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Abstract
Critical illnesses including sepsis, acute respiratory distress syndromes, ischemic cardiovascular disorders and acute
organ injuries are associated with high mortality, morbidity as well as significant health care system expenses. While
these diverse conditions require different specific therapeutic approaches, mesenchymal stem/stromal cell (MSCs) are
multipotent cells capable of self-renewal, tri-lineage differentiation with a broad range regenerative and immuno-
modulatory activities, making them attractive for the treatment of critical illness. The therapeutic effects of MSCs
have been extensively investigated in several pre-clinical models of critical illness as well as in phase I and II
clinical cell therapy trials with mixed results. Whilst these studies have demonstrated the therapeutic potential for
MSC therapy in critical illness, optimization for clinical use is an ongoing challenge. MSCs can be readily genet-
ically modified by application of different techniques and tools leading to overexpress or inhibit genes related to
their immunomodulatory or regenerative functions. Here we will review recent approaches designed to enhance the
therapeutic potential of MSCs with an emphasis on the technology used to generate genetically modified cells, target
genes, target diseases and the implication of genetically modified MSCs in cell therapy for critical illness.
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Introduction

Acute organ failure (AOF) can occur in patients with critical
illnesses including severe infections, early sepsis and ischemic
disorders necessitating admission to intensive care units
(ICUs) [1, 2]. Sepsis can develop to more complex conditions
leading to multiorgan dysfunction syndrome (MODS), which
occurs as a response to pathophysiologic events and compli-
cated interactions in body systems leading to immune, meta-
bolic and hematologic dysfunctions [3, 4]. Sepsis associated
with MODS is one of the leading causes of morbidity and
mortality in ICUs worldwide [5]. In US, over 970,000 sepsis
cases are admitted annually and sepsis accounts for more than
50% of hospital deaths [6]. Currently, aside from antibiotics
and supportive care, there is no specific treatment for sepsis.
Despite more than 104 Phase III clinical trials, no therapeutic
intervention has emerged to reduce morbidity and mortality
from sepsis and associated MODS [7, 8].

Themorbidity andmortality rates due to ischemic disorders
causing stroke, irreversible cardiomyopathy, kidney or liver
failure and critical limb ischemia are also concerning [9, 10].
In an ICU setting, supportive strategies are applied to care for
patients with critical illnesses including: hemodynamic resus-
citation, mechanical ventilation, intravenous fluid therapy,
pharmacotherapy using antibiotics, steroids, inotropes, seda-
tives, analgesics, anticoagulant and antipyretics, dialysis,
endovascular procedures and organ transplantation.
Although these interventions may improve the acute phase
of the illness, in a majority of cases they fail to treat the latent
pathophysiological changes causing organ failure [11, 12].

The evolution of organ failure in individual body systems
occurs through the altered transcription of thousands of regu-
latory genes involved in immunity and metabolic-bioenergetic
pathways leading to disruption of fundamental cellular pro-
cesses or activation of cellular death pathways, including ap-
optosis, necrosis and autophagy in parenchymal and non-
parenchymal tissues [13, 14].

Endothelial dysfunction has been described as a major pre-
disposing factor in pathophysiology of most critical illnesses.
Homeostasis in cardiovascular system, lung, kidney, brain and
most major body systems is maintained by vascular endothe-
lium [15, 16]. In the arterial vasculature, endothelial impair-
ment contributes to the pathogenesis of complex disease pro-
cesses such as atherosclerosis and its life-threatening compli-
cations, myocardial infarction and stroke [17, 18]. In severe
infections, the complex interactions between the infecting or-
ganisms and the host immune leading to endothelial dysfunc-
tion are poorly understood [19]. It has been suggested that in
sepsis, the interaction between endothelial cells and the cellu-
lar immune system affects the integrity of the endothelium. In
most pathological conditions this effect can be further ampli-
fied when the coagulation and complement systems are acti-
vated, resu l t ing in vasoregula tory dysfunct ion ,

microaggregation impairment and atherosclerotic plaque for-
mation, reducing microvascular flow, creating local ischemia
and hypoxia. As a consequence, this may impair cellular res-
piration and permeability of the endothelium, which enables
the inflammatory cells and products to leave the circulation
forming generalized edema [20]. It should be emphasized that
hypoxia itself is a leading cause of cell death via apoptosis,
resulting in organ failure. Different mechanisms have been
proposed for hypoxia-induced apoptosis such as enhanced
permeability of the inner mitochondrial membrane leading to
deprivation of mitochondrial derived Adenosine triphosphate
(ATP) and apoptosis mediated by reactive oxygen species
(ROS) formation [21, 22]. Overall, there are similarities in
underlyingmechanisms in causing acute and chronic dysfunc-
tion in individual organs, however, the molecular basis of
organ failure is more complex and requires further
investigation.

