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Abstract: For the recombinant expression of toxin-based drugs, a crucial step lies not only in the
choice of the production host(s) but also in the accurate design of the protein chimera. These issues
are particularly important since such products may be toxic to the expressing host itself. To avoid or
limit the toxicity to productive cells while obtaining a consistent yield in chimeric protein, several
systems from bacterial to mammalian host cells have been employed. In this review, we will discuss
the development of immunotoxin (IT) expression, placing special emphasis on advantages and
on potential drawbacks, as one single perfect host for every chimeric protein toxin or ligand does
not exist.

Keywords: recombinant immunotoxin; bacterial/eukaryotic expression systems; ribosome
inactivating proteins; toxin-based drugs

1. Introduction

Targeted therapy aims to specifically attack diseased cells while leaving healthy cells unaffected.
This kind of treatment has been especially, but not exclusively, utilized in the treatment of tumours,
where chemotherapy approaches or radiation therapy may cause severe side effects through the
impact on rapidly dividing cells in blood, the digestive system and hair follicles, thus inducing
blood disorders, nausea and vomiting and, less serious but still psychologically impactful, hair loss.
“Denileukin diftitox” (Ontak®) was the first FDA-approved toxin-based formulation employed in
clinical approaches for the treatment of cutaneous T-cell lymphomas [1]. Ontak® is a recombinant
fusion protein consisting of human interleukin-2 (IL-2) conjugated to diphtheria toxin (DT) fragments
A and B, which include the enzymatically active site and the membrane translocation domain. It is
expressed using a bacterial system. Ontak® was approved for the treatment of CD25 positive cutaneous
T-cell lymphoma expressing IL-2 receptor alpha (IL2RA). The expression of this receptor allows for
internalization of the drug, followed by escape from the endomembrane system resulting in cell
death [2]. Recently, a second-generation IL-2 receptor-targeted diphtheria fusion toxin was produced
and it was demonstrated to exert antitumor activity alone and in combination with anti–PD1 in
melanoma [3].

Toxin-based drugs are most effective against haematological tumours as they can be directly
injected into the bloodstream and can thus easily reach the transformed target cells. Originally,
the so-called immunotoxins (ITs) consisted of an intact monoclonal antibody domain chemically
conjugated to a toxic domain and were directed towards lymphoma and leukaemia specific markers
such as CD3, CD19, CD20, CD22, CD30 and CD38 [4]. Solid tumours could also be treated with
ITs, albeit showing less efficacy likely due to the partial immunotoxin (IT) penetration within the
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tumour mass. In fact, the therapeutic success of any tumour targeting agent is strictly correlated with
its successful delivery to the tumour site at a sufficient concentration with an uniform distribution
throughout the neoplastic lesion(s) [5]. In addition, the effectiveness may also be reduced due to the
onset of immunogenicity, either to the toxin domain or to the whole monoclonal antibodies used [6].
Two main strategies can be used to manage this drawback: the first one is local administration to
bypass the immune system, which, however, has limited utility for oncology; the second one is the
deimmunization of the immunotoxin. Point mutations techniques have been widely used in order
to replace critical immunoreactive amino acids in both the antibody [7–9] and the toxic payload
portions. In 1994, Behnar at al. deimmunized the B3 Fv antibody portion of a PE38 based immunotoxin
(B3(Fv)-PE38) by “framework exchange,” which involves the substitution of murine residues with
human ones [8]. A truncated form of diphtheria-toxin (DT390) was also deimmunized by the mutation
of highly hydrophilic R, K, D, E and Q amino acids, which were located in protruding positions on
the molecule surface, away from the catalytic site. The toxin mutant was demonstrated to lose only a
minimal activity in in vitro cytotoxic assays, with a significant 90% reduction of anti-toxin antibodies
in toxin-immunized mice [10]. Similarly, Onda et al. produced a less immunogenic-PE38 based
immunotoxin by replacing large hydrophilic amino acids—recognized as B cell epitopes—on PE38 [8].
The mutated product showed full cytotoxic and antitumor activity with a lower immunogenicity
demonstrated in three strains of mice [8]. Later on, LBM11, an IT combining an anti-CD22 Fab with a
less immunogenic version of PE38 was developed, where most of domain II containing the B and T cell
epitopes was deleted and 7-point mutations in domain III were inserted to suppress B cell epitopes.
LMB11was tolerated at much higher doses in mice than wild type IT and treatment resulted in a
complete remission of the Burkitt Lymphoma in this mouse model [11].

