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It’s complicated: characterizing the time-varying relationship
between cell phone mobility and COVID-19 spread in the US
Sean Jewell 1,2✉, Joseph Futoma 1,2, Lauren Hannah1, Andrew C. Miller1, Nicholas J. Foti1 and Emily B. Fox1

Restricting in-person interactions is an important technique for limiting the spread of severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2). Although early research found strong associations between cell phone mobility and infection spread
during the initial outbreaks in the United States, it is unclear whether this relationship persists across locations and time. We
propose an interpretable statistical model to identify spatiotemporal variation in the association between mobility and infection
rates. Using 1 year of US county-level data, we found that sharp drops in mobility often coincided with declining infection rates in
the most populous counties in spring 2020. However, the association varied considerably in other locations and across time. Our
findings are sensitive to model flexibility, as more restrictive models average over local effects and mask much of the
spatiotemporal variation. We conclude that mobility does not appear to be a reliable leading indicator of infection rates, which may
have important policy implications.
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INTRODUCTION
In the hopes of better informing public health decision-making,
researchers have developed many prediction models to forecast
the COVID-19 pandemic. Effective forecasts capable of identifying
reliable leading indicators of emerging outbreaks could improve
policy recommendations. To this end, factors such as mask-
wearing1,2, weather3,4, and demography5 have been found to be
associated with rates of infection in the United States. The
effectiveness of other non-pharmaceutical interventions (NPIs)
such as government lockdowns is also well studied6–8, although
some questions still remain. For instance, it is challenging to
disentangle the effects of overlapping NPIs, such as the rapid
increase in mask-wearing in early April 2020 alongside widespread
lockdowns in many parts of the United States.
Cell phone mobility data has emerged as an appealing

surrogate of government mandates. Since it is a directly
observable measure of human movement, it contains more
information than the duration of government orders. In addition,
it may serve as a better proxy for the actual quantity that
government actions are intended to reduce: the relative
frequency of risky in-person interactions where transmissions
may occur. Mobility information is available through public APIs
such as Google’s Community Mobility Reports9 and SafeGraph’s
completely at-home metric10. The ubiquity of accessible mobility
data, and the lack of alternative sources of data—such as
contact tracing information—has made mobility an attractive
proxy for interactions.
As mobility plummeted to unprecedented levels during the first

wave of the pandemic, these publicly available data sources
received widespread attention. Mainstream media such as the
Washington Post11,12, Wall Street Journal13, New York Times14, Los
Angeles Times15, and National Public Radio16 have all analyzed cell
phone mobility and highlighted its record drop in 2020. Moreover,
public-facing epidemiology dashboards, such as the US CDC and
Prevention17 and the Institute for Health Metrics and Evaluation18,
prominently list mobility as a metric of interest. As articles in
leading scientific journals began to suggest that mobility data

could be a valuable tool for battling the pandemic19–21, it is not
surprising that many COVID-19 forecasts have used mobility as a
data source.
Although there is a large body of work using mobility to

predict COVID-19 spread, many of their conclusions are not
broadly applicable outside of the initial wave of the pandemic. In
particular, data limitations and inherent modeling assumptions
restrict the applicability of these earlier works8,21–25. As the
pandemic evolved, an obvious limitation is that early papers only
looked at data from the first few months through June 20208,21–24.
Furthermore, most articles limited the set of locations modeled to
a small number of major cities21,22, or fit models at a coarser state
level8,25. Such limitations in the length of time and number of
locations modeled render these works incapable of making
inferences about local outbreaks across time. Another key
limitation in most prior work—with one exception24—is the
overly restrictive assumption that the relationship between
mobility and infection rates is stationary. Although this stationarity
assumption was reasonable during the initial wave of the
pandemic, large shifts in behavior due to evolving government
guidance and adherence to such guidance suggest that coarse
mobility may no longer be a good proxy for potentially risky
transmission events26,27; as such, the relationship between
mobility and infection rates today likely differs from spring 2020.
Capturing the time-varying relationship between mobility and

