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Abstract
Galacto-oligosaccharides (GOS) are used as prebiotic ingredients in various food and pharmaceutical formulations. Currently, 
production of GOS involves the enzymatic conversion of lactose by transgalactosylation using β-galactosidase. The purity of 
the resulting product is low, typically limited to up to 55% GOS on total carbohydrate basis due to the presence of non-reacted 
lactose, and the formation of by-products glucose and galactose. In industrial practice high-purity GOS is manufactured by 
removing the unwanted mono- and disaccharides from raw GOS with simulated moving bed (SMB) chromatography. This 
purification step is associated with high processing cost that increases the price of pure GOS and limits its marketability. 
The last decades have witnessed a growing interest in developing competitive biotechnological processes that could replace 
chromatography. This paper presents a comprehensive review on the recent advancements of microbial GOS purification, a 
process commonly referred to as selective fermentation or selective metabolism. Purification strategies include: (i) removal 
of glucose alone or together with galactose by lactose negative yeast species, that typically results in purity values below 60% 
due to remaining lactose; (ii) removal of both mono- and disaccharides by combining the fast monosaccharide metabolizing 
capacity of some yeast species with efficient lactose consumption by certain lactose positive microbes, reaching GOS purity 
in the range of 60–95%; and (iii) the application of selected strains of Kluyveromyces species with high lactose metabolizing 
activity to achieve high-purity GOS that is practically free from lactose and monosaccharides.

 * Anna Maráz 
 Maraz.Anna@uni-mate.hu

1 Department of Food Microbiology, Hygiene and Safety, 
Institute of Food Science and Technology, Hungarian 
University of Agriculture and Life Sciences, H-1118, Somlói 
út 14-16, Budapest, Hungary

2 Department of Food Process Engineering, Institute 
of Food Science and Technology, Hungarian University 
of Agriculture and Life Sciences, Budapest, Hungary

3 Ausnutria Dairy Ltd, Zwolle, Overijssel, Netherlands

http://orcid.org/0000-0002-8122-158X
http://orcid.org/0000-0002-1397-3296
http://orcid.org/0000-0002-4627-2584
http://crossmark.crossref.org/dialog/?doi=10.1007/s11274-022-03279-4&domain=pdf


 World Journal of Microbiology and Biotechnology (2022) 38:95

1 3

95 Page 2 of 10

Graphical abstract

Keywords Galacto-oligosaccharides (GOS) · Microbial purification · Fermentation strategies · Prebiotics

Abbreviations
DP  Degree of polymerization
Gal  Galactose
Glc  Glucose
GOS  Galacto-oligosaccharides
K  Kluyveromyces
LAB  Lactic acid bacteria
S  Saccharomyces
Sm  Sporobolomyces
SMB  Simulated moving bed
SSP  Simultaneous synthesis and purification

Introduction

GOS are short-chain, non-digestible carbohydrates with 
functional properties offering a variety of health benefits 
(Sijbers et al. 2020). Their prebiotic activity has been dem-
onstrated by several studies, using both in vitro and in vivo 
approaches (Hong et al. 2016). Alongside their favorable 
physiological effects, they have excellent technological prop-
erties, such as high solubility, low viscosity, good pH and 
temperature stability, and pleasant texture with a sweet flavor 
(Torres et al. 2010).

GOS typically consist of a glucose molecule at the reduc-
ing terminus and 1–7 galactose units connected by various 

types of glycosidic linkages, such as β(1,2), β(1,3) β(1,4) 
and β(1,6) (de Almeida and Maitan-Alfenas 2021). Although 
the chemical structure of GOS shows very little similarity 
to that of oligosaccharides present in breast milk, GOS are 
known to resemble some prebiotic effects of human milk 
oligosaccharides (Salli et al. 2019). In fact, infant nutrition 
represents the largest market for GOS. They are also applied 
as prebiotic components in various functional foods includ-
ing dairy products and their analogs, snacks, nutrition bars 
and beverages. Also, GOS are increasingly used in feedstock 
(Rentas et al. 2020), pharmaceuticals, dietary supplements 
(Ghosh et al. 2020; Ambrogi et al. 2021b) and cosmetics 
(Hong et al. 2017).