The plant derived type I ribosome inactivating protein (RIP) bouganin was successfully
deimmunized in three specific epitopes recognized by a T cell assay performed using PBMCs
from 20 donors. The T-cell epitope-depleted variant was genetically linked to an anti-epithelial cell
adhesion molecule (EpCAM) Fab moiety to create the fusion construct VB6-845, which selectively killed
EpCAM-positive cell lines [12]. In vivo efficacy was demonstrated using a human ovarian tumour
xenograft model with most mice treated being tumour free at the end of the study [12]. Other plant
RIPs, such as trichosanthin [13] and alpha-momorcharin [14], were also studied and modified to reduce
their immunogenic potential. Possible immunogenic sites in the saporin sequence were predicted by
comparing conserved portions in its structure to the other above-mentioned three Type I RIPs so far
analysed [9]. A similar strategy has been adopted with previously identified toxin residues found to
cause vascular leak syndrome (VLS) via unspecific binding to vascular endothelial cells: mutations
in a single amino acid flanking the consensus sequence responsible for VLS displayed a significant
reduction in vascular damage by ricin A chain (RTA) [15]. An analogous approach was carried out also
for Pseudomonas Exotoxin A (PEA) [16] and DT [3], where engineered toxins were proven to retain
potent anti-tumour activity but with a remarkable attenuation of VLS.

2. Immunotoxin Development

The first attempt to selectively deliver a toxin to cancerous cells were made by chemically
conjugating a toxin domain to an antibody, which confers the specificity to the IT target. Bacterial
or plant toxins have been employed for this purpose: the bacterial toxins Pseudomonas Exotoxin
A (PEA) and DT together with the plant RIPs ricin and saporin have been most frequently studied
for therapeutic purposes but several others are under evaluation, predominantly in the oncological
field. [17]. Toxins are powerful, natural weapons that have increased in their toxicity by the pressure of
natural selection over millions of years and subsequently only a tiny number of molecules are needed
to exert overwhelming effects. PEA and DT directly inactivate EF-2 by ADP ribosylation, thereby
inhibiting amino acid chain elongation during protein synthesis. Ricin, saporin and other RIPs, such as
pokeweed antiviral protein (PAP), gelonin, bouganin and trichosanthin, depurinate a specific adenine
base located in the universally conserved GAGA-tetraloop, present in the 23/26/28S ribosomal RNA
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(rRNA) (Figure 1). A few of these toxins are active on bacteria, yeast, plants and animals - virtually
every living thing. The final effect is a consequence of the irreversible blocking of protein synthesis,
which in turn causes cell death. While the type II RIP ricin is formed by a catalytic domain bound to a
binding domain, saporin and others type I RIPs lacking the latter, comprise a sole effector moiety with
a toxic power hundreds of folds lower. It was soon clear that the binding domain of the type II RIP
was hazardous and should be inactivated or eliminated. In fact, the cell binding moiety of ricin, the B
chain, is a lectin, which is able to recognize galactose residues, driving the catalytic active A domain
inside virtually every type of cell [18,19].