infection rates is especially challenging due to the incomplete,
heterogeneous, and non-stationary nature of the data. For
instance, the lack of reliable data on adherence to mask-wearing
during the beginning of the pandemic in spring 2020 makes it
difficult to identify the relationship between mask-wearing and
infection rates. This problem is exacerbated by the fact that it is
important to adjust for mask-wearing when interpreting the effect
of mobility on growth rates. Reported case data come with their
own set of unique challenges, including highly variable reporting
delays, strong day-of-week effects, and differential rates of testing.
Moreover, since we only observe this data over a relatively short
time frame, it is difficult to adjust for seasonality.
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To assess the temporal and spatial utility of mobility data in this
challenging data setting, a central objective of this work is to
identify a flexible yet interpretable class of models that can
sufficiently disentangle how the effect of mobility changes over
time and space. To this end, we show that restrictive models
effectively average over local effects by naively assuming a
constant relationship between mobility and transmission. Con-
versely, we show that overly flexible models lead to spurious
correlations and conclusions.
Our proposed multilevel regression model strikes a balance: we

allow the association between mobility and growth rates to vary
across groups of nearby counties and over four distinct “waves” of
13 weeks each. The granularity of this spatial clustering and
temporal variation of coefficients is critical to the robustness of
our inferences. We analyze an entire year of data across 94% of all
3143 US counties (covering 99.7% of the total population) and use
Google’s Mobility Trends as our measure of mobility. We replicate
prior work that found strong first wave associations between
mobility and infection rates. Furthermore, we find that the
strength of this association is strongest in the most populous
counties, but is otherwise highly variable across geographies, and
significantly weakens after the first wave.

RESULTS
Visualization of mobility measures and infection growth rates
over time
We first examine weekly county-level mobility and infection
growth rate trends. Figure 1 visualizes the estimated weekly
infection growth rate of the inferred true incidence of infection

for each of the 2951 US counties modeled. Counties are
displayed according to the nine US Census divisions: New
England, Mid Atlantic, East North Central, West North Central,
South Atlantic, East South Central, West South Central, Mountain,
and Pacific; a map of Census Regions and Divisions is available
from the US Census28. Within a division, counties falling in the
same combined statistical area (CSA—a grouping of counties
connected by workplaces and commuting patterns) appear in
adjacent rows. Counties in the same CSA tend to exhibit similar
growth rates, as evidenced by the clear clustering patterns in
growth rates. Different waves of the pandemic across divisions
are also apparent.
Google’s mobility trends capture six distinct types of mobility:

grocery/pharmacy, residential, retail/recreation, workplace, transit,
and parks. Figure 2 shows the weekly trend for each of these
variables for each county in three CSAs: New York City, San
Francisco, and Green Bay, WI. Mobility values are reported relative
to a baseline level in January 2020 for each county, which
normalizes for population and pre-pandemic mobility levels. The
rapid drop in mobility following widespread lockdowns in March
2020 is present in all locations. Furthermore, it is clear that these
six mobility variables are tightly connected: grocery/pharmacy,
retail/recreation, workplace, and transit are positively correlated,
while residential mobility is negatively correlated with the others.

Overly flexible models lead to incorrect and misleading
inferences
Before presenting results from our final model, we begin with
some examples of how overly flexible models can overfit and lead
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Fig. 1 Weekly log infection growth rate yi,t of the inferred true incidence of infection. Each county i is faceted into panels by its US Census
division. Within a panel, each row represents a county, and counties in the same combined statistical area (CSA) are grouped together in
adjacent rows. For example, the cluster of rows in the bottom third of the Mid Atlantic with rapidly declining growth rates in April 2020
represent counties in the New York-Newark CSA. Counties within the same CSA tend to exhibit similar trends in log growth rate. At a high
level, the national surge in fall 2020, followed by declining infection rates in early 2021 is pronounced.
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to confusing conclusions. Each column of Fig. 3 highlights a
different type of pitfall that can occur when the models under
consideration are not properly constrained. The top row of the
figure plots specific predictor variables (e.g., temperature or
mobility) of interest. The middle row shows the estimated
coefficients learned by a model for the variables in the top row.
The bottom row shows the observed and fitted (i.e., predicted)
values from the model.
The left column (labeled “collinear”) of Fig. 3 illustrates an issue