The GOS market has witnessed a significant growth since 
the release of the first commercial GOS product by Yakult 
Pharmaceuticals Industry Co. Ltd from Japan in 1989. The 
global GOS market size is estimated to be 570 million USD 
in 2021 and expected to grow with a compound annual 
growth rate of about 6% from 2021 to 2026 (Market Data 
Forecast Inc. 2021).

GOS occur naturally and can be extracted from biological 
sources (Kim et al. 2003). Their isolation however is not cost 
effective due to their relatively low concentration. Although 
production of GOS compounds is possible by acidic hydroly-
sis of lactose at elevated temperatures, the chemical synthesis 
is not preferred due to the possible formation of unwanted 
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compounds and the lack of product specificity (Ambrogi et al. 
2021a). At present, biosynthesis for industrial GOS production 
is exclusively used from lactose, which is generated in large 
quantities in the dairy industry.

Galacto‑oligosaccharides

GOS are produced by the enzymatic conversion of lactose 
using β-galactosidases of various origins such as bacteria, 
yeasts and filamentous fungi. Several bioprocesses employ-
ing whole cells and (semi-)purified enzymes in free or immo-
bilized form have been successfully implemented for GOS 
production (Illanes et al. 2016). The source of enzyme used 
in the reaction greatly affects the type of the linkages and the 
chain lengths of the resulting GOS (Schultz et al. 2021). The 
conversion is a kinetically controlled reaction accompanied by 
competition between the unwanted hydrolysis and the desir-
able transgalactosylation. To avoid hydrolysis, the reaction is 
performed at high substrate concentrations (typically above 
300 g/L lactose) (Pázmándi et al. 2018).

Commercial GOS products are usually manufactured in 
batch fashion, starting with the preparation of concentrated 
lactose solution at high temperature (typically above 50 °C) to 
overcome solubility limitations of lactose. Then, transglyco-
sylation is initiated in a stirred tank reactor with the addition 
of β-galactosidase at optimal reaction conditions (pH, tem-
perature and substrate concentration). After GOS synthesis, 
the enzyme is inactivated by heating and/or acidic treatment. 
Further processing steps may include decolorization with 
active carbon, demineralization with ion-exchange chroma-
tography, and concentration by evaporation to obtain crude 
GOS in syrup form (Scott et al. 2016). Powders are usually for-
mulated by dosing some carrier materials such as maltodextrin 
or proteins into crude GOS during the spray-drying process to 
overcome the low glass transition temperature caused by the 
large amounts of monosaccharides.

The biocatalytic process results in crude GOS that is a mix-
ture of saccharides with relatively low GOS content. In addi-
tion to the oligosaccharides, it contains considerable amounts 
of non-reacted lactose and undesired monomers (glucose and 
galactose) as side products of the transgalactosylation reaction. 
Under optimized settings the obtained yield rarely exceeds 
55% GOS on total carbohydrate basis (Vera et al. 2016; Scott 
et al. 2016). A notable drawback of the biosynthesis is that the 
remaining lactose and the generated monosaccharides carry no 
prebiotic function but a significant caloric value.

Prebiotic function of GOS fractions

Prebiotic effect of GOS fractions with a degree of polym-
erization (DP) ≥ 3 has been extensively demonstrated 
(Bouhnik et al. 1997; Tuohy et al. 2005; Roberfroid et al. 
2010; Maathuis et al. 2012). Crude GOS products con-
tain disaccharides in different quantities depending on the 
type of enzyme used. Coulier et al. (2009) identified eight 
non-lactose disaccharides in the DP2 fraction of a com-
mercial GOS product (Vivinal GOS, FrieslandCampina 
Domo B. V., Beilen, The Netherlands), which comprised 
27.4 weight percent (wt%) of the crude GOS in addition to 
22.5 wt% monosaccharides, 10 wt % lactose and 40.1 wt % 
DP3-DP8. Four of the non-lactose DP2 compounds were 
structural isomers of lactose, such as the functional isomer 
allolactose. Lactulose (β-D-Gal-(1,4)-D-Fru), which has 
a proven prebiotic effect (Gibson et al. 2004; Tuohy et al. 
2005; Roberfroid et al. 2010), was also present in as low 
as 7 wt % of the non-lactose DP2 fraction. Daily dosage of 
lactulose in the range of prebiotics (5 g) for 5 days exerted 
the full beneficial prebiotic effect for Bifidobacteria, 
Lactobacilli and Anaerostipes in a computer-controlled 
in vitro model of the human large intestine (Bothe et al. 
2017). The prebiotic potential of other non-lactose disac-
charides was also studied by several in vitro fermentation 
experiments using faecal sludge. Sanz et al. (2005) dem-
onstrated that 4β-galactobiose and 6β-galactobiose possess 
higher prebiotic index than lactulose, while Rodriguez-
Colinas et al. (2013) found that the mixture of allolactose 
and 6β-galactobiose supported the growth of Bifidobacte-
ria but not lactic acid bacteria (LAB). The complex prebi-
otic nature of these disaccharides has not been proven yet 
by in vivo digestibility tests.