Mesenchymal Stromal/Stem Cells (MSCs)

MSCs are multipotent adult stromal cells with the capacity to
differentiate into multiple cell types such as osteoblasts, adi-
pocytes, and chondroblasts [23]. MSCs can be isolated from
different sources including bone marrow, adipose tissue, um-
bilical cord, peripheral blood, heart and various other organs
[24]. MSCs are adherent to plastic in standard culture condi-
tions, express the surface molecules CD105, CD73 and CD90,
but lack the expression of CD45, CD34, CD14, CD11b,
CD79alpha, CD19 and HLA-DR [25]. Allogeneic MSCs are
especially attractive due to their potential to provide an ‘off-
the-shelf’ therapeutic cell product for immediate infusion to
patients with acute critical illness and organ dysfunction. This
is favoured by biological characteristics including convenient
isolation, rapid expansion in culture and minimal immunoge-
nicity. In terms of their low immunogenicity, the question has
been raised as to whether these cells are immune evasive rath-
er than immune privileged [26]. The prevailing dogma has
been that allogeneic MSCs are immune privileged, but few
studies have assessed and controlled for matched or mis-
matched major histocompatibility complex (MHC) molecule
expression in vivo. While a few published studies that con-
trolled for MHC donor and recipient haplotypes suggest that
adult MHC-mismatched MSCs may in fact not be immune
privileged, a systematic review of MSC-based clinical trials
that described over 1000 patients who had received MSCs for
various clinical conditions including ischemic stroke, Crohn’s
disease, cardiomyopathy, myocardial infarction, graft versus
host disease, as well as healthy volunteers found these cells to
be safe for human administration. Specifically, meta-analysis
of the randomized clinical trials included did not detect an
association between acute infusional toxicity, organ system
complications, infection, death, malignancy or evidence of
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significant immune dysregulation. There however was a sig-
nificant association between MSCs and transient fever [27].

MSCs are purported to home to the wounded or damaged
tissue sites [28]. This is driven by the expression of ‘homing
factors’, for example, stromal cell derived factor 1/CXCR4
pathway that can mediate traffic of MSCs to ischemic or hyp-
oxic tissues [29], or by CD44 expressed on MSCs that may
interact with hyaluronic acid where interstitial matrices are
exposed after an injury [30]. When administered intravenous-
ly, MSCs become entrapped in the capillary beds – primarily
in the lung and liver [31]. The biological meaning of MSC
entrapment is not clear [32, 33]. As a therapeutic strategy for
acute critical illness, we and others have shown that enhanced
anti-bacterial and pro-survival advantage does not depend on
cell-cell contact as cell engraftment with differentiation [34,
35], trans-differentiation, or cell fusion are not required for
therapeutic effect [36]. In fact, it was suggested that MSCs
do not even have to be viable to confer a beneficial advantage
[37].

The vast majority of infused MSCs reside transiently in the
lungs, becoming undetectable within 96 h [38]. Currently, it
has been suggested thatMSC-derived paracrine mediators and
extracellular vesicles (EVs) deliver effector molecules includ-
ing mRNAs, miRNAs, DNA, proteins, and lipids that regulate
function in recipient cells [39–41]. Indeed, EVs can account
for many of the therapeutic effects ofMSCs [42]. The number,
size, and content of MSC- derived EVs vary based on the
microenvironmental conditions [43, 44].

EVs are derived from different cellular compartments such
as early endosomes and cell membrane and can be categorized
into exosomes (30–150 nm) and large vesicles such as
microvesicles (MVs) (50–1000 nm), apoptotic bodies (500–
5000 nm), or Golgi vesicles [45–47]. In the pulmonary vas-
culature, MSCs release EVs and mediators that have both
local (pulmonary) and systemic effects. MSCs administered
in preclinical models of pulmonary injury and sepsis release
anti-inflammatory mediators [48–51] and EVs containing
signaling-relevant nucleotides, proteins and possibly lipids
[52].

The strong immunoregulatory properties of MSCs, affect-
ing both adaptive and innate immune systems have been char-
acterized in several studies [53]. MSC administration results
in an overall modulation of the host transcriptional response,
characterized by a down-regulation of inflammation and an
up-regulation of genes involved in phagocytosis, bacterial
killing [54]. MSC administration results in transcriptional re-
programming of the host response to injury and repair [55].
By modulating response in recipient cells, MSCs can change
the activity of various immune cells like T-cells, B-cells, neu-
trophils, NK cells, dendritic cells and macrophages. In T-cells,
MSCs suppress activation and proliferation; inhibit monocyte
differentiation, and block proliferation of B-cells [56, 57].
MSCs also inhibit B lymphocyte proliferation via G0/G1