caused by collinear input predictor variables. It is tempting to
include each of the Google mobility types as separate variables in
a model that predicts weekly infection growth rates from
covariates such as mobility. However, the strong correlations
between the different mobility variables often lead to misleading
estimated associations between distinct mobility variables and
infection growth rates. The top-left pane of the figure displays the
retail/recreation and workplace mobility, two highly correlated

mobility metrics within this CSA. Nonsensically, the learned
association between retail mobility and infection rates is negative
throughout the first three waves. This misleadingly suggests that
higher levels of retail-related mobility correlate with lower
infection rates, but is clearly an artifact of the collinearity between
retail and workplace mobility. In our final model, we collapse the
original six Google mobility measures into a single value using
principal components analysis to avoid such unintentional side
effects caused by collinearity29. This univariate feature captures
over 60% of the variability in the original six mobility measures.
The middle (“overflexible-mobility”) column of Fig. 3 identifies

another pitfall caused by too much model flexibility. The first
principal component of mobility is plotted, along with its
estimated association with growth rates from a model that allows
for the association to varying freely each month. The model’s
effect of mobility over time for this location varies considerably
and appears to be overfit.
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Fig. 2 Illustrative county-level mobility. County-level weekly % change from baseline mobility for six mobility categories (grocery and
pharmacy, parks, residential, retail and recreation, transit stations, and workplace) are shown for three CSAs.
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The right (“overflexible-temperature”) column Fig. 3 shows
results from a different model, now allowing both the effect of
temperature and the univariate measure of mobility to vary
smoothly over time. Allowing the effect of temperature to also
vary over time overpowers much of the signal contained in
mobility, and it is clear that the model is overfitted by the near-
perfect fit observed.

Properly constrained models lead to meaningful inferences
We incorporated the findings from these pitfalls into our final
model. We use the first principal component of mobility as a
univariate summary of the original six mobility metrics, and allow
its effect to vary over four “waves” of 13 weeks each, spanning
February 2020 to February 2021. Full details of the model can be
found in Methods.
As the first set of qualitative checks, we display in Fig. 4 how

well our final model fits the observed infection rates for three
CSAs chosen to illustrate heterogeneity in conclusions and model
fit. Each column shows results from San Francisco, New York City,
and Green Bay, WI. For each location, the aggregate mobility
metric is plotted over time, along with the model’s coefficients for
mobility per wave and the fitted and observed infection rate
values. New York had a strong association between mobility and
growth rates at the beginning of the pandemic, Green Bay had a
strong association later in the pandemic, and San Francisco never
had a strong association.

Mobility was most predictive in urban areas during spring
2020; elsewhere exhibited substantial variation
Figure 5 presents the R2 of our model across different subsets of
data. Panel (a) shows the overall R2 of the model for each week
and the R2 across counties with varying population sizes. The
overall fit is best during the first months of the pandemic and for
the largest counties (populations of more than 250,000, compris-
ing 64% of the total US population). R2 is low across the rural 46%
of counties with a population of less than 25,000. Panel (b) shows
similar R2 results according to the US Census region. The Northeast
exhibits the best fit while the South has the poorest fit. Panels (c)
and (d) show additional R2 results as a function of overall relative
mobility levels across all locations and time. Model performance is
highest during the first wave in most urban counties when
mobility levels are at their lowest values. Interestingly, during the
third and fourth waves, there is minimal difference in R2 as a
function of mobility levels, suggesting that at this coarse level of
analysis mobility’s association with infection growth rates
weakened over time.
In Fig. 6, we visualize the effect of mobility alongside the

corresponding R2 for each wave and CSA on a map of the US.
There is a striking degree of non-stationarity in the estimated
effects over time and space. In the first wave, the estimated effect
of mobility is close to zero throughout most of the South, as well
as much of the West and Midwest. The signal weakens
considerably in the second wave, while in the third wave the
signal is strongest in the Midwest. Although the estimated effects
of mobility sometimes appear strong, as in the fourth wave
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Fig. 3 Illustrative model shortcomings. Pitfalls due to collinearity in covariates (left), too much flexibility in mobility (middle), and too much
flexibility by including temperature (right). Observed covariates and infection rates from two counties are used to demonstrate these
limitations; the same data is used for both overflexibile examples. Observed covariate values (top), estimated time-varying effects (middle),
and fitted and observed growth rates (bottom) are shown with median (solid lines) and 95% quantiles (shaded).
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spanning winter 2020 into early 2021, the corresponding R2 values
are often fairly weak.