Van Leeuwen et al. (2016) compared the composition 
of Vivinal GOS with six other commercial GOS products 
and identified five non-lactose disaccharides compris-
ing galactose-galactose or glucose-galactose dimers. A 
common component in all GOS products was a β-D-Gal-
(1,x)-D-Glc dimer with different molar ratios across the 
various products. These findings indicate that non-lactose 
disaccharides are substantial and high ratio components 
of commercial GOS products. However, it could be rarely 
predicted which of these compounds possess prebiotic 
characteristics and should be kept as prebiotic compo-
nents, or which do not possess such traits and should be 
removed during purification. It would be advisable to ana-
lyse the DP2 components and select which fulfil all three 
accepted criteria for classification as a prebiotic: (1) resist-
ance to gastric acidity, hydrolysis by mammalian digestive 
enzymes and GI absorption; (2) fermentation by intestinal 
microbiota; (3) selective stimulation of the growth and/
or activity(ies) of one or a limited number of intestinal 
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bacteria beneficially associated with health and well-being 
(Gibson et al. 2004). Without comprehensive characteriza-
tion only lactulose could be considered as a prebiotic DP2 
GOS component presently.

High‑purity GOS

There is an emerging commercial interest for GOS products 
that contain decreased level of or free from digestible car-
bohydrates by the human intestine. Several types of purified 
GOS products can be distinguished based on their carbohy-
drate composition. Obviously, products free from digestible 
carbohydrates can be obtained by the removal of both lactose 
and the monosaccharides from crude GOS. Commercial prod-
ucts with a content of 90 w/w% GOS or higher are considered 
as high-purity GOS (Scott et al., 2016). As the incidence of 
lactose intolerance increases, there is a growing demand for 
lactose-free GOS products. However, the presence of lac-
tose is accepted or even preferred in certain applications. For 
instance, partially purified GOS ingredients for infant formulas 
are typically manufactured by removing only the monosac-
charides from crude GOS (Pázmándi et al. 2020; Vera et al. 
2022). Industrially, purification of crude GOS is done by 
SMB chromatography (Mueller et al. 2021). To overcome the 
high processing cost associated with chromatography, several 
attempts have been made at developing competitive separa-
tion techniques. These include adsorption on activated car-
bon followed by regeneration with ethanolic mixtures (Boon 
et al. 2000; Hernández et al. 2009), conversion of glucose into 
gluconic acid by glucose oxidase (Cheng et al. 2006; Todea 
et al. 2021), selective oxidation of residual lactose into lac-
tobionic acid by cellobiose dehydrogenase (Splechtna et al. 
2001; Maischberger et al. 2008), fractionation by nano- and 
diafiltration (Pruksasri et al. 2015; Córdova et al. 2017), etha-
nolic precipitation (Sen et al. 2011) and supercritical extrac-
tion (Montañés et al. 2010). Despite some promising results, 
at this point none of the investigated techniques have been 
proved to be robustly effective in replacing chromatography at 
industrial scale. In recent years selective metabolism of non-
GOS carbohydrates by various microorganisms has received 
special attention as one of the most promising technologies to 
decrease downstream operational costs (Kruschitz and Nide-
tzky 2020). Detailed analysis of these downstream techniques 
including selective fermentation, as well as summary of their 
advantages and drawbacks have been reviewed currently by 
Vera et al. (2022).

Advanced metabolic characteristics 
of microorganisms aimed at GOS 
purification

Application of microorganisms for the selective metabo-
lism of non-GOS sugar components of crude GOS would 
require overcoming the following barriers: (i) reduction in 
the mass ratio of cells to sugars, (ii) no or limited addition 
of nutrients required for cell cultivation, (iii) dilution of 
crude GOS products prior to fermentation in a rate that 
allows economic concentration after purification and (iv) 
minimization of the generation of unwanted metabolites, 
which would require increased efforts and costs for down-
stream processing.

