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ABSTRACT Rhodamine 123, a fluorescent laser dye that is selectively taken up into mitochondria
of living celis, was used to examine mitochondrial morphology in early-passage (young), late-
passage (old), and progeric human fibroblasts. Mitochondria were readily visualized in all cell
types during growth (mid-log) and confluent stages. In all cell strains at confluence, mitochon-
dria became shorter, more randomly aligned, and developed a higher proportion of bead-like
forms. Treatment of cells for six days with Tevenel, a chloramphenicol analog that inhibits
mitochondrial protein synthesis, brought about a marked depletion of mitochondria and a
diffuse background fluorescence. Cyanide produced a rapid release of preloaded mitochondrial
fluorescence followed by detachment and killing of cells. Colcemid caused a random coiling
and fragmentation of mitochondria particularly in the confluent stage. No gross differences
were discernible in mitochondria of the three cell strains in mid-log and confluent states or
after these treatments.

Butanol-extractable fluorescence after loading with rhodamine 123 was lower in all cell
strains in confluent compared to mid-log stages. At confluence all three cell strains had similar
rhodamine contents at zero-time and after washout up to 24 h. At the mid-log stage, young
cells contained more rhodamine initially and lost it more rapidly than old or progeria cells, in
that order.

The data indicate no gross derangement in the morphology or number of mitochondria in
old and progeria fibroblasts but there is a reduction of protonmotive force evident in these
cells at the mid-log stage that may be growth limiting.

Mitochondria play a central role in the energy metabolism of
virtually all living cells (22). These intracellular ogranelles are
morphologically dynamic such that their shape and distribution
can be affected by the state of metabolism, proliferation, dif-
ferentiation, as well as pathological involvement (12, 13, 26—
28, 35). Because many of these states can be readily altered in
cell culture, this system provides an excellent opportunity to
study mitochondrial plasticity. A further advantage is that
cultured human fibroblasts can be derived from virtually all
persons, enabling the study of mitochondria from any given
subject. Moreover, cultured human fibroblasts have a limited
replicative lifespan that provides an excellent model for the
study of biological aging (10, 16). Several mechanisms have
been proposed for the loss of replicative capacity, among them
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the possibility of failure in energy metabolism consequent to
depletion or derangement of mitochondria (10, 16). Earlier
studies on energy metabolism in human fibroblasts have indi-
cated no change in mitochondrial function during serial pas-
sage (5, 14). But more recent work (Goldstein et al., manuscript
submitted for publication) has revealed certain metabolic pat-
terns consistent with a mitochondrial deficit in late-passage
cells, and this has been borne out by electron microscopy
studies showing a decrease in the number and quality of
mitochondria (18, 23, and Goldstein et al., manuscript in
preparation). However, electron microscopy, of necessity, in-
volves the use of fixed preparations and therefore gives no
information on functional correlates to morphology.
Recently, Johnson et al. (19) have described the use of the
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laser dye rhodamine 123 to stain mitochondria directly and
selectively, i.e. without passage through endocytic vesicles and
lysosomes, in a variety of cultured cells from lower forms. The
mechanism for this specific staining has not yet been deter-
mined but likely involves the positive charge of the dye at
physiologic pH and the attraction of the relatively high negative
electrical potential across the mitochondrial membrane (19,
20). Thus this method provides a unique opportunity not only
to examine mitochondria in the living state but also to obtain
quantitative information on the relative protonmotive force of
the mitochondria under various conditions (1, 7).

The present study was undertaken to observe mitochondrial
morphology and to measure uptake and release of rhodamine
123 in cultured human fibroblasts during growth from sparse
to confluent stages and after treatment with various chemical
agents. We compared early-passage (young) and late-passage
(old) normal skin fibroblasts, and one cell strain from a subject
with the Hutchinson-Gilford (progeria) syndrome (9). The
latter strain was included because progeria subjects undergo
premature aging and have an increase in total body O: con-
sumption (32) and muscle mitochondrial oxidation (33)
whereas cultured progeric fibroblasts show an abbreviated
replicative lifespan (see reference 9) and evidence of decreased
cell respiration (Goldstein et al., manuscript submitted for
publication.).