Overly rigid models underfit and wash out spatial and
temporal effects
To assess whether our final model can be made simpler without
sacrificing accuracy, we consider simpler models that limit
mobility’s effect to vary by time and space. We construct an
ablation study of six models: letting mobility’s effect vary by CSA,
by region, or be fixed nationally; and letting mobility’s effect vary
for each wave, or be fixed in time.
For the three example CSAs shown previously, we display the

estimated effect of mobility across time for each ablation in Fig. 7.
Comparisons of models allowing differential effects of mobility
across locations show that rigid national grouping averages over
effects visible at finer spatial groupings, such as by region and
CSA. Similar limitations are observed with constant temporal
effects for mobility. This averaging is not just superficial: our
conclusions on the association between mobility and the infection
growth rate change. For example, in our final model, we conclude
that there is no effect of mobility on the infection growth rate in
New York during the third wave. However, all other progressions
would conclude that there is a strong association. Likewise, the
simpler model that allows mobility’s effect to vary by CSA but
forces it to be fixed in time would conclude that New York and
Green Bay have very similar associations between mobility and
infection rates. However, the final model clearly shows that they
are actually quite different, as New York had the strongest
association early on while the opposite trend held in Green Bay.
Table 1 tabulates the overall and by region R2 for each of the six

model progressions. As expected, greater flexibility generally

results in a higher overall R2. The greatest differences in R2 are
observed at finer disaggregations: the simplest model has an R2 of
just 19% in the North East, whereas our four-wave CSA model
achieves an R2 of over 40%; indicating that both time-varying
coefficients and choice of clustering are critical. In Supplementary
Fig. 4 we show that our final model does not overfit.

Assessing the mask effect
On April 4, 2020, the Centers for Disease Control (CDC) began
recommending public mask use, a stark reversal of earlier
guidance. This led to an increase in mask use across the United
States coincident with large drops in mobility. As a result of
these concurrent events, mask use and mobility are strongly
correlated in the first wave. To facilitate interpretation, we model
the association between masks and the infection growth rate as
a national effect that is constant across time. All other factors
held constant, we estimate an expected 2% decrease in the
infection growth rate due to an additive increase in mask
adherence of 10%.
To untangle the effect of masks and mobility in the first wave,

we compare the R2 by date in models with and without a mask
variable. In the 4-week period following April 4, 2020, we find
that overall R2 increases by approximately 10% when the mask
variable is included in the model; see Supplementary Fig. 5 for
additional details.

Conclusions are robust across different mobility data sources
To assess whether our conclusions are sensitive to the choice of
mobility measure, we consider SafeGraph’s completely at home
data measure (completely_home_prop_7dav)10,30 in place of
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the first principal component of Google’s mobility indicators. Our
conclusions are very similar when using either Google’s or
SafeGraph’s mobility measure. Panel (a) of Fig. 8 displays
performance, as measured by R2, over time and by county
population. As in Fig. 5, R2 is highest at the beginning of the
pandemic and in high population counties.
In panel (b) of Fig. 8, the rolling 3-month correlation between

SafeGraph’s completely at the home measure and each of
Google’s six mobility measures is plotted. From March–June
2020, we see correlations with large magnitudes across all
variables, providing evidence that stay-at-home orders, lockdown
orders, and general uncertainty resulted in a large correlated shift
in mobility that is observable across different measures. As a
result, during the first wave of the pandemic, any of these mobility
measures should have a similar ability to predict infection rates.
However, as the pandemic progressed this relationship eroded,
potentially suggesting that coarse cell phone measures of mobility
began to capture different aspects of mobility and in ways that
may not as reliably explain person-to-person contact patterns.