Development of industrially reliable processes for 
selective removal of lactose, glucose and galactose from 
crude GOS by microorganisms should consider several 
issues. Among them metabolic characteristics, stress toler-
ance against crude GOS and fermentation environments, 
food safety aspects and economic viability are the most 
important. Microbial cultures with documented use in 
food production have divergent metabolic routes includ-
ing efficient utilisation of non-GOS saccharides, as well 
as tolerance and adaptation to the eventually harsh food 
extrinsic and intrinsic environmental factors. Bourdichon 
et al. (2012) published an updated inventory of safe micro-
bial cultures used in or isolated from food fermentations, 
listing as much as 195 bacterial species and 69 species of 
yeasts and moulds. Species harbouring probiotic strains 
could also be the sources of safe microorganisms to be 
used for GOS purification.

Concomitant removal of lactose, glucose and galactose 
from crude GOS is a great challenge for microorganisms, 
lactose utilization being the bottleneck of this process. 
Lactose catabolism is highly influenced by the regulation 
of β-galactosidases, as their activity is strongly inhibited 
by galactose and—in a much lesser extent—glucose (Park 
and Oh 2010; Eberhardt et al. 2021).

Metabolism of non‑GOS sugars from crude 
GOS by LAB

In the inventory of microbial food cultures published by 
Bourdichon et al. (2012), the most efficient lactose utiliz-
ing bacterial species belong to the genera of Bifidobacte-
rium, Lactobacillus, Pediococcus and Lactococcus. The 
most abundant genus is the Lactobacillus with 83 spe-
cies. Lactose fermentation is a complex process, while 
galactose catabolism is a variable characteristic among 
the LAB species, even within a unique species. Iskandar 
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et al. (2019) gave an excellent overview of lactose and 
galactose utilization of LAB, including the internaliza-
tion, subsequent metabolism of these carbohydrates and 
the genetic basics of the connected biochemical and physi-
ological processes. In addition, a comparative genomic 
analysis of the lactose and galactose utilization-specific 
Leloir and Tagatose-6-P pathways has been performed in 
around 200 strains. They concluded that majority of the 
investigated Lactobacillus strains carry the Leloir pathway 
(gal) genes alone or in combination with the Tagatose-6P 
pathway (lac) genes, while not any pathway-specific genes 
could be detected in a small portion of the strains. At the 
same time, Lactococcus strains harboured only pathway-
specific genes. Leloir pathway genes were always accom-
panied with that of the Tagatose-6-P pathway, while the 
Tagatose-6P pathway genes occurred alone. They found 
that the copy number of certain genes was also variable 
among or within the species. The high rate of genomic 
variability of the genes responsible for the galactose and 
lactose metabolism seems to be responsible for the wide 
metabolic diversity of LAB from this respect. Genomic 
annotation of lactose and galactose catabolism genes of 
certain LAB strains as potential candidates of crude GOS 
purification would open the possibility for the selection 
and genetic improvement of more robust strains.

GOS fermentation is connected to the type and activity 
of ß-galactosidases, although the lactose fermenting abil-
ity for efficient GOS hydrolysis is strongly influenced by 
internalization of GOS with different DPs (Gänzle and Fol-
lador 2012). Pázmándi et al. (2021) selected several lactose 
fermenting Lactobacillus strains, which did not utilize GOS 
molecules > DP2 in in vitro fermentation experiments. It is 
to be noted that besides the dairy product starters, probiotic 
strains also occurred among the selected strains, indicat-
ing that GOS utilization ability of potential probiotic strains 
should be analyzed more carefully, preferably by in vivo 
digestive tests.

Metabolism of non‑GOS sugars from crude 
GOS by yeasts

“Food grade” lactose utilizing yeasts represent the most 
promising pool of fungi to be assessed for GOS purifica-
tion. The number of potentially safe lactose utilizing yeast 
species was estimated to be as high as 143 by Pázmándi et al. 
(2020). When the lactose utilization capacity of the selected 
strains was determined, it was found that the strains could 
function optimally with 20–30 g/L lactose, while 50 g/L 
already decreased the growth rates. Among the lactose 
positive yeasts, Kluyveromyces species are most efficient in 
lactose assimilation. The Crabree-negative K. lactis and K. 
marxianus utilize lactose not only by aerobic respiration but 

also ethanolic fermentation, while the other two lactose uti-
lizing species of the genus, K. nonfermentans and K. wicker-
hamii assimilate but do not ferment lactose. Pázmándi et al. 
(2020) found that K. lactis and K. marxianus metabolized 
the lactose and glucose content of crude GOS simultane-
ously, although depletion of glucose was always faster than 
that of the lactose. Galactose utilization was concomitant 
with that of the lactose.