phase arrest [58, 59], leading to inhibition of antibody produc-
tion [60]. An intriguing property of MSCs is their ability to
enhance bacterial phagocytosis and killing [34, 48]. We have
demonstrated that treatment with MSCs enhances gene ex-
pression related to antigen presentation and bacterial killing
in sepsis model [34, 54, 61]. Moreover, it has been proposed
that MSCs may be “educated” to enhance specific phenotypes
[62] . MSC phenotype and the potential effect exerted on the
immune system is dependent upon the microenvironment as
MSCs may be induced to develop a pro- or an anti-
inflammatory phenotype [63]. Pro-inflammatory MSCs are
associated with early stage infection and inflammation, such
as through Toll Like Receptor 4 (TLR 4) activation by LPS.
However, activation of TLR3 with poly I:C or dsDNA results
in an alternativeMSC phenotype characterized by secretion of
immunosuppressive mediators [64]. Recent studies have sug-
gested a role for macrophages in the reduction of inflamma-
tion and promotion of tissue repair [65]. MSCs secrete
lipoxins, specialized proresolving lipid mediators that limit
excessive inflammation, induce resolution, and protect from
leukocyte-mediated tissue damage. Previous studies sug-
gested that aspirin-triggered 15-epi-LXA4 induced neutrophil
apoptosis and facilitates resolution of pulmonary inflamma-
tion [66]. In a murine model of LPS induced lung injury, a
LXA4 receptor antagonist reversed the beneficial effect of
MSCs on survival and pulmonary edema resorption. Thus,
there are several mechanisms by which MSCs may improve
host response during critical illness. Based on the pathophys-
iology and molecular basis of target disease and the goal of
therapy, the therapeutic functions of MSCs may be modulated
by performing appropriate genetic modifacations.

Genetic Modification of Mesenchymal Stromal/Stem
Cells

Although, MSCs possess various favorable biological activi-
ties, the diseases-specific therapeutic efficacy and immuno-
modulatory properties of these cells and their derivatives such
as EVs can be further optimised. Gene modification can im-
prove the natural function of MSCs in different aspects such
as tissue regeneration, repairing organ injury and immune-
modulation [51]. These critical functions can be augmented
by reprogramming MSCs via upregulation or downregulation
of their native genes resulting in a controlled production of
their own natural specific desired products such as pro/anti-
inflammatory mediators and cytokines, or by introducing crit-
ical foreign genes that modulate the therapeutic effects of
MSCs or enable them to express non-native products for spe-
cific therapeutic applications [67, 68]. In recent reports, a nov-
el approach using MSCs as gene or drug delivery vehicles has
been described, which emphasizes other potential application
of genetically-modified MSCs [69, 70]. This can greatly
broaden the spectrum of diseases for which MSCs could
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provide therapeutic benefits. Overall, gene modification may
be applied to generate: 1. Disease-specific potent MSCs with
improved immunomodulatory or regenerative properties, 2.
MSCs as vehicles for gene delivery or manufacturing specific
therapeutic proteins, 3. Loading of therapeutic cargo into
MSC-derived extracellular vesicles (EVs) as potent therapeu-
tic or vehicles for gene, mRNA and protein delivery.

Genetic modification of MSCs can be facilitated by differ-
ent tools and techniques that introduce particular genes or
sequences to the genomic content or tailor the native genetic
material using molecular engineering techniques called “gene
editing” [71].

Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR)/Cas9 is a novel gene-editing technology
in which, a complex made of Cas9 nuclease and a small guide
RNA produces a target-specific break in the genome followed
by insertion of a new sequence mediated by homology-
directed repair that can be used to correct a gene mutation,
introduction of a knock-in or knock out mutation or silencing
of a specific gene [72]. CRISPR/Cas9 has been employed to
some extent for gene editing of MSCs [73, 74]. The gene
expressionmachinary can also be manipulated at the cytoplas-
mic level by RNA interference technology using siRNAs or
microRNAs that inhibit the expression of messanger RNA of
target genes in a sequence specific manner [75].

Nucleic Acid Delivery Systems

Delivery of therapeutic genes or sequences for genetic manip-
ulation in target cells or tissues can be accomplished using
viral and nonviral delivery systems with different characteris-
tics, as discussed below:

Viral Vectors

Viral vectors are promising tools for nucleic acid delivery in
pre-clinical and clinical applications. Almost 70% of clinical
gene therapy trials around the world conducted are based the
use of viral vectors such as lentiviral/retroviral, adenoviral and
adeno-associated viral vectors [76]. Several fundamental fea-
tures of viral vectors including high transduction efficiency
and tropism for a broad range of target cells and tissues, high
safety profile, and establishment of a long-term transgene ex-
pression have made them attractive systems for gene therapy.
Drawbacks for therapeutic application of viral vectors include
their immunogenicity, limited loading capacity and potential
insertional mutagenesis described for integrating types [77,
78]. Among the different types of viral vectors, recombinant
lentiviral vectors as a subgroup of retrovirus family have been
the most frequently used systems due to the high tropism and
transduction efficiency and stable expression of transgene in
MSCs [79, 80]. Also, lentivectors have a high loading capac-
ity which is a great advantage allowing transferring large

genes (up to 8 kb) into target cells/tissues. Furthermore, cur-
rent generations of lentiviral vectors have a convincing safety
record proven repeatedly in several analytical studies and clin-
ical trials worldwide [81].