The use of protein toxins is particularly appealing due to the high intrinsic activity of the catalytic
domain; the cell cycle-independent mechanism of action, which allows for the killing of non-actively
duplicating tumour cells; and the escape of common multidrug resistance pathways.
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Figure 1. Toxin mechanisms of action. Ribosome inactivating proteins (RIPs) such as ricin and saporin
depurinate a specific adenine in a universally conserved GAGA-tetraloop in the rRNA, while diphtheria
toxin (DT) and pseudomonas exotoxin A (PEA) inactivate the eukaryotic elongation factor 2 (eEF2) by
ADP ribosylation, both causing protein synthesis inhibition and thus cell death.

The first generation of ITs were prepared by using the whole toxin with attenuated cell
binding capability, which was chemically linked to the antibody. The obtained product was greatly
heterogeneous in its composition and lacked stability, causing high variability among batches. Other
concerns arose from the high immunogenicity, safety issues and high costs of production under GMP
conditions. Reducible linkers were introduced to facilitate the detachment of the active domain from
the antibody, therefore allowing its translocation to the cytosol. Elucidation of the crystal structure
of various toxins enabled significant improvements in IT design, leading to the second generation,
where only the catalytic domain of the toxin was conjugated to the antibody or to an antigen-binding
fragment (Fab). The latter enabled an improved tumour penetration due to its reduced size compared
to the full-length antibodies. Several ITs demonstrated high activity and specificity and were tested in
evaluated in phase I trials in cancer patients. However, the cost of production was prohibitive and
the product was still chemically heterogeneous. The third generation, mostly produced in bacteria,
is represented by wholly recombinant molecules that have overcome past limitations by containing
only the peptide domains needed to target and kill tumour cells. This was achieved by replacing the
cell-binding domain with a ligand or with the light and heavy chain variable fragments of an antibody,
either genetically linked (scFv) or held together by a disulphide bond (dsFv) (Figure 2). Targeting
domains might also be further modified to increase their cellular specificity and binding affinity. Such
recombinant ITs are homogeneous and much less expensive to produce [19–21].
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Figure 2. Development of immunotoxins for targeted therapy. Three generations of immunotoxins
(Its) are displayed. First generation ITs were prepared by chemically conjugating antibodies to
intact toxin with attenuated cell binding capability. In the second generation ITs, truncated toxins
lacking binding domain were conjugated to the antibody antigen-binding fragment (Fab). Third
generation ITs were produced through genetic engineering and the targeting moieties are represented
by the light and heavy chain variable fragments either genetically linked (single-chain variable
fragment—scFv) or held together by a disulphide bond (dsFv). Bispecific ITs contain two monodomains
with different specificities.

The advantages of recombinant ITs over those chemically conjugated to antibody domains include:
1. the reduced size, which increases the penetration capacity into the solid tumour environment;
2. the one-step production process leads to a more homogeneous batch compared to the two-step
protein production followed by chemical conjugation; 3. the management and scaling of productions
easier, with a subsequent reduction of the manufacturing costs and quicker production combined with
adequate yields of the therapeutic molecule. However, the chemical conjugation process involving
an antibody and a toxin domain initially requires the production of each component independently,
which can therefore be carried out in different appropriate hosts, according to the structural properties
of the proteins. As a result, a more precise and effective folding can be achieved for both domains,
retaining their native structure.

3. Immunotoxin Factories

Most commercial production of recombinant proteins for therapeutic purpose involves the use
of bacteria, yeast or mammalian cell lines as expression hosts. The identification of the best host cell
to produce the protein of interest is the first and, in some ways, the most important step that will
initiate and drive the outline of the whole process. No ideal organism able to efficiently and safely
produce all kinds of protein toxic chimerae is available, so the choice of the expression system has to
be carefully weighted depending on the final product. It is worth mentioning the intrinsic paradox
in the production of ITs, which can poison the host cells. Therefore, in identifying the most suitable
expression system, it is necessary to consider the possible autointoxication.

Bacteria were the first engineered organism able to produce exogenous proteins [22] and this
system has continued to be improved. It may be suitable to produce proteins that do not contain
complex post-translational modifications. However, the folding machinery of prokaryotic cells is often
not proficient in producing fully