
Effects of Sample Size on Differential Gene Expression,
Rank Order and Prediction Accuracy of a Gene Signature
Cynthia Stretch1, Sheehan Khan2, Nasimeh Asgarian2,6, Roman Eisner2,6, Saman Vaisipour2,6,

Sambasivarao Damaraju3,1, Kathryn Graham1, Oliver F. Bathe4,5, Helen Steed1, Russell Greiner2,6,

Vickie E. Baracos1*

1 Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada, 2 Department of Computing Science, University of Alberta,

Edmonton, AB, Canada, 3 Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, 4 Department of Oncology, University of

Calgary, Calgary, Alberta, Canada, 5 Department of Surgery, University of Calgary, Calgary, Alberta, Canada, 6 Alberta Innovates Centre for Machine Learning, Edmonton,

AB, Canada

Abstract

Top differentially expressed gene lists are often inconsistent between studies and it has been suggested that small sample
sizes contribute to lack of reproducibility and poor prediction accuracy in discriminative models. We considered sex
differences (69=, 65R) in 134 human skeletal muscle biopsies using DNA microarray. The full dataset and subsamples (n = 10
(5=, 5R) to n = 120 (60=, 60R)) thereof were used to assess the effect of sample size on the differential expression of single
genes, gene rank order and prediction accuracy. Using our full dataset (n = 134), we identified 717 differentially expressed
transcripts (p,0.0001) and we were able predict sex with ,90% accuracy, both within our dataset and on external datasets.
Both p-values and rank order of top differentially expressed genes became more variable using smaller subsamples. For
example, at n = 10 (5=, 5R), no gene was considered differentially expressed at p,0.0001 and prediction accuracy was
,50% (no better than chance). We found that sample size clearly affects microarray analysis results; small sample sizes result
in unstable gene lists and poor prediction accuracy. We anticipate this will apply to other phenotypes, in addition to sex.
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Introduction

Microarray technology has been adopted to gain a compre-

hensive picture of gene expression differences. In human studies,

the sample size is often limited because microarray technology is

quite costly and the required tissue biopsies may be invasive. For

example, in the quest to understand sexual dimorphism in human

skeletal muscle gene expression, the early report by Roth et al. [1]

studied pooled samples from 5 men and 5 women on 4K arrays

(Invitrogen). Later, several other groups studied samples from 6 to

15 subjects per sex on 45K arrays (Affimetrix) [2–4]. Such sample

sizes are not unusual in gene array studies on human tissues [5].

A lack of concordance is evident in the gene lists generated in

studies that compared the same phenotypes. For example,

amongst the top 20–30 differentially expressed genes reported in

the two studies cited above (by Welle et al. and by Maher et al.),

only 5 were common to both lists: ALDH4A1, DAAM2, INSR,

IRX3, TPD52. The issue of poor overlap of gene lists across

studies has raised doubts about their reliability and robustness of

gene signatures in general [6].

Microarray studies are conducted either: (1) to identify

differentially expressed genes between groups (e.g. towards

understanding underlying biological mechanisms) and/or (2) to

identify patterns of gene expression that can be used to develop a

predictor with high accuracy (e.g. for diagnosis of a disease) [7].

Researchers typically report the top differentially expressed genes

and these are often credited with high importance, however the

reproducibility of the identity and rank order (i.e. 1st or 50th most

differentially expressed) is usually not addressed.

Sample size is proposed to be an important determinant of the

number of differentially expressed genes reliably detected as well

as the accuracy of a predictor [8–12]. Some prior studies have

considered what sample size is required to ensure that the genes

associated with a phenotype can be discovered with a minimal

false discovery rate [13]; others explore the effect of sample size on

the overlap of gene lists [8,9]; and yet others have investigated the

effect of sample size on the likelihood of identifying true

associations among the top ranked genes [14]. In general, these

analyses consider various sub-samples of a given large initial

dataset, to determine how well each size of subsamples approx-

imates the findings made using the entire dataset. Because of a

general paucity of large datasets, authors either used computer-

simulated datasets [8,9], or created data pools by combining

independent datasets [8,15]. However, simulated data does not

necessarily reflect biological variation and pooling of data from

different studies by different investigators introduces batch effects
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and thereby increase variability [5,16]. We can avoid these

problems by using a single large dataset acquired on the same

platform, lab and experimental condition. It is also important that

the class label (phenotype) be unambiguous. An objective class

label (e.g. male vs. female) rather than subjective (e.g. estrogen

receptor status, subject to measurement error and based on the

subjective opinion of an individual pathologist [17]) would be

ideal. A subjective class label may contaminate the dataset with

incorrectly labeled instances and therefore introduce variation.