MATERIALS AND METHODS
Cell Culture

Human skin fibroblasts were established and grown by standard methods (11)
in Eagle’s minimum essential medium plus nonessential amino acids, 1 mM
pyruvate, and 10% fetal calf serum. The cell strain A2 was derived from a normal
11-yr-old male and had a replicative lifespan of 65 mean population doublings
(MPD) (15). The progeria strain (P18) was derived from a 5-yr-old female with
the classical disease and had a curtailed replicative lifespan, compared to age-
matched controls, of 42 MPD (9). All experiments on young fibroblasts were
carried out in the first half of the replicative lifespan when cells required ~ 6 d
to become confluent after a 1:8 split. Old cells were used when between 75 to
90% of the lifespan was completed. Because of their slower growth they were
split at 1:4 and required 6-8 d to become confluent. Progeria cells were used in
the first half of their lifespan and were split at 1:4. They were intermediate in
growth vigor to young and old cells and required 5-6 days to become confluent.
Mid-log cells were studied about halfway through their growth interval when
cells occupied about half of the available growth surface as observed microscop-
ically. Confluent cells were studied on the first or second day after they covered
the growth surface.

Rhodamine 123 Staining

Cells were prepared for staining as described by Johnson et al. (19) with slight
modifications. In brief, cells were grown on 12 mm round cover slips in regular
growth medium and treated either directly with thodamine 123 or after exposure
to various agents as described below. Rhodamine 123 (Eastman Laboratory and
Specialty Chemicals, Rochester, N. Y.), a gift of Dr. Lincoln Johnson, was made
up as a stock solution in dimethyl sulfoxide at 1 mg/ml and kept at 4°C in the
dark. The stock solution was made up fresh every 2 wk. Immediately before use
rhodamine 123 was diluted in growth medium to 10 ug/ml and added to cells
that were incubated in a 95:5%, air-CO; incubator at 37°C for 30 min. Cover
slips were then rinsed through three 5-ml changes of medium, 5 min per rinse,
and mounted in regular growth medium on a live-cell observation chamber
fashioned from silicone rubber punched with 10-mm holes and pressed onto a
standard 25 X 75 mm microscope slide. Stained cells were examined by epiflu-
orescent illumination on a Wild-Leitz Orthomat fluorescence microscope
equipped with a Philips CS 100 W-2 mercury lamp, fluorescein isothiocyanate
(FITC) 490 nm and K510 nm suppression filters and a 4-mm BG 38 exciting
filter. Slides were placed on a Leitz heated stage (050-117.004) at 37°C £ 0.5°C
throughout microscopic examination. Photographs were made using Kodak Tri-
X (ASA 400), and film exposure times ranged from 9-12s.

Treatment of Cells with Chemical Agents

Tevenel, the sulfamoyl analog of chloramphenicol, was added to cultures after
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a 1:4 split and cells were allowed to grow to confluence over two mean population
doublings (MPD). Cells were then stained as described above with rhodamine
123. Cyanide, because of its rapid action, was added after cells were stained with
rhodamine 123 just before microscopic observation. Colcemid was added at 10
ug/ml for 16 h followed by staining of the cells with rhodamine 123.

Quantitation of Butanol-extractable
Rhodamine 123

Cells were subcultured into 60-mm plastic petri dishes containing regular
growth medium. At either confluent or mid-log phases, the medium was removed
and 2 ml of growth medium containing 10 ug/ml rhodamine 123 was added.
Cells were then incubated for 30 min at 37°C. The rhodamine-containing medium
was then removed by suction and rinsing was done by adding 5 ml of fresh
growth medium and incubating for 5 min at 37°C in the standard incubator.
This was repeated two more times. After the third rinse, zero-time fluorescence
was determined along with fluorescence at subsequent time-points at 2, 6, and 24
h in replicate dishes. Appropriate blanks (cells not treated with rhodamine and
cell-free dishes treated with rhodamine) were also run simultaneously. At each
time-point, medium was removed by suction and dishes were rinsed twice with
phosphate-buffered saline. 1 ml of isobutanol was then added to each dish for §
min and removed, followed by an additional 0.5 ml of isobutanol and pooling
with the first extract. Standard curves were determined in each experiment from
1-200 nM rhodamine 123 and found to be consistently linear over this range of
concentrations. Percent fluorescence was determined on an Aminco-Bowman
spectrophotofluorometer with settings at 508-nm excitation and 536-nm emission.
Fluorescence of blank controls, which was always < 10% of the fluorescence of
test dishes containing cells treated with rhodamine, was subtracted in each case.
Cell protein was determined by the method of Lowry et al. (24) on replicate
dishes.