Stress tolerance of GOS purifying 
microorganisms

During metabolism of non-GOS sugars, several environmen-
tal stress factors target the GOS purifying microorganisms. 
Most significant stress factors are the hyperosmotic pres-
sure—as the consequence of economically feasible concen-
tration of crude GOS -, the oxidative stress and the inhibi-
tory effect of certain fermentation end products like organic 
acids and ethanol. De Angelis and Gobbetti (2004) surveyed 
the physiological and molecular mechanisms of environ-
mental stress responses in dairy and probiotic Lactobacillus 
spp. Based on the molecular mechanisms and proteomics of 
stress responses they were able to elaborate several strate-
gies for the generation of improved, more robust strains with 
enhanced stress tolerance. Since the time of this publication 
considerable progress in the genomics, proteomics, bioin-
formatics and molecular techniques took place (Sun et al. 
2015), which increased the reliability of and opened up new 
possibilities for the more rational use and precise genetic 
modification of LAB for biotechnological purposes.

Stress tolerance of yeasts is outstanding among the 
microorganisms, especially those causing spoilage of foods, 
including dairy products. Some spoilage species (e.g. K. 
marxianus, K. lactis and Debaryomyces hansenii) are, how-
ever, beneficial in the production of certain fermented foods 
(Maráz and Kovács 2014). Lane et al. (2011) demonstrated 
that K. marxianus strains have high but different extent of 
resistance to high osmotic conditions and moderate cell wall 
integrity stresses with some strains showing resistance for 
multiple stress factors. Therefore, extended strain selection 
and genetic improvement could be a good strategy for pos-
sessing more robust lactose utilizing yeast strains for GOS 
purification purposes.

Overview of the proposed GOS purification 
procedures by microorganisms

Fermentation-based GOS purification methods can be cat-
egorized into three types, depending on the removed sac-
charide fractions and the applied microorganisms: (A) glu-
cose and occasionally galactose removal by lactose negative 
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species (e.g. Saccharomyces cerevisiae and Cyberlindnera 
jadinii); (B) Removal of mono- and disaccharides from GOS 
with the aid of S. cerevisiae or C. jadinii and a lactose posi-
tive microbe. This approach combines the fast monosaccha-
ride-removal capacity of S. cerevisiae and C. jadinii with the 
efficient lactose metabolism of the other strain; (C) Applica-
tion of selected strains of Kluyveromyces species with high 
lactose metabolizing activity to achieve high-purity (mono- 
and disaccharide-free) GOS. An outline of the crude GOS 
purification strategies is illustrated in Fig. 1. Table 1 shows 
an overview of the relevant publications categorized in the 
above mentioned groups.

In the first group, the goal is the selective removal of 
glucose and preferably galactose. Generally, the result of 
fermentation largely depends on the metabolic activity of 
the applied strain. Hernández et al. (2009) were able to 
remove only glucose, while in the experiments of Goulas 
et al. (2007) both glucose and galactose were entirely used 
up. Efficient glucose depletion was achieved by a selected 
C. jadinii strain by Pázmándi et al. (2020).

To improve the efficiency of the traditional batch fermen-
tation, Li et al. (2008) proposed a process with immobilized 
S. cerevisiae cells, by which monosaccharide-free GOS was 
achieved. Aburto et al. (2016) introduced a simultaneous 
synthesis and purification (SSP) method, combining free 
Aspergillus oryzae ß-galactosidase with S. cerevisiae cells, 
and produced GOS free from both glucose and galactose. 
This group later attempted co-immobilization of the enzyme 
and S. cerevisiae cells (Aburto et al. 2018). Although the 
product contained residual glucose and galactose, the 
process was advantageous in terms of reusability and the 
applied cell load in comparison to the batch setup.

