shifted holes. Blue:
original holes; red: shifted holes.

          Air holes
(r = 89.6 nm, a = 320 nm)

 Modeling area

InP slab
(n = 3.4)

X

y

V = 0.97(λ/n)3
Q = 4.24×10 5(a)

(b)

(c)
Q FDTD = 3.66×105 VFDTD = 0.892(λ/n)3

Q FDTD = 3.01×105 VFDTD = 0.898(λ/n)3

Figure 5. L3 nanocavity structure. (a) The initial structure’s design parameters and optical properties.
Yellow box is the region where we randomly fluctuate the design parameters. Inset: the Ey field of
the initial structure. (b,c) Two samples in the dataset with randomly shifted holes. Black: original
holes; red: shifted holes. Far right figures are magnified views of the configuration.
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3.1. Nanobeam

Figure 6 shows the learning results of LRS-RCNN when trained to model the nanobeam.
Figure 6a,b are the convergence curves of εpred and MSE over the entire epochs for Q, re-
spectively, while Figure 6c,d are those for V. Key performance metrics using the test dataset
have been extracted from Figure 6 and summarized in Table 3 for comparison to prior
works, where bold-faced numbers indicate the best metrics among all listed works. As
seen in Table 3, in the case of the nanobeam, LRS-RCNN yielded dominant performance
and contributed three best metrics—min εpred for Q, min MSE, and MSE for V—that are
multiple orders of magnitude smaller than existing literature data [10,13–15,18,22,23,51].
Furthermore, some of the other metrics, such as prediction time for a single structure
and time speedup relative to conventional FDTD simulation (over six orders of magni-
tude), were also placed high up on the leaderboard. These results have demonstrated
LRS-RCNN’s state-of-the-art capacity for the smart and rapid design of the nanobeam.

Next, Figure 7 exhibits the validation results of the trained LRS-RCNN using the
validation dataset, where the prediction error εpred for both the Q and V are plotted. This
step is necessary for verifying the model’s ability to generalize unknown design parameters
and for checking for any presence of overfitting. As shown in Figure 7a,c, statistically
speaking, an average εpred of 1.317% and a median εpred of 1.088% warrant a prediction
accuracy for Q close to 99% (the highest so far in the literature). Similarly, according to
Figure 7b,d, the prediction accuracy for V is approaching 95%, which is still considered
highly accurate for DNNs. Although the highest εpred for V is close to 15%, it can be ignored
as outliers as shown in the boxplot Figure 7d. These validation results guarantee that LRS-
RCNN has attained excellent generalizibility as a predictor for both optical properties.

Lastly, it should be noted that since this is the first time V has been included in any
deep learning based modeling of photonic crystals in the literature, the authors could only
compare the training results of V against their own results of Q during the production of
this work. The authors hope what is demonstrated here could be used as a benchmark for
future work.
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Figure 6. Learning curves of LRS-RCNN when trained to characterize nanobeam’s Q and V. Top
panel contains results for Q: (a) prediction error εpred vs. Epochs curve; (b) MSE vs. Epochs curve,
for both training (yellow) and test (green) datasets. Min εpred and MSE using the test dataset are also
labeled on the figures, respectively. Bottom panel are the same results for V (c,d).
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Table 3. Results of training LRS-RCNN with nanobeam and L3 nanocavity. Tabulated are the performance metrics of the predictor at the test/validation phase
and its comparison against prior works. Data partially extracted from Figures 6 and 8. Overlined parameters, such as εpred and MSE, indicate converged values.
Bold-faced numbers are best metrics. Prediction time and speedup vs. FDTD, both calculated by averaging the time measured with samples in the validation dataset,
refer to the time for characterizing a single structure by LRS-RCNN. N/A means no data available from the cited work.

min εpred εpred min MSE MSE Epochs Training Time Prediction
Time

Speedup (vs.
FDTD)

Nanobeam
Q 0.000157% 0.0148% 0.00734 0.00735

700 9 min 7× 10−5 s 5.1× 106

V 0.00102% 0.141% 3.00× 10−8 3.16× 10−8

L3
Q 0.00105% 0.0112% 0.000360 0.000365

300 5 min 9× 10−5 s 3× 106

V 0.00317% 0.0158% 0.00252 0.00282

Gou et al. [22] 0.540% N/A 0.000300 N/A 1000 143 s 3.6× 10−5 s 1.2× 108

Christensen
et al. [14] 0.470% 0.530% N/A 0.006 400 3 min 0.02 s N/A

Asano et al. [10] 16.0% 19.0% N/A N/A 2× 105 N/A N/A N/A

Chugh et al. [15] 1.00% N/A N/A 0.00808 4000 N/A N/A N/A

Singh et al. [13] N/A N/A 0.00810 0.014 500 45 min N/A N/A

Chen et al. [23] 0.700% 5.00% N/A N/A 110 N/A N/A N/A

Wiecha et al. [18] N/A 5.78% N/A N/A 100 200 min 3× 10−3 s 105

Tahersima
et al. [51] N/A N/A N/A 0.130 10,000 22 min N/A N/A
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Figure 7. Validation results of the trained LRS-RCNN for nanobeam using the validation dataset.
Plotted is the histogram of εpred for Q in (a) and V in (b). The boxplot in (c) is extracted from data
in (a), and (d) from (b). Inset data: minimum, average, and median εpred values in the histograms.