DISCUSSION
The primary aim of our study is to disentangle how the association
between mobility and COVID-19 infection rates varies across time
and space. Our work is unique in that it fits time-varying models
down to the county level for the vast majority of US counties with
an entire year of COVID-19 data. This allows us to much more
closely examine when and where broad claims do or do not hold,
and to try to assess what drives those patterns.
We find that at an aggregate level, mobility was a strong

predictor of COVID-19 weekly infection rates in the first wave,
from February 29, 2020 through May 23, 2020. This is similar to
findings in other studies, where cell phone mobility was lauded as
a strong predictor in the US and globally during the early part of
the pandemic21,22,24,31–33. A few later studies noted that mobility
was markedly less effective as a predictor in the US after the first
wave26,27,34, which is supported by our findings. We found that the
association between mobility and infection rates in the most

populous areas largely diminished over the summer and into the
fall, then briefly strengthened in late 2020 and into early 2021
before weakening again.
A complete understanding of the relationship between mobility

and infection rates remains frustratingly elusive. Importantly,
mobility is only a coarse proxy for a desired, but unmeasured
quantity: the frequency of risky in-person interactions in a
location, which should correlate more directly with infection rates.
As in-person interactions changed over the last year due to better
mask-wearing, hygiene, and social distancing, mobility data has
become confounded and thus a worse proxy for risky interactions.
Moreover, the best mobility proxy for risky behavior could differ at
different times and locations through the pandemic. We have also
demonstrated that as mobility levels have slowly rebounded from
extreme decreases seen during the first wave, different mobility
measures have become less correlated. This implies that while
almost any mobility metric would be a good proxy for risky
interactions during extreme mobility decreases, much more care is
required to select a proxy as mobility levels veer closer to pre-
pandemic levels. We conclude that, while mobility was a
reasonable proxy for less-safe practices at first, it was not
necessarily stable through time or space.
In terms of modeling, our findings show that models that

include mobility need to be either targeted to specific times and
places, or include a relationship that varies with time and space.
The latter is fundamentally challenging if other complicated
relationships, such as with spatiotemporal-varying temperature or
mask-usage associations, are included as well. The degrees of
freedom quickly overwhelm data that is limited by the collection
period and correlations between explanatory variables. All
statistical models used to understand relationships between
COVID-19 incidence and explanatory variables should be checked
for the stability of coefficient values and predictive accuracy across
time and space to avoid overfitting and spurious conclusions.
There are several limitations to these conclusions. From a data

perspective, we face the fundamental problem of correcting for
systematic differences in testing that occur over long periods of
time and across locations. Although our use of infection growth
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rates provides some improvement over directly modeling total
inferred infections or unadjusted reported cases, such period-by-
period estimates cannot capture longer-term trends in differential
testing. While modeling hospitalizations could have addressed
such issues, these data are not widely available at the county level.
Another limitation arises due to a lack of detailed mask behavior
during the initial phases of the pandemic, making the task of
disentangling the effect of mobility and masks very difficult; see
the Supplementary Materials for an example. Additionally,
observed data is often systematically missing and must be
imputed, and checking the embedded assumptions in our
imputation models is challenging. We also only observe a year
of data which makes it impossible to correct for seasonality, such
as with the effect of temperature. Finally, we reiterate that

different types of mobility were likely better proxies for risky
behaviors at differing points during the pandemic. Notably, there
has been considerable public discourse about the potential role
that schools may have on transmission, but none of the six coarse
Google mobility metrics explicitly capture movement to and from
schools or universities.
On a modeling side, we choose to pursue statistical models that

directly estimate the association between mobility and the
infection growth rate. Although these regression models do not
allow us to simulate counterfactual scenarios as is possible with
compartmental models21,25,33,35, such models are restrictive and
subject to misspecification. Crucially, infection count data is
subject to changing protocols and availability, both of which are
confounded by the dynamics of disease spread and can cause

Fig. 6 Estimated coefficients and R2 by CSA across the four waves. Maps created using the R package usmap.
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identifiability issues for compartmental models. In contrast, our
regression framework is relatively easy to calibrate with existing
data, and furthermore, the simplicity of these models makes them
much more computationally efficient to fit than compartmental
models. One other modeling limitation to our work is the
simplifying assumption that the effect of mobility can only vary
over four 13-week “waves”. While our results did not seem
especially sensitive to the exact choice of how waves were
defined, this choice may miss subtle effects in certain locations.
In terms of policy, our findings imply that public health officials

should not focus exclusively on coarse mobility and must take into
account other factors to measure possible transmission events.
Conversely, our findings also suggest that there are settings where
increased mobility does not necessarily indicate increased rates of
transmission. However, the data are far too coarse to indicate
what those settings are and what level and type of mobility would
be safe. As states loosen mask usage and other restrictions, we
might again see a changing effect of mobility. Furthermore, both
the proliferation of more transmissible variants of the virus as well
as the increasing number of vaccinated people will likely

complicate the future relationship between mobility and COVID-
19 transmission. These effects were not included in our analyses
due to the time periods analyzed, but warrant future investigation.