RESULTS

Effect of Growth State on Mitochondrial
Staining Patterns

Mitochondria stained by rhodamine 123 were easily dis-
cerned in all three cell types during mid-log phase (Fig. 1 a—c)
and during confluent phase (Fig. 1 4-f). In general, the nuclear
area was devoid of fluorescent staining and this produced a
darkened round-to-oval image. There was a trend during
growth of cells to confluence for an increasing proportion of
mitochondria to become shorter, more randomly aligned, and
to take on beadlike forms. Although this was best seen in
young confluent cells (Fig. 1 d) these effects were also visible
in sparse cultures of all cell types if two or more cells came into
contact. Due to considerable heterogeneity in cell size and
shape plus rapid fading of fluorescence on illumination, we did
not attempt to quantify the mitochondrial fluorescence in situ.
Moreover, a substantial intercellular range of mitochondrial
fluorescence was seen even in cells of comparable size and
shape. However, there did not appear to be any gross differ-
ences between young, old, and progeria cells during mid-log or
confluent stages (see below). Further, in no strain did we find
individual cells that appeared severely depleted of mitochon-
dria.

Effect of Tevenel

Tevenel, the sulfamoyl analog of chloramphenicol, inhibits
mitochondrial protein synthesis (8). After 6 d of treatment of
cells over two mean population doublings, Tevenel should,
therefore, deplete various mitochondrial protein components
and render these organelles less able to develop and maintain
functional competence. This was readily apparent (Fig. 2) as
the effect of Tevenel was to decrease the number of discretely
stained mitochondria and produce a faint diffuse background
fluorescence. This occurred to nearly the same extent in all
three cell types (not shown).
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FIGURE 1

Mitochondria stained by rhodamine 123 in live human fibroblasts. Upper panels (a—c) represent relatively sparse (mid-

log) cultures; bottom panels (d-f ) are confluent cells. Panels a and d: young A2 ceils; b and e: old A2 cells; c and f: progeria cells.

Horizontal bar in this and all subsequent micrographs, 10 pm.

Effect of Cyanide

Treatment of cells for 10 min with 10 M cyanide brought
about a rapid dispersion of fluorescence from the mitochondria,
resulting in low-level, diffuse cytoplasmic fluorescence whether
in sparse (Fig. 3 a) or confluent states (Fig. 3 b). This effect
was reversible as mitochondria of cells rinsed free of cyanide
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could be restained with rhodamine. No obvious difference was
found in the response of young, old, or progeria cells to cyanide
at 107 M, and, in all strains, longer times of exposure (hours
rather than minutes) to cyanide brought about total cellular
detachment. However, it was noted that 107 M cyanide could
disperse the mitochondrial fluorescence in young cells but was
without effect in old and progeria cells.



FIGURE 2 Mitochondria of live human fibroblasts stained by rho-
damine 123 after 6 d treatment with Tevenel. Young A2 cells were
inoculated at a 1:4 split into reguiar growth medium containing 200
pg/ml Tevenel and allowed to grow to confluence. Cells were then
prepared in the usual manner for rhodamine 123 fluorescence.

Effect of Colcemid

Treatment with colcemid (10 ug/ml) for 16 h brought about
a change in shape and distribution of mitochondria (Fig. 4).
This was particularly evident in confluent cells (Fig. 4 ) when
mitochondria were shortened, condensed, and more randomly
coiled throughout the cytoplasm. Again, no obvious differences
were seen between the three cell types.

Butanol-extractable Rhodamine 123

We attempted to quantify butanol-extractable fluorescence
after loading with rhodamine 123, followed by up to 24 h of
washout. In confluent cultures (Fig. 5a) no difference was
noted between the three cell types either in the initial rhoda-
mine 123 fluorescence (zero-time after loading) or in the sub-
sequent rate of washout. However, mid-log cells contained
more rhodamine than confluent cells, and distinct differences
were observed between strains (Fig. 5 ). Young cells contained
more rhodamine fluorescence at zero-time than old cells and
progeria cells, in that order. Young cells then lost this fluores-
cence at a faster rate than old and progeria cells, so that at 24
h all three cell types contained the same amount of residual
rhodamine.

DISCUSSION

Use of the laser dye rhodamine 123 enables the selective
staining of mitochondria in living animal cells and particularly
good mitochondrial visualization in the flattened cultured fi-
broblast. The mechanism for selective uptake of this dye into
mitochondria has not yet been confirmed but likely resides in
the attraction of the cationic rhodamine 123 molecule toward
the relatively high electronegative potential that exists across
the mitochondrial membrane (1, 7, 19, 20). This method,
therefore, provides a means not only to visualize mitochondria
of living cells directly but also to assess total protonmotive
force within the mitochondrial mass and compare different
human fibroblast strains under various conditions.

Clearly apparent on microscopic examination was a marked
cell-to-cell variability in fluorescence. Such heterogeneity was
also reported recently for a variety of cultured mammalian
cells including human fibroblasts (20) and for phytohemagglu-
tinin-stimulated human lymphocytes (6). In the latter case, as
in our study, it was also observed that maximal rhodamine
uptake occurred coincident with peak DNA synthesis and
mitosis.