Here, we used sexual dimorphism in human skeletal muscle

gene expression using a single large (n = 134) dataset with 41K

Agilent arrays, as a model to assess the effect of sample size on the

differential expression, rank order and prediction tasks. For the

association analyses, our goal was to determine the consistency of

the rank orderings of the genes, from one size-n sample to another;

this is different from other studies that attempt to determine how

many of the top biomarkers are ‘‘correct’’ [14].

Materials and Methods

Ethics Statement
This study was approved by the Alberta Cancer Research

Ethics Committee. Patients provided written consent. Tissues were

stored at the Alberta Cancer Research Biorepository/Canadian

Breast Cancer Foundation Tumor Bank and the University of

Calgary HPB/GI Tumor Tissue Bank.

Subjects and Acquisition of Muscle Samples
Adult (.18 yrs) cancer patients underwent open abdominal

surgery as part of their clinical care. Biopsies of rectus abdominis

muscle (0.5–1 g) were taken from the site of incision, at the start of

surgery using sharp dissection and without the use of electrocau-

tery. Biopsies were immediately frozen in liquid nitrogen and

stored in liquid nitrogen vapor phase until analysis. Skeletal muscle

index (cm2/m2), whole body skeletal muscle estimation (kg) and

rate of muscle change (% change/100d) was assessed from

computed tomography images taken prior to biopsy as part of

routine clinical care as described previously [18–20]. Age and

cancer type were abstracted from medical charts.

Microarray Analysis
Total RNA was isolated using Trizol (Sigma-Aldrich, Oakville,

ON, CAN), purified using Qiagen RNeasy columns (Mississauga,

ON, CAN), quantified using a NanoDrop 1000 Spectrophotom-

eter (NanoDrop Technologies, Wilmington, DE, USA) and its

integrity evaluated using a Bioanalyzer 2100 (Agilent Technolo-

gies, Santa Clara, CA, USA) according to manufacturer’s

protocols. All RNA samples had RNA Integrity Numbers (RIN)

greater than 7.0.

RNA was subjected to linear amplification and Cy3 labeling

and hybridization to Agilent Whole Human Genome Arrays using

Agilent kits (One Color Low RNA Input Linear Amplification Kit

Plus, One Color RNA Spike-In Kit and Gene Expression

Hybridization Kit). The arrays were scanned using an Agilent

Scanner, the data was extracted and quality was evaluated using

Feature Extraction Software 10.5.1 (Agilent). The data was

normalized using GeneSpring GX 11.5.1 (Agilent). The data used

in this publication have been deposited in the U.S. National

Center for Biotechnology Information (NCBI) Gene Expression

Omnibus25 and are accessible through GEO series accession

number GSE41726.

Statistical Analysis
There were a total of 41,000 oligonucleotide sequences (i.e.

transcripts) on each microarray chip. This produces a dataset that

describes each of 134 subjects (69 men and 65 women), using

41,000 transcripts (each a real number) and sex (either M or F).

Microarray intensity values were log transformed prior to analyses.

Effect of sample size on differentially expressed gene

lists. For each sample size considered (n = 10 (5R, 5=), 20 (10R,

10=), … 120 (60R, 60=)), we randomly selected a size-n subsample

(containing equal numbers of men and women) from our dataset

of n = 134. For each of these size-n subsamples, we computed the

t-test on the (log transformed) intensities over the set of males vs.

the set of females. We repeated this procedure 50 times for each

sample size n and then for each gene, averaged the p-values

computed over these 50 trials. Mean p-values were then sorted

from lowest to highest to determine top 100 transcripts for each

sample size. We also evaluated how the specific rank order of top

genes was affected by sample size. For each size n subsample we

assigned a rank value (1 to 100) to each gene, based on its p-value.

We then sorted the gene based on its mean rank (for each sample

size), based on all 50 repeats. As our main focus was this ranking,

we simply used the p-values from the t-tests, rather than any

multiplicity-corrected variant (such as the Benjamini-Hogeberg

correction [21]). If we had used a multiplicity correction, enforced

monotonicity would have been required to ensure the ranking of

adjusted p-values remain unchanged. A method of enforced

monotinicity was presented by Yekutieli and Benjamini [22].