METHODS
Overview
Our primary interest is to understand how the relationship between
COVID-19 outbreaks and mobility varies across time and geography.
Unfortunately, the exact time that new infections occur is never directly
observed. Instead, we must rely on noisy observations of the infection
incidence such as reported cases, hospitalizations, or deaths. To account
for this discrepancy, we estimate the incidence of infections with a newly
proposed statistical procedure that robustly estimates the true unknown
infection incidence from reported cases36. We apply this estimator to daily
reported cases for 2951 counties (covering 99.7% of the total population)
using data from the New York Times Coronavirus (COVID-19) repository37

and the New York City Department of Health COVID-19 repository38. We
then construct features from aggregated cell phone mobility data, mask-
usage surveys, temperature data, and demographic data. These features
are used to predict infection growth rates at the county level via a
hierarchical Bayesian regression model.
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Fig. 7 Overly rigid models average over spatiotemporal effects. The estimated effect of mobility for different spatial clustering (rows) and
the form of temporal effects (line type) for three illustrative CSAs are displayed. Median (solid lines) and 95% quantiles (shaded) are shown.

Table 1. R2 for no spatial clustering, clustering by region, or clustering by CSA, and constant or time-varying mobility coefficients.

Clustering Mobility effect Overall Midwest Northeast South West

None Constant 0.163 0.201 0.186 0.123 0.175

None Time varying 0.200 0.245 0.231 0.148 0.233

Region Constant 0.188 0.275 0.279 0.108 0.158

Region Time varying 0.216 0.318 0.289 0.125 0.196

CSA Constant 0.204 0.291 0.303 0.121 0.175

CSA Time varying 0.261 0.364 0.404 0.151 0.250

Final model R2 are shown in bold.
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Infection growth rate as an outcome
We hypothesized that mobility is more likely to correlate with the relative
growth of an outbreak rather than with its absolute size. As such, we
consider the log growth rate of the estimated incidence curve,
henceforth referred to as the growth rate. Specifically, let ri,t be the
estimated number of new infections for county i that occurred in week t.
As a unit-less quantity that measures the rate-of-change in the infection
rate, the growth rate, yi,t, is more robust to differential testing rates than a
quantity such as the estimated infection incidence itself. Define the
weekly growth rate yi,t as the log ratio of the total infections in the last
2 weeks: yi;t ¼ log ri;t=ri;t�1

� �
:

Figure 1 displays the weekly growth rate of infections by geographic
divisions, with counties ordered by their CSA. This figure illustrates the
heterogeneity in the weekly growth rate: different regions experienced
outbreaks of varying severity at different times. Similar temporal trends are
observed not only within geographic divisions but also in blocks of
counties corresponding to CSAs. Our subsequent modeling choices that
involve geographic hierarchies and wave breakpoints are informed by this
observed clustering.

Google mobility data processing
We use Google’s publicly available mobility trends as a surrogate for the
frequency of person-to-person contact. Google uses cell phone location
data to measure the difference in movement trends during the COVID-19
pandemic from baseline activity before the pandemic for grocery/
pharmacy, residential, retail/recreation, workplace, transit, and parks
categories. Normal mobility levels are defined for each weekday as the
median value of mobility over the 5 week period from January 3, 2020 to
February 6, 2020. Normalized daily mobility data for each of the six
categories are provided for each county over the course of the pandemic.
Additional details about the anonymization procedures, weekend and
holiday effects, and general data interpretation are provided by Google at
https://support.google.com/covid19-mobility/.
We impute missing temperature and mobility observations from