Adeno-Associated Viral (AAV) vectors with different se-
rotypes have shown significant promise for gene therapy. The
high transduction efficiency of these vectors in a broad range
of target cells and tissues as well as their excellent safety
profile and a minimal inflammatory toxicity have made them
an attractive choice for gene therapy applications [82, 83].
Although, AAVs suffer from a limited loading capacity for
exogenous DNA (up to 4 kb), overall, they are known as
efficient gene therapy tools being employed in clinical appli-
cations [84]. Several studies have shown that AAV vectors
can efficiently transduce MSCs [85, 86]. Adenoviral vectors
(AdVs) have long been used as efficient non-integrating gene
therapy vectors that induce a transient gene expression in both
dividing and quiescent cells [87]. AdVs offer an excellent
safety profile and account for >20% of all gene therapy trials
worldwide. The immunogenic nature of AdVs has proved
beneficial for the development of anticancer immunotherapies
as well as vaccines, where the goal is inducing immunity
against the cancer cells [88].

Nonviral Delivery Systems

Nonviral delivery systems such as plasmid DNA, DNA
minicircles, nanoplasmids, liposomes and polymers have been
extensively studied for gene delivery applications [89–91].
The main advantage of using nonviral vectors is their limited
immunogenicity, enhanced biosafety and high loading capac-
ity. However, the application of nonviral systems in gene ther-
apy has been limited due to their low transfection efficiency
and transient expression of the transgene [92]. Liposomes and
polymers are among traditional nonviral delivery systems
shown that transiently transfect MSCs [90, 93–95].
Minicircles are small DNA-based vectors lacking prokaryotic
backbone sequences that are typically present in conventional
plasmid vectors. When compared to traditional plasmid vec-
tors, minicircles have demonstrated less toxicity and immuno-
genicity, higher transfection efficiency and longer transgene
expression, in vitro and in vivo [90, 96–98]. A number of
reports suggest that minicircles can efficiently and stably
transfect MSCs [99, 100].

Therapeutic Effects of Genetically Modified MSCs in
Critical Illness

The choice of the appropriate genetic modulation in cellular-
based gene therapy is a critical determinant of the therapeutic
outcomes, as the impact of such intervention will be directly
observed in functionality and therapeutic effects of
transplanted cells. Table 1 provides an overview of cell
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therapy studies based on application of genetically modified
MSCs in animal models of critical illness.

Genetically Modified MSCs for the Treatment of Acute Lung
Injury

Angiopoietin 1 (ANGPT1) is known as a vascular endothelial
stabilization factor that mediates maturation of the vasculature
and maintains their permeability. In two separate studies on
LPS-induced acute lung injury mouse model [49, 101], the
administration of ANGPT1-overexpressing bone marrow
MSCs (BM-MSCs), modified by electroporation/plasmid or
lentivectors, led to a much higher reduction in pulmonary
inflammation and vascular endothelial permeability when
compared to wild-type MSC treatment. It was noted that
MSCs-ANGPT1 had a more potent therapeutic effect, not
only by reducing extravasation of plasma proteins and inflam-
matory cells, but also by further reducing the levels of various
inflammatory cytokines and chemokines including IFNγ,
TNF-α, IL-6, IL1β and Cxcl2 in the bronchoalveolar lavage
(BAL) fluid. Zhao et al. delivered BM-MSCs transduced with
a lentivector carrying the gene for basic fibroblast growth
factor (FGF2), an angiogenic factor, for the treatment of
LPS-induced lung injury in mice. Treatment with FGF2-
modified MSCs attenuated the inflammatory response and
vascular leakage as well as suppressed the expression of pro-
inflammatory cytokines such as TNF-α and IL-6 in LPS-
induced lung injury model [102].

Keratinocyte growth factor (KGF), also known as FGF-7,
is a potent mitogenic factor for alveolar epithelial cells. It is
known that the clinical effectiveness of exogenous recombi-
nant (rh) KGF is limited due to rapid degradation. However,
using a different approach, Chen et al. [103] transducedMSCs
overexpressing KGF and showed the modified MSCs exerted
their immunomodulatory functions via sustained expression
of KGF in injured lung tissues, resulted in a significant alle-
viation of alveolar inflammation and permeability and im-
provement of lung injury. Recently, it was reported that the
conditioned medium of KGF-modified MSCs resulted in sim-
ilar therapeutic effects as MSC therapy [104].