The second group of GOS purification attempts com-
prised selective fermentations by a consortium of microbes. 
Giacomelli et  al. (2015) proposed a three-step process, 
using S. cerevisiae, Streptococcus thermophilus and S. 
cerevisiae in a sequential fashion to remove glucose, lac-
tose and galactose from crude GOS. Although high-purity 

GOS was achieved, the process involved multiple pH con-
trol and cell removal stages, making it labor-intensive. A 
two-step approach was introduced by Srivastava and Mishra 
(2019), who applied S. cerevisiae and K. lactis cells in a 
sequential fashion for the removal of mono- and disaccha-
rides. Although the purity of the product was low, as none 
of the non-GOS compounds were removed entirely, both 
S. cerevisiae and K. lactis cells could have been recycled 
up to 10-times. Pázmándi et al. (2020) proposed a two-step 
process to produce high-purity GOS, starting with glucose 
removal by C. jadinii, followed by lactose and galactose 
removal by K. lactis. An SSP setup was used by Saravanan 
et al. (2017) for the production of GOS by Sporobolomyces 
singularis cells, and monosaccharide removal by S. cerevi-
siae. This procedure resulted in monosaccharide-free GOS 
with a low amount of residual lactose.

Up to this point, the most successful attempts—in terms 
of GOS purity and the ease and speed of the removal pro-
cess—were the application of Kluyveromyces strains, 
belonging to K. lactis (Li et al. 2008; Sun et al. 2016; Santi-
báñez et al. 2017; Pázmándi et al. 2020; Zhang et al. 2021) 
and K. marxianus (Cheng et al. 2006; Guerrero et al. 2014; 
Tokošová et al. 2016; Pázmándi et al. 2020). In all cases, 
high-purity GOS was produced, free from monosaccharides 
and containing no or only negligible amounts of all types of 
disaccharides (prebiotic and non-prebiotic alike).

Although the use of alternative techniques of the tradi-
tional batch process (e.g. fed-batch fermentation, SSP, cell 
immobilization) plays a big role in advancing fermentation 
technologies in general, their application in selective GOS 
fermentation have remained limited to laboratory-scale. 
In the surveyed GOS purification processes (Table 1), the 
most commonly used reaction-setup was batch fermentation 
(Cheng et al. 2006; Guerrero et al. 2014; Sun et al. 2016; 
Tokošová et al. 2016; Pázmándi et al. 2020; Zhang et al. 
2021). Santibáñez et al. (2017) improved the fermentation 
rate and the purity of the final product, when lactose con-
tent of crude GOS was hydrolyzed prior to the fermentation 

Fig. 1  Current advances of 
GOS purification via selec-
tive metabolism of non-GOS 
sugars by key microorganisms. 
End products of purification 
represent the main types of 
commercial GOS
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either by a K. lactis derived commercial ß-galactosidase or 
permeabilized K. lactis cells. Yeast cells were immobilized 
in Ca-alginate and polyvinyl alcohol (PVA) by Li et al. 
(2008) and Tokošová et al. (2016), respectively, to improve 
the re-usability of the batch process.

Pázmándi et al. (2021) proposed a new application of 
LAB to purify crude GOS by fermentation of a highly 
diluted GOS syrup with GOS non-fermenting L. paracasei 

and L. plantarum strains. The end-product was free from 
mono- and disaccharides but due to the low GOS concen-
tration (ca. 5.3 g/L), it was not suited to be concentrated 
economically. The fermentation broth was nutritionally 
safe, considering the quality and quantity of the lactic fer-
mentation-derived organic acids as well as the nutrients 
added to support the growth of cells. The lactic fermented 

Table 1  Types of crude GOS purification with various microbes, characteristics of the applied fermentation processes and final purity achieved 
at the end of fermentation

a A/: fermentation with lactose negative microbes B/: combination of lactose negative and positive microbes C/: fermentation with lactose posi-
tive microbes
b Abbreviation of the genus names: K.: Kluyveromyces, S.: Saccharomyces, Sm.: Sporobolomyces, Sc.: Streptococcus, C.: Cyberlindnera
c IC: immobilized cells; SSP: Simultaneous synthesis and purification
d B: Bioconversion, C: Catabolism
e YE: Yeast extract; NA: Not applicable
f GOS purity: ratio of the ΣDP3-DP6 fractions and total amount of carbohydrates at the end of the fermentation

Categorya Microorganismb Crude 
GOS 
(w/w%)

Fermen-
tation 
 conditionsc

Type of 
sugar 
 depletiond

Nutrient 
 supplemente

Fermenta-
tion time 
(hours)

GOS  purityf (%) References

A/ S. cerevisiae 45 Batch B NA 32 57 Goulas et al. 
(2007)

S. cerevisiae 20 Batch, IC B NA 4 37 Li et al. (2008)
S. cerevisiae 16.7 Batch B NA 10 49 Hernández et al. 

(2009)
S. cerevisiae – SSP B NA 24 40 Aburto et al. 