Effect of sample size on prediction accuracy. As XY

chromosome transcripts (1,548 transcripts) are obviously highly

related to sex, a single XY transcript may be sufficient to build a

classifier that could predict sex perfectly. To generate a more

typically physiological prediction problem we therefore excluded

these transcripts when building classifiers. We used the LASSO

algorithm (implemented using R, glmnet package) [23]. Given a

training dataset, LASSO produces a classifier that predicts the

class label (sex) of a new patient from his/her microarray data. In

general, the quality of a classifier is its predictive accuracy (%

correct classification) on novel subjects; we used 10-fold cross

validation to internally validate the model. To determine how

sample size of the training dataset affects sex prediction accuracy,

we trained classifiers using randomly selected sub-samples of our

data (n = 10 (5R, 5=) to n = 110 (55R, 55=)). We repeated this 50

times for each n.

To externally validate our model, we used publicly available

datasets that used the same tissue (i.e. skeletal muscle) and platform

(i.e. Agilent), for which the sex was known: dataset GSE24215

included microarray data from 10 healthy, young men and dataset

GSE23697 included 34 healthy, adult men. To determine how

sample size of the training dataset affects sex prediction accuracy

on these external datasets, we trained classifiers using randomly

selected subsamples of our data (n = 10 (5R, 5=) to n = 110 (55R,

55=)) then used these learned classifiers to predict sex on the

external datasets. We repeated this 50 times for each n.

Results

Gene expression microarray analysis was conducted on 134

rectus abdominus muscle biopsies (69=, 65R). The characteristics of

the study participants are shown (Table 1). As expected, men were

26% more muscular than women (t-test, p,0.0001). Mean age

and number of patients undergoing chemotherapy did not differ

between the men and women in this study.

Effect of Sample Size on Microarray Analysis
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Effect of Sample Size on Differential Expression
The full dataset was checked for differential gene expression

revealed 717 differentially expressed transcripts with a p-value

,0.0001. Note that the biological interpretation of these

differentially expressed genes is not the goal of this study, and so

will be discussed in a separate work.

This analysis was repeated for random samples of n = 10 (5R,

5=) to n = 120 (60R, 60=) increasing the sample size by increments

of 5R and 5= (Figure 1, top panels). At n = 10 (5R, 5=), no genes

were significant at p-value ,0.0001 whereas at n = 120 (60R, 60=),

there were 472 differentially expressed transcripts at the same p-

value cutoff. Of course, the variance of these measurements

become less meaningful for large subsamples, as the different size-

n subsamples will have high overlap since they are all drawn from

our dataset of 134 (65R, 69=). The variances, however, are fairly

accurate for small values of n. To assess the similarity of sample

sets, we calculated the median Jaccard score over 1000 randomly

generated pairs of subsamples of size n. The Jaccard score of two

sets A and B is the size of the intersection divided by the size of the

union, i.e. J(A,B) = |A >B|/|A<B|. Note that the Jaccard score

is always between 0 and 1; the score of 0 means the two sets are

disjoint, while the score of 1 means they are identical. As the

median Jaccard score for two n = 30 (15R, 15=) subsamples is

around 0.1, the overlap is very small. Such sizes are the most

relevant, as they reflect the sizes of many earlier human

microarray studies. Below we consider n = 60 (30R, 30=); we

consider the observed variations relevant as the Jaccard scores

here are still under 0.3.

We then explored whether the ranking of the genes were

reproducible over different sample sizes. From the previous

analysis, for each of the 50 random samplings, each gene was

given a ranking based on the p-value of its t-test (e.g. if a gene is

ranked 4th, or 25th, or 120th), see Figure 1, bottom panels. In

Figure 1 (bottom right-hand panel), in a large sample (n = 60 (30R,

30=)) the top three genes (PRKY, DDX3Y, UTY) were

reproducibly identified in the top 3 ranks in all 50 iterations of

sampling. By contrast, the p-value of 10th ranked gene was very

close to its immediate neighbors; while on average it ranked 10th,

its rank ranged from 5th to 17th. As we decreased n, the ranking of

any given gene became more and more variable, in that the rank

of every gene had a larger range (e.g. at sample size n = 30 (15R,

15=), the gene whose average rank was 10th, ranged in rank from

1st to 127th in the different random subsamples).