The protective role of Angiotensin-converting enzyme 2
(ACE2) in acute lung injury was demonstrated previously
[105, 106]. Min et al. used a lentivector encoding for ACE2
and showed that treatment of a mouse model of bleomycin-
induced lung injury, with human umbilical cord-derived
MSCs (UC-MSCs) overexpressing ACE2, led to efficient
therapeutic effects by improving the inflammatory profile.
Importantly, MSCs expressing ACE2 had a more robust ther-
apeutic effect than application of recombinant ACE2 or naïve
MSCs [107].

In a similar approach, He et al. [108] used BM-MSCs
transduced with a lentivector overexpressing ACE2 and
transplanted into wild type and ACE2 knockout mice

following LPS-induced lung injury and showed that MSC-
ACE2 efficiently alleviated lung injury at 24 and 72 h post-
transplantation when compared to naïve MSCs.

Recent studies have investigated the therapeutic effects of
MSCs in the novel coronavirus 2 (SARS-CoV-2)-induced
ARDS and organ failure [109–111]. In a pilot trial, Leng
et al. performed intravenous transplantation of ACE2-
overexpressing MSCs into seven patients with COVID-19
pneumonia. Two days after MSC administration, a significant
improvement of pulmonary function and symptoms was ob-
served in all patients. The results of this study show an in-
crease in the number of regulatory T lymphocytes and den-
dritic cells (DCs), an increase in IL-10 and a decrease in
TNF-α after MSC treatment [112].

The IL-33/IL-1 receptor–like–1 (ST2) axis has been sug-
gested to function as an alarm system in lungs, which is re-
leased upon endothelial or epithelial cell damage [113].
Gonzalez et al. [114], generated adipose tissue–derived
MSCs (A-MSCs) overexpressing soluble IL-1 receptor–like–
1 (sST2) using a lentiviral vector. Treatment of mouse LPS-
induced lung injury model with these cells resulted in a de-
crease in lung airspace inflammation and vascular leakage,
characterized by reductions in protein leakage, differential
neutrophil counts, TNF-α, IL-6, and macrophage inflamma-
tory protein 2 in bronchoalveolar lavage fluid of treated ani-
mals. Lungs showed preserved alveolar architecture, absence
of apoptosis, and minimal inflammatory cell infiltration.

Genetically Modified MSCs for the Treatment of Acute
Ischemia Reperfusion Injury

Ischemia–reperfusion (IR) injury is a critical condition that
may occur in the vasculature of different organs, mainly lung
and heart. This pathologic condition is characterized in lung
by nonspecific alveolar damage, edema formation, and hyp-
oxemia. Manning et al., administered IL-10-overexpressing
BM-MSCs as a delivery system for IL-10, to prevent lung
IR injury in rats. They applied a retrovirus carrying IL-10
cDNA for genetic engineering of MSCs. It was shown that
as early as 4 h post-IR injury, blood oxygenation was signif-
icantly improved in animals treated with MSC-IL-10 in com-
parison to untreated animals. Moreover, MSC-IL-10-treated
animals had fewer CD4(+) and CD8(+) T cells in bronchoal-
veolar lavage fluid compared to untreated control animals
[115].

In a study by Wang et al. [116], the cardioprotective effect
of genetically modified MSCs was evaluated after ischemia-
reperfusion (I/R) injury in heart. In this study, amniotic fluid-
derived mesenchymal stromal cells (AF-MSCs) overexpress-
ing Akt, a serine-threonine kinase involved in survival and
proliferation of MSCs as well as in survival and cell cycling
of cardiomyocytes, were transplanted into the ischemic myo-
cardium of rabbits prior to reperfusion. Three weeks post-
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transplantation, a significant decrease in myocardial inflam-
mation, ultrastructural damage and cardiomyocyte apoptosis
as well as a marked augmentation in left ventricular function
was observed in animals treated with AF-MSC-Akt when
compared to control group.

Ishii et al. [117], assessed the therapeutic effects of genetically
modifiedMSCs in amousemodel of critical limb ischemia (CLI)
which is characterized by a markedly reduced blood-flow in the
limb, due to severe arterial blockage. Using an adenoviral vector,
they overexpressed the vasoregulatory protein, prostacyclin syn-
thase (PGIS) in BM-MSCs and transplanted the mice after in-
ducing hindlimb ischemia. It was shown that by administering
PGIS-overexpressingMSCs theywere able to obtain reperfusion
of the ischemic limb within 7 days of inducing ischemia, sug-
gesting enhanced proangiogenic function of geneticallymodified
MSCs had a fundamental effect on outcomes. Moreover, in this
report, MSC-induced overexpression of PGIS resulted in higher
expression levels of the antiapoptotic mediators phosphorylated
Akt and Bcl-2.