(2016)
S. cerevisiae – SSP B NA 8 25.7 Aburto et al. 

(2018)
C. jadinii 15 Batch C 5 g/L YE 24 49 Pázmándi et al. 

(2020)
B/ S. cerevisiae + Sc. 

thermophilus
10 Batch B NA 70  > 95 Giacomelli et al. 

(2015)
S. cerevi-

siae + Sm. sin-
gularis

– SSP B NA 60  > 85 Saravanan et al. 
(2017)

S. cerevisiae + K. 
lactis

20 Batch B NA 32 65 Srivastava and 
Mishra (2019)

C. jadinii + K. 
lactis

10 Batch C 5 g/L YE 72 92 Pázmándi et al. 
(2020)

C/ K. marxianus 20 Batch C 5 g/LYE 30 98 Cheng et al. (2006)
K. lactis 20 Batch, IC B NA 18 97 Li et al. (2008)
K. marxianus 20 Batch B NA 48 100 Guerrero et al. 

(2014)
K. lactis 10 Batch B NA 15  > 95 Sun et al. (2016)
K. marxianus 30 Batch, IC C 3 g/L YE + inorg 

N, S, P
26 100 Tokošová et al. 

(2016)
K. lactis 20 Batch B NA 19 96 Santibáñez et al. 

(2016)
K. lactics 10 Batch C 5 g/L YE 72 92 Pázmándi et al. 

(2020)
K. marxiaunus 10 Batch C 5 g/L YE 72 100 Pázmándi et al. 

(2020)
K. lactis 10 Batch B NA 8 75 Zheng et al. (2021)
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prebiotic broth could contribute to the formulation of func-
tional beverages.

Majority of the purification processes can be considered 
as biotransformation. In most cases, relatively high cell 
loads were used, the  gcell/gcarbohydrate ratio was 0.02–0.25 
for S. cerevisiae; 0.05–0.1  gcell/gcarbohydrate for co-fermen-
tations; and 0.15–0.7 for Kluyveromyces-based fermen-
tations across the proposed processes, although Li et al. 
(2008) used an outstanding 2.5  gcell/gcarbohydrate ratio.

A traditional fermentation approach with low initial cell 
number was used by Cheng et al. (2006), Tokošová et al. 
(2016) and Pázmándi et al. (2020). In these cases, it was 
necessary to supplement the crude GOS-based media with 
growth enhancing nutrients.

The main advantage of bioconversion is that nutrient-
addition is not required. However, this method necessitates 
production of high number of cells prior to the purifica-
tion process. The fermentation-based approaches do not 
require great cell-mass production before fermentation, 
but the non-consumed supplements need to be removed 
downstream. None of the presented works included the 
analysis of the economic feasibility of the procedures, 
which would be influenced by two main factors: the costs 
of the cell mass production and the necessary downstream 
purification steps (Kovács et al. 2013; Scott et al. 2016).

A further limiting factor of these studies is that, in most 
cases, the lactose and non-lactose disaccharide compo-
nents of the DP2 GOS fraction were not distinguished. 
Only a small number of trials were able to monitor lac-
tose and non-lactose components within the DP2 fraction 
simultaneously. Cheng et al. (2006) observed that during 
crude GOS fermentation with K. marxianus, both lactose 
and non-lactose were depleted. Santibáñez et al. (2017) 
and Giacomelli et al. (2015) reported that K. lactis and 
Sm. singularis strains, applied in their experiments, con-
sumed lactose but did not metabolize other DP2 compo-
nents. However, in most publications it was reported that 
all disaccharides were catabolized by the K. lactis and K. 
marxianus strains. Since certain non-lactose disaccharides 
possess prebiotic effects, future attempts should consider 
screening for and improving strains that are not able to 
metabolize the DP2 GOS compounds, aiming to increase 
the yield of the process in terms of prebiotic saccharide 
fractions.
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