Google’s mobility trends using the Multivariate Imputation by Chained
Equations (mice) R package39. The MICE algorithm imputes missing values
by iteratively fitting a conditional distribution for each variable in a dataset
and using it to fill in missing values. This procedure is repeated a number
of times until convergence is achieved. We impute values using the
predictive mean matching method in mice. We parameterize the
conditional distribution for each variable as a linear model, conditioned
on the other observed variables. We also allow for a temporal trend per
variable (e.g., to allow there to be some trend for mobility) within each US
Census division and within each CSA, parameterized by natural cubic
splines. This allows each CSA and each division to have its own smoothly
varying trend per variable. We fit 25 multiply imputed datasets, and take
the mean of these imputations to use for our modeling.
To avoid collinearity in these features, as illustrated in Fig. 3, we fit

multilevel regression models with a univariate summary of mobility
obtained as the first principal component of Google’s six mobility variables.
For interpretation purposes, we enforce a positive first principal loading for
workplace mobility, so that higher values of this summary variable indicate
more time in public and less time at home.

Mask featurization
To construct a single measure of mask adherence over the course of the
pandemic, we combine survey responses from a few different sources. Pew
Research carried out two surveys on June 7, 2020 and August 8, 2020 and
released aggregate survey responses at the division level40, and the New
York Times and Dynata ran county-level surveys from July 2, 2020–July 14,
202037. From September 8, 2020, CMU’s Delphi Epidata group adminis-
tered and reported state-level daily mask adherence survey responses30.
We use the COVIDcast Epidata R package to download mask survey
responses from CMU’s Delphi Epidata repository.
We define our mask adherence feature piecewise: Between the two Pew

survey dates, we linearly interpolate such that the state mask value
intersects the average survey response of all counties in a state from the
New York Times survey on July 7. The slope of the interpolant is set to the
trend between the state’s corresponding June and August Pew division
responses. From the value on August 8, we linearly interpolate to the CMU
state-level value on September 8. If this results in a decrease in mask
adherence between August and September, we instead use a single
interpolant from June 7–September 8 defined by two points: the average

state-level response from the New York Times survey on July 7, and the
state level CMU value on September 8. This monotonicity constraint
ensures that the mask adherence level does not increase too quickly
between survey dates over the summer.
We further assume zero mask-wearing from the start of the pandemic

until one week after the CDC adjusted their mask-wearing recommenda-
tion on April 4; prior to this date, the CDC recommended not wearing
masks. From April 11 until June 7, the state mask value is equal to the
June 7 value.
Supplementary Figure 2 shows the median mask value in each US

Census Region and Division; mask compliance roughly increases from April
2020 to February 2021, with high variability across regions and divisions.

Data aggregation
Mobility, mask use, and temperature time series are constructed by
averaging daily measurements within each week. Google’s six mobility
metrics and temperature are collected at the county level, and the mask
feature is at the state level. The county-level population is an estimate from
the 2018 US Census.

County exclusion criteria
We exclude counties with less than 250 total COVID-19 cases as of the last
date considered, February 20, 2021, which removes 176 counties. Next, we
exclude counties with extreme growth patterns, where any weekly
absolute growth rate exceeds 2 (removing 8 counties), or absolute growth
rates exceeds 1.5 and the county has less than 50,000 people (removing 8
counties). These restrictions remove outliers that arise from difficult to
model events, such as prison outbreaks in sparsely populated counties.

Feature selection
In addition to mobility, mask adherence, temperature, and county
population, we also considered adjusting for county-level demographic,
socioeconomic, and health-related features. However, since these features
are constant in time and our model includes a random intercept by CSA,
these additional variables only account for intra-CSA variability. Empirically,
the inclusion of these variables did not improve performance and made
interpretation more difficult. As a result, we excluded these features from
our final model.