Gremlin1 (GREM-1) is an extracellular antagonist of the
bone morphogenetic proteins (BMPs), acting as a regulator of
growth, differentiation and development. GREM-1 has been
identified as a novel proangiogenic factor. In a recent study by
Xiang et al. [118], the therapeutic effects of BM-MSCs over-
expressing GREM-1 was investigated in a mouse model of
ischemic hindlimb. Transduction of MSCs with a lentivirus
overexpressing GREM-1 showed enhanced survival when ex-
posed to peroxide (H2O2), attributed to enhanced in vivo sur-
vival of genetically modified MSCs and their effects on the
viability of endothelial cells in the ischemic area.

Yu and colleagues took advantage of CXCR4 role in MSC
chemotaxis and hypothesized that MSCs overexpressing
CXCR4 can promote their own recruitment around the ische-
mic core. Using lentiviral vector, they generated rat MSCs
overexpressing the CXCR4-eGFP fusion protein. They treat-
ed the animals following a left middle cerebral artery occlu-
sion for 2 h and then reperfusion was performed. One week
post treatment, there was an increased number of eGFP-
positive cells surrounding the infarct areas in the CXCR4-
MSC group when compared to the naïve MSC group.
Treatment with CXCR4-MSCs also resulted in an increase
in the capillary vascular volume of the peri-infarct area, reduc-
tion in the volume of the cerebral infarction and improved
neurological function when compared to control groups [119].

Kocsis’s group used human BM-MSCs transduced with an
adenoviral vector carrying a human Angiopoietin 1
(ANGPT1) cDNA, for the treatment of permanent middle
cerebral artery occlusion (MCAO) in rats. They demonstrated
that treatment with these cells presented a better outcome in
terms of neovascularization and regional cerebral blood flow,
and improved functional recovery in the treadmill stress test in
comparison to naïve MSCs [120]. In a similar study, the same
group expanded the gene modification strategy and

transduced hBM-MSCs with adenoviral vectors carrying a
human ANGPT1 gene and VEGF gene and investigated
whether the combination of ANGPT1 and VEGF gene-
modifiedMSCs (ANGPT1-VEGF-hMSC) contributed further
to functional recovery in a rat MCAOmodel. It was noticeable
in the MRI and behavioral experiments that animals which
received ANGPT1-VEGF-hMSCs showed the greatest
structural–functional recovery when compared to all the other
control groups [121].

Genetically Modified MSCs for the Treatment of Acute
Myocardial Injury

In the case of MSC therapy for acute myocardial infarction
(AMI), most of the applied genetic modification approaches
were based on enhancing the survival, migration and retention
properties of MSCs as well as reprograming them to produce
angiogenic and regenerative factors. Mangi et al. [122]
overexpressed Akt in BM-MSCs using a retroviral vector
followed by transplantation of these cells into the ischemic
rat myocardium. This was associated with a remarkable reduc-
tion of infarct size and myocardial remodeling as well as im-
proved left ventricular function. Importantly, the hypothesis
that MSCs differentiate into cardiomyocytes was challenged
by new reports, indicating that the therapeutic function of
MSCs was due to the enhanced production of anti-
inflammatory as well as pro-repair factors [123]. Shujia et al.
[124], improved the duration of the beneficial effects of MSC
therapy up to 3 months by co-transducing MSCs with two
adenoviral vectors encoding for Akt or the pro-angiogenic
protein Angiopoietin 1 in a rat AMI model.

In a study by Li et al. [125], Bcl-2, a pro-survival
antiapoptotic gene was overexpressed in rat BM-MSCs using
polymeric delivery system, polyethylenimine (PEI).
Intracardiac injection of transfected MSCs in a rat model of
AMI resulted in reduction of infarct size and a better left
ventr icular funct ion compared to control group.
Furthermore, this study demonstrated that the therapeutic ef-
fects of Bcl-2-overexpressing MSCs was partly due to an in-
crease in vascular endothelial growth factor (VEGF). Also,
overexpression of Bcl-2 enhanced the in vivo survival of
MSCs.

Stromal-derived factor-1 alpha (SDF-1alpha) plays an im-
portant cardioprotective role by homing of stem cells to the
injured heart tissue [126]. Tang et al. [127], overexpressed
SDF-1α in MSCs using an adenoviral vector, followed by
intramyocardial transplantation in a rat model of myocardial
infarction. Four weeks following transplantation, these inves-
tigators were able to show reduced infarct size and fibrosis,
greater vascular density and thicker left ventricular wall in the
Ad-SDF-MSC group compared to rats treated with naïve
MSCs. Moreover, it was reported that transplanted MSCs
were partly positive for the cardiac marker troponin-T,
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suggesting that transplanted MSCs can differentiate into
cardiomyocytes. In a follow up study by the same group, dual
overexpression of VEGF and SDF-1α in MSCs using adeno-
viral vectors demonstrated additive therapeutic benefits in ex-
perimental model of AMI [128].