3.2. L3 Nanocavity

In the same fashion as the nanobeam, Figure 8 shows the learning results of LRS-
RCNN when trained to model the L3 nanocavity, the metrics data of which have also been
summarized in Table 3. Although LRS-RCNN only contributed one best metric (i.e., εpred for
Q), its other metrics are all ranked high on the leaderboard and are comparable to the best
metrics reported for the nanobeam. For instance, the min εpred, MSE, and prediction times
are better than and/or comparable to those reported in prior works [10,13–15,18,22,23,51]
by a large margin. Moreover, the Epochs until convergence, which include 300, leads to
super fast convergence and largely reduced training time. Therefore, we have once again
demonstrated the power of LRS-RCNN for the smart and rapid design of L3 nanocavities.

As for validation, one can see that in Figure 9a, an average εpred of 0.167% and a
median εpred of 0.126% warrant a prediction accuracy for Q close to 99.9% (the highest so
far in the literature). Similarly, according to Figure 9b, the prediction accuracy for V is
approaching 97%, which is generally regarded as highly accurate for DNNs. Although the
max εpred for V is as high as 8.4%, it can be ignored as outliers as illustrated in the boxplot
of Figure 9d. The validation results here can reinforce the fact that LRS-RCNN is a well
generalizible predictor for unseen optical properties.
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for both training (yellow) and test (green) datasets. Min εpred and MSE using the test dataset are also
labeled on the figures, respectively. Bottom panel are the same results for V (c,d).
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3.3. On the Importance of Adaptiveness and Regularization

The significant impacts learning rate scheduling (LRS) and L2 regularization have on
the deep learning model is discussed here. For simplicity, we only conducted experiments
with L3 nanocavity, and similar results should easily extend to nanobeam and other
structures. For the comparative experiment, the learning curves of LRS-RCNN without
using LRS and L2 regularization are compared to those shown previously in Figure 8. It
should be noted that the exact same hyperparameters and dataset are used here for training.
Figure 10 shows the results without using LRS, where it can be observed that the learning
curves are much more noisier than those in Figure 8 and they even failed to converge
within the initial 300 epochs. This means a much slower convergence speed. Next, in
Figure 11, one can observe the existence of large overfittings in all of them, but (c) when
the L2 regularization is not used, which means poor generalizibility of the trained model.
Therefore, we can conclude that both LRS (i.e., adaptive learning rate) and L2 regularization
are crucial for the realization of smart and rapid designs.
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same order as Figure 8. One can observe the substantially noisier convergence curves in (a–d) in this
case compared to before.
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4. Conclusions

In conclusion, this work has proposed and successfully demonstrated a self-adaptive
and regularized CNN model for designing nanophotonic structures. The smart LRS-RCNN
with dynamic learning rate scheduling and L2 regularization allows one to rapidly predict
optical properties with high confidence from a large design parameter space. Specifically,
when tested on two different photonic crystal structures, all major performance metrics
improved by several orders of magnitude compared to previously reported values and,
thus, proved that LRS-RCNN reached a state-of-the-art capacity. Using a validation set not
previously seen, LRS-RCNN was still able to predict Q and V with an accuracy up to 99.9%
and 97%, respectively. This demonstrates the strong generalizibility of the trained model
that allows for the prediction of optical properties from an arbitrary set of design parameters
or even arbitrary nanophotonic structures. In addition, since this is the first time V has
been characterized by a deep learning model, we hope our work can serve as a benchmark
for assessing related works in the future. Lastly and more broadly, this generalized accurate
predictor potentially paves the way for the rapid design of a series of optoelectronic and
photonic integrated devices [32,52–61] with an extremely high performance caliber.

A limitation of this work might be a lack of experimental data that back the numerical
findings. However, given Lumerical FDTD’s proven strong fidelity relative to experimental
data, we can say with confidence that the results in Figures 6–9 and Table 3 are highly
accurate and reliable. Nonetheless, using experiments to support calculations is still
an important component of scientific research and worth our attention going forward.
Efforts could further develop our architecture to predict more optical properties, including
resonance frequency, full width at half maximum and lasing threshold, etc., all of which are
key attributes of lasers based on photonic crystals. This would likely require the adoption
of a more powerful DNN, and the latest development in vision transformers [62] and
attention nets [63] are promising candidates to choose from. In addition, data collection so
far takes up to two weeks to complete due to the large computational complexity of FDTD
simulations. To resolve this, we would turn to some open-source light-weight simulation
packages such as MPB and MEEP that would greatly reduce time consumption at the cost
of losing certain degree of accuracy. Another benefit of this alternative approach would be
the ability to collect more data. Furthermore, we could experiment our algorithm on a more
diverse pool of structures, such as plasmonic structures, metamaterials, and DFB lasers,
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all of which are important and interesting paths to pursue. Lastly, instead of relying on
aimlessly cascading DNNs or gradient-based optimization algorithms, we could employ
the latest reinforcement learning models [64] to inverse design and optimize nanophotonic
structures on a large scale.
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