Multi-level regression model
We assume that the expected weekly infection growth rate in county i at
week t∈ {1,…, N} is a linear function of population Xi, temperature Ti,t,
mask compliance Csi ;t , and a three week moving average of the first
principal component of Google’s six mobility variables (constrained such
that workplace mobility’s loading is positive) Mi,t, at week t through a
multilevel Bayesian regression model

yi;t ¼ αci þ Xiβþ T i;tθþ Csi ;tϕþMi;tγci ;t þ ϵi;t

β; θ;ϕ � 1

ϵi;t � Nð0; σ2yÞ;
(1)

where si is the state of county i, the notation “A ~ 1” defines an improper
flat prior over the reals for the random variable A. Log population
estimates and weekly temperature observations are each centered by their
mean and normalized by twice their sample standard deviation.
To account for geographic clustering observed in the growth rate, we

assume that the effect of mobility varies by CSA, i.e., Mi;tγci ;t , where ci maps
county i to its CSA (a state pseudo-CSA is created for all counties within a
state that do not belong to one of the 175 named CSAs). This allows local
information sharing—effectively augmenting missing or incomplete
data—between counties within the same CSA. To account for non-
stationarity in mobility, we assume that the effect of mobility on the
infection rate varies across time. This is encoded through structured time-
varying coefficients γci ;t . We specify γci ;t through a fixed weight matrix
W 2 RN ´ R and a cluster-specific vector ρci of dimension R≪ N that
parameterizes the coefficients

γci ;t ¼ Wtρci ; (2)

where Wt is the tth row of the weight matrix W. In practice, N= 52 as we
model a full year of data.
For ease of interpretation, we assume the effect of mobility is piece-wise

constant over four waves: February 22, 2020–May 23, 2020; May 30,
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2020–August 22, 2020; August 29, 2020–November 21, 2020; November
28, 2020–February 20, 2021. This implies that γci ;t is a piece-wise constant
function with three discontinuities and can thus be parameterized by four
coefficients that describe the association between mobility and the
infection rate in each wave. In the piecewise constant model with R= 4
waves, W is specified with three fixed knot dates d1–d3: the tth row of W is
defined as Wt ¼ 1ðt�d1Þ; 1ðd1 < t�d2Þ; 1ðd2 < t�d3Þ; 1ðt > d3Þ

� �
. Here, 1A is an

indicator function that equals one if A holds, and is zero otherwise.

Cluster ci’s ρ coefficients are defined as ρci ¼ ρ1ci ; ρ
2
ci ; ρ

3
ci ; ρ

4
ci

h i>
. In practice,

we let d1 be May 23, 2020, d2 be August 22, 2020 and d3 be November 28,
2020, as this evenly splits the 4 waves into groups of 13 weeks each.
We further specify a joint distribution over the coefficients αci and ρci ,

αci ; ρ
>
ci

h i
�ind. N α0;ρ

>
0

� �
; Σ

� �
; (3)

where the covariance matrix Σ is defined through a scaled correlation
matrix Ω which is distributed according to the LKJ distribution41 with
shape parameter equal to two

Σ ¼ diagðτÞΩdiagðτÞ: (4)

The scales τ are half t-distributed with three degrees of freedom. The
population-level intercept α0 is t-distributed with three degrees of freedom
and ρ0 ~ 1.
To prevent physically implausible coefficient values, we constrain the

coefficients to be positive, that is, γci ;t � 0 for all ci and t. We enforce this
positivity constraint by applying the function f(x)=max(0, x) to all samples
from the posterior distribution of γci ;t . We found that such post-
thresholding generally led to similar estimates when compared to a
model where the coefficients γci ;t were log-normally distributed (and thus
satisfy γci ;t � 0), but convergence and sampling time per MCMC iteration
was much faster.

Model training and evaluation
We use the R package brms to obtain posterior samples from our model
defined in Eq. (1). Two chains are run for 7000 total iterations; 2000 samples
are used for calibration during warm-up. We set the adapt delta and max
treedepth settings to 0.9995 and 25, respectively. Every fifth sample is
retained for posterior inference. Final models are assessed to ensure
convergence: all estimated R̂ values are less than 1.05; tail and bulk
effective sample sizes are all greater than 1000.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
We use publicly available data for county-level temperature42, Covid-19 case
counts37,38, mask usage30,40,43, Google mobility data9, SafeGraph mobility data10, and
county population44. Since the original data used in this work are openly available
and the preprocessing scripts are posted at https://github.com/apple/ml-covid-
mobility, aggregate data are not available from the corresponding author.

CODE AVAILABILITY
Code to reproduce data pulling/preprocessing, model fitting, and subsequent
analyses are available at https://github.com/apple/ml-covid-mobility.
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