Bao et al. [129], investigated the therapeutic effect of BM-
MSCs overexpressing tumor necrosis factor receptor (TNFR),
mediated by a recombinant AAV vector, in a rat model of
AMI. It was demonstrated that treatment with genetically
modified MSCs improved cardiac inflammation and left ven-
tricular function 2 weeks post-MI. This therapeutic effect was
attributed to the anti-apoptotic and anti-inflammatory function
of TNFR-overexpressing MSCs.

Hypoxia-inducible factor 1-α (HIF1-α) is known to upregu-
late various cardioprotective genes during ischemia. Hnatiuk
et al. [130] used a minicircle vector encoding a stable, oxygen-
resistant form of HIF1-α for transfection of BM-MSCs followed
by intramyocardial delivery of the cells in a sheepmodel of AMI.
Over a 2-month follow-up study, it was shown that treatment
with modified MSCs reduced infarct size and improved LV sys-
tolic performance compared to naïve MSCs, attributed to in-
creased neovascularization and cardioprotective effects induced
by HIF1-mediated overexpression of paracrine factors and en-
hanced retention of injected cells.

In a study by Gomez et al. [131], pig MSCs derived from
adipose tissue were transduced with lentivectors encoding for
insulin-like growth factor 1 (IGF-1) or hepatocyte growth fac-
tor (HGF). These cells were used to improve cardiac function
in a porcine model of intramyocardial transplantation.
Overexpression of either IGF-1 or HGF improved left ventric-
ular ejection fraction (LVEF), cardiac output, and stroke vol-
ume, and reduction in heart rate and infarction size compared
to naïve MSCs.

Wen and colleagues [132], searched for the most important
microRNAs associated with angiogenic properties in MSCs.
Using microRNA microarray analysis, they found that the
expression of microRNA-377 was reduced in hypoxia-
treated MSCs. The group further reported that VEGF is a
direct target of microRNA-377. Using lentivectors, they
knocked-down miR-377 in MSCs and administered these
cells in a rat model of AMI. Four weeks after transplantation
of miR-377 depleted MSCs into the infarcted rat hearts, the
vessel density was increased in the heart, and this was accom-
panied by reduced fibrosis and improved myocardial function
due to promotion ofMSC-induced angiogenesis in the infarct-
ed myocardium.

Genetically Modified MSCs for the Treatment of Acute Kidney
Injury

Recent studies capitalized on the application of genetically
modified MSCs for the treatment of Acute kidney injury
(AKI) [133, 134]. In a recent study by Roudkenar et al.

[135], overexpression of Lipocalin-2 (Lcn2) in MSCs en-
hanced their therapeutic effects in a cisplatin-induced AKI
rat model. Lcn2, a neutrophil gelatinase-associated lipocalin,
is a secretory protein discovered in neutrophils which accu-
mulates in blood and urine after acute kidney injury due to
bacterial infection [136]. Overexpression of Lcn2 in MSCs
using FuGENE transfection reagent efficiently enhanced the
therapeutic properties of these cells leading to improvement in
renal function. Treatment with MSC-Lcn2 resulted in upreg-
ulation of HGF, IGF, FGF and VEGF growth factors follow-
ing cisplatin-induced AKI. In addition, a reduction in molec-
ular biomarkers of kidney injury such as KIM-1 and Cystatin
C and elevation of the markers of proximal tubular epithelium
such as AQP-1 and CK18 was observed.

In a study byMohammadzadeh et al. [137], overexpression
of nuclear factor erythroid-2 related factor 2 (Nrf2), a critical
cytoprotective transcription factor, in BM-MSCs protected
rats against AKI by restoring renal tubule structure and im-
proving renal function. Additionally, Nrf2-MSCs were resis-
tant to apoptosis and produced higher amount of growth
factors.

Genetically Modified MSCs for the Treatment of Acute Liver
Injury

Acute liver failure (ALF) is a clinical syndrome characterized
by hepatocellular necrosis observed after acute injuries due to
assaults such as viral infections, hepatotoxic drugs, auto-
immune responses and veno-occlusive disease. The only de-
finitive treatment for ALF is liver transplantation, which is
limited because of financial aspects, shortage of donor, and
immunosuppression-related complications [138].

The therapeutic function of genetically modified MSCs in
acute liver injuries are partially based on their regenerative
properties and differentiation into hepatocyte-like cells
(HLCs) [139–142]. Therefore, the key element for better ther-
apeutic outcomes in liver injury is an efficient targeted deliv-
ery and homing of MSCs in the injured area.