Tevenel, a chloramphenicol analog that inhibits mitochon-
drial protein synthesis (8), reduced the number of mitochondria
after 6 d and rendered many of those surviving less avid in
trapping and holding the dye. It is of interest that chloram-
phenicol treatment for 24 h had no discernible effect on
mitochondria-specific fluorescence of several kinds of cultured
mammalian cells (20). Our resuits, therefore, are best explained
by a gradual depletion of critical mitochondrial proteins, bring-
ing about dissolution of mitochondria and greater leakiness,
respectively. Short-term treatment of cells with cyanide pro-
duced a sudden release of fluorescence, probably due to its
effect as a rapid poison of cytochrome oxidase and hence of
respiration (22). It is noteworthy that other inhibitors of elec-
tron transport, and ionophores that decrease mitochondrial
membrane potential, had similar effects. Colcemid treatment
of cells led to a pronounced distortion of mitochondrial mor-
phology, likely because this agent depolymerizes microtubules
that are involved in the maintenance of mitochondrial shape,
distribution, and migration (17, 19, 30, 31, 34).

Although no gross morphological differences between the
mitochondria of the three cell types were apparent either with
respect to the stage of growth or after treatment with the
various agents, results on butanol-extracted rhodamine fluo-
rescence were of great interest. Initial rhodamine content was
equal in all three cell types at confluence, both at zero-time
and during 24 h of washout. However, the initial rhodamine
content of all cell types was lower in confluent than in mid-log
cells. Further, in the mid-log stage young cells accumulated
more rhodamine at zero-time than old or progeria cells. This
strongly suggests, in concert with the findings in phytohemag-
glutinin-stimulated lymphocytes (6), that the number of mito-
chondria and/or the total protonmotive force per unit of cell
protein is highest at the time of vigorous DNA synthesis and
mitosis. It further implies that the trend we observed toward
shorter, more randomly aligned mitochondria with a greater
proportion of bead-like forms in confluent cells is accompanied
by a state of reduced oxidative phosphorylative activity and
hence lower protonmotive force. Indeed, this is supported by
electron microscopy studies (2, 4, 25) showing a decrease in
mitochondrial mass, and metabolic studies (Goldstein et al.
Submitted for publication.) showing decreased O, consumption
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FIGURE 3 Mitochondrial staining by rhodamine 123 after treatment of live human fibroblasts with cyanide. Young A2 cells were
prepared in the usual manner during mid-log (a) or confluent (b) stages. Cells were then exposed for 10 min to cyanide 107* M and
mounted as in Materials and Methods (for fluorescence microscopy). The 10 min includes the time of first cyanide exposure to the
time of photography.

when cells are confluent.

The more rapid rate of loss of rhodamine 123 from young
mid-log cells, however, appears paradoxical. Among the pos-
sible explanations is a higher rate of mitochondrial turnover
and hence more rapid release of intramitochondrial rhodamine
123 during vigorous cell division. Alternatively, there could be
an active mechanism that first traps this cationic dye more
avidly in dividing cells and them more actively secretes it.
Indeed, cells have a mitochondrial pump dependent on respi-
ration which is the prime determinant of influx into and efflux
from mitochondria of various naturally occurring cations (3,
21, 29).

Finally, although the data indicate a reduction of mitochon-
drial functional competence in old normal and progeria cells
that appears in relatively sparse cultures (when cells would
normally undergo vigorous cell division), we cannot conclude
that this is causal to the restricted growth capacity of these two
cell types. Mitochondrial function is only moderately reduced
and it does, in fact, rise at mid-log compared to the confluent
state. On the other hand, perhaps the inability of old and
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progeria cells to augment mitochondrial mass and/or proton-
motive force to the same extent as young cells becomes growth
limiting. That progeria fibroblasts have a reduced ability to
trap rhodamine in the face of their decreased respiration (Gold-
stein et al., manuscript submitted for publication), clearly
implies that progeric cells are less efficient bioenergetically
than young or old normal cells. Further studies are needed to
define the relationship between mitochondrial function and the
abbreviated lifespan of cultured progeria cells and the loss of
replicative capacity in normal cells after repeated serial passage.
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FIGURE 4 Mitochondrial staining of live human fibroblasts by rhodamine 123 after treatment with colcemid. Young A2 cells were
incubated for 16 h with colcemid 10 ug/m! and then immediately prepared for mitochondrial staining and photography. Panel a:

mid-log cells; Panel b; confluent cells.
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