Effect of Sample Size on Prediction Accuracy
Microarray data are sometimes used to make a prediction (i.e.

to determine the phenotype of a future subject (e.g. healthy or

disease), based on a classifier produced from prior subjects. While

there is no clinical need to predict a person’s sex using muscle gene

expression array, our data does provide the opportunity to explore

the relationship between n and the ability to build a robust

predictor. The classifier based on all n = 134 subjects used only 92

genes of the complete set of 41,000 and could predict sex with

mean 92.567.3% (10-fold) cross-validation accuracy. We then

explored the predictive accuracy of this model on publicly

available muscle expression array data obtained in unrelated

investigations conducted on the same platform (Agilent). In two

such external datasets, this model had excellent accuracy: correctly

predicted sex for 9/10 subjects and for 35/35 subjects in dataset

GSE24215 and dataset GSE23697, respectively.

Figure 2 shows the mean internal cross-validation accuracy of

sex prediction as we varied the sample size of the training data

from n = 10 (5R, 5=) to n = 110 (55R, 55=). When the training

sample had n = 10 (5R, 5=), the classifier was unable to predict sex

any better than chance (,50% cross validation accuracy). This

accuracy increased as we increased n; we achieved predictive

accuracy above 90% when training on a sample of at least 80

individuals (40 of each sex). This trend of increased accuracy with

increased n was also seen when we used different subsamples of

size n = 10 (5R, 5=) to n = 110 (55R, 55=) from our dataset to

predict sex on the external datasets mentioned above (Figure 3).

Discussion

Our empirical evidence suggests that small sample sizes often

typical of microarray studies negatively affect their interpretation,

whether used to determine differential gene expression or to

accurately predict future instances. The relatively high cost of

analyses and the invasiveness of sampling tissues such as skeletal

muscle in humans often dictate rather small sample sizes [24,25]

but our results suggest that efforts to increase n may well be

justified.

Researchers in biology attribute great importance to top ranked

gene(s) in differential expression analyses [26]. This is the first

study examining the effect of sample size on gene rank using one

large dataset and a biologically unambiguous label. We show that

any given gene may have a wide range of ranks, especially for

small sample sizes. For example, in 50 subsamples of size n = 20

(10R, 10=), the gene that had the highest average rank, sometimes

appeared in rank 200. By contrast, at n = 60 (30R, 30=) the top

three ranked genes were constant. These observations explain the

lack of concordance between the findings of two prior studies of

sexual dimorphism [2,4] with each other, and with our results.

Those two earlier studies had 6 to 15 of each sex in their analysis

and the 5 genes that they had in common with each other did not

all rank in our top 100 differentially expressed gene list (these

genes ranked 49th (IRX3), 62nd (DAAM2), 67th (TPD52), 147th

(ALDH4A1) or was not significant (p = 0.3, rank = 18854) (INSR)

at n = 134 (our full dataset).

Microarray analysis is often used to identify gene signatures that

can be used to develop a predictor. In agreement with previous

Table 1. Patient characteristics.

Men Women

Total, n 69 65

Age, mean years ± SD 59613 63613

Muscle, mean ± SD

Skeletal muscle index (cm2/m2) 52.967.8 41.968.3*

1Estimated whole body skeletal muscle, kg 27.064.8 17.963.7*

Muscle rate of change, %/100d 24.4610.9 24.5612.5

Diagnosis at surgery, %

Benign neoplasm 13 18

Cancer, liver or intrahepatic bile ducts 17 14

Cancer, gastrointestinal tract 46 22

Cancer, pancreas 19 25

Cancer, ovary or uterus 0 17

Cancer, head and neck 3 2

Cancer, skin 0 2

Cancer, kidney 1 0

*Different from men, p-value ,0.0001.
1Derived regression equations [19].
doi:10.1371/journal.pone.0065380.t001

Effect of Sample Size on Microarray Analysis
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studies looking at this methodological issue, we conclude that small

sample sizes (e.g. n ,20 per class label) will often result in poor

predictors [8,10,15,27], but the accuracy improves with increased

sample size in the training dataset. This was the case both within

our data and, as shown in Figures 3, when trying to make

predictions on external datasets. In our study, a LASSO predictor,

trained on our full dataset (n = 134) returned 90–100% accuracy

on publicly available data (external validation). This excellent

predictive accuracy also suggests that our findings of sex-related

gene expression are not confounded by the use of a cancer patient

sample, because the predictor based on these patients was accurate

on data obtained on healthy men and women.

Sample size is not the only factor that can influence microarray

analysis. Indeed, incomplete annotation of the genome and probes

targeted to different regions of the encoding gene, stringency of

hybridization conditions, commercially available arrays vs. in-

house built, pre-analytical variables in the tissue accrual including

induced hypoxia concomitant post de-vitalization of tissue and

temperature and duration of storage of tissues should also be

considered when comparing previous or designing future micro-

array experiments. Here, we focused on sample size while

maintaining the tissue collection method, microarray platform

and storage conditions constant for all samples. Our analysis

suggests principles that dictate how ranking and prediction

accuracy can vary, in relation to the biological label (sex) that

we chose to study. Studies with larger inherent variance in the data

(e.g. due to batch effects introduced by pooling several datasets)

may require considerably larger sample sizes than we report here

[8–10,28]. By contrast in animal experiments which permit

extensive control of many sources of variation, smaller sample

sizes may be sufficient to test similar experimental questions. Thus,

it is not possible to state how many genes will be reliable/

reproducible at different sample sizes for other datasets a priori.

However, it would be beneficial to assess how sample size may

affect ranking and prediction tasks, as we did here, by examining

the robustness of top-ranked genes and mean and variance of

cross-validated results for different subsamples of varying n,

respectively. Even if a dataset is deemed to have a sufficient sample

size, there are other methodological considerations that were not

addressed here but which are important to properly interpret the

data. For example, researchers need to carefully consider what

multiplicity correction should be used, which depends on the

properties of the dataset in questions (e.g. the normality of the

data).

We conclude that gene signatures generated from small datasets

should be interpreted with caution as they may not be

reproducible and that prediction models built using small sample

sizes result in poor prediction accuracy. While we cannot

recommend specific sample sizes, outside the problem that we

studied, our analysis shows that the sample size n = 10 (5R, 5=) was

not useful for either prediction (which was not better than chance)

nor for association (the probability of finding reproducible top 10

genes was negligible).

For More Information
Links to datasets used for external validation of sex prediction

model:

Figure 1. The effect of sample size on p-values and rank order for the top 100 transcripts. For each n tested (n = 10 (5R, 5=), 30 (15R, 15=),
60 (30R, 30=), 90 (45R, 45=) and 120 (60R, 60=) are shown here), n samples were randomly selected from our dataset of n = 134 subjects, 50 different
times. Top panels: The average and 95% confidence intervals of the p-values for the top 100 transcripts. As sample size was increased, the average p-
value decreased and became less variable. Bottom panels: The average and 95% confidence intervals rank for the top 100 transcripts. As sample size
was increased, the average rank decreased and became less variable.
doi:10.1371/journal.pone.0065380.g001

Effect of Sample Size on Microarray Analysis
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Figure 2. Box-and-whiskers plot showing the mean internal cross-validation accuracy of sex prediction for different sample sizes.
Sample sizes tested ranged from n = 10 (5R, 5=) to n = 110 (55R, 55=). To calculate the mean 10-fold cross validation prediction accuracy, for each n
( = 10…110), we built classification models using a randomly selected size-n subsamples of our full dataset of n = 134. This was repeated 50 times and
the median prediction accuracy for each sample was calculated. As sample size increased, so did prediction accuracy.
doi:10.1371/journal.pone.0065380.g002

Figure 3. Plots showing the mean and standard deviation accuracy of sex prediction on two external datasets using a predictor
trained using different sample sizes from our dataset. We built predictors using different training sample sizes ranging from n = 10 (5R, 5=) to
n = 110 (55R, 55=) from our full dataset. We then calculated the prediction accuracy, for each n ( = 10…110) on two external datasets (A. Dataset
GSE24215 and B. Dataset GSE23697). This was repeated 50 times and the mean and standard deviation prediction accuracy for each sample size was
calculated. As the training sample size increased, so did prediction accuracy on the external datasets.
doi:10.1371/journal.pone.0065380.g003

Effect of Sample Size on Microarray Analysis
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Dataset GSE24215: http://www.ncbi.nlm.nih.gov/projects/

geo/query/acc.cgi?acc=GSE24215.

Dataset GSE23697: http://www.ncbi.nlm.nih.gov/projects/

geo/query/acc.cgi?acc=GSE23697.
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