Hu-Cheng Ma and colleagues [143] hypothesized that
overexpression of CXCR4 (chemokine CXC receptor 4), a
receptor for SDF-1α involved in MSC homing - would en-
hance the engraftment of MSCs in the injured liver and im-
prove liver regeneration. In this study, liver injury was in-
duced using hepatotoxic chemical carbon tetra chloride
CCL4. Both in vitro and in vivo experiments showed that
CXCR4 MSCs present better migration capability than null-
MSCs toward the injured area and prevented cell death in
hepatocytes. In vivo fluorescence imaging demonstrated the
presence of CXCR4 MSCs in liver at days 1 and 5 after liver
injury. Moreover, CXCR4 MSC group presented a longer
lifetime and better liver function and histology.

In a study by Wang et al. [144], in order to enhance the
migration ability and homing properties of bone marrow
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MSCs in acute liver injury, c-Met, a member of tyrosine pro-
tein kinase family – was overexpressed using a lentivector.
Hepatocyte growth factor (HGF) is known as the ligand of
c-Met and the HGF/c-Met signaling pathway is considered
to play an important role in the homing ability of MSCs to
the liver [145]. In this study, in vitro assays showed that c-
Met-MSCs had a higher migration activity in comparison with
control MSCs. Transplantation of c-Met-MSCs into rats with
ALF resulted in an improved homing ability of the MSCs to
the injured liver, ameliorated liver injury with reduced hepatic
activity index (HAI) scores and enhanced survival.

Another approach to improve the success of MSC therapy
is tomakeMSCs look as invisible as possible to the recipient’s
immune system. Soland and colleagues [146], genetically
engineered human MSCs using MSCVneo retrovirus to ex-
press human cytomegalovirus proteins that are known to
downregulate HLA-I expression (US2, US3, US6 and
US11). After this genetic modification, they tested if these
MSCs were protected from cytotoxic T lymphocyte and
Natural killer cell attack. From the 4 different proteins they
tested, only US6 and US11 reduced HLA-I expression. This
reduction in HLA-1 expression was accompanied by a de-
crease in human and sheep mononuclear cell proliferation
after a mixed lymphocyte reaction. Transplantation of MSC-
US6 or MSC-US11 cells into pre-immune fetal sheep resulted
in an increased liver engraftment when compared to control
MSCs.

Poor in vivo cell viability of MSCs has been a limiting
factor for their therapeutic effects [147, 148]. In order to make
MSCs more resistant to apoptosis and enhance their in vivo
survival, Zhou et al. overexpressed Akt1 – a pro-survival sig-
nal protein – in MSCs. The in vivo survival and hepatopro-
tective effects of Akt1-MSCs was investigated after transplan-
tation into a rat model of acute liver injury induced by conca-
navalin A. When compared to control MSC groups, a higher
survival rate and significantly lower serum AST, ALT,
TNF-α and IFN-γ levels and less histopathological abnormal-
ities was observed in Akt1-MSCs treated animals. In addition,
Akt1-MSCs treated mice had significantly higher serum con-
centrations of IL-10, vascular endothelial growth factor
(VEGF) and hepatocyte growth factor (HGF).

Fulminant hepatic failure (FHF) is a lethal inflammatory
liver disease with elevated serum levels of immuno-
inflammatory cytokines like IL-1, TNF, IL-6 and IL-8 [149,
150]. Uncontrolled hepatic immunoactivation has been pro-
posed as the primary pathological mechanism of FHF [151].
IL-1Ra is a cytokine member of the IL-1 family known to
prevent biological response to IL-1 by competing for its re-
ceptor. IL-1Ra presents hepato-protective effects [149] and
play an anti-inflammatory role in acute and chronic inflamma-
tion [152]. Zheng and collaborators tested whether IL-1Ra
overexpressing MSCs could protect injured livers in a rat
FHF model. They used a lentivector to overexpress IL-1Ra

in AF-MSCs and demonstrated that treatment of a rat model of
FHF with these cells prevented liver failure and improved
survival. The presence of engrafted cells and their progeny
in the injured livers was shown using Fluorescent imaging
[153].

Concluding Remarks

MSCs possess strong regenerative, pro-inflammatory, anti-
inflammatory and drug delivery properties. These features in-
troduce MSCs as attractive cell-based therapeutics for critical
medical conditions with inflammatory basis such as sepsis,
ARDS, ALI, AKI, ALF, AMI and ischemia. Several studies
based on experimental models of critical illness, have demon-
strated that proper genetic modifications can enhance the ther-
apeutic potency of MSCs in terms of improvement in mortal-
ity and morbidity. Genetic manipulations in MSCs can be
mediated by advanced techniques and delivery systems, main-
ly gene therapy viral vectors, in order to efficiently induce
expression, up-regulation or down-regulation of specific
genes or pathways. Clinical translation of advances in genet-
ically engineeredMSCs requires detailed investigations on the
safety and potency of each strategy in short- and long-term
cell therapy studies in clinically relevant animal models of
critical illness as reviewed in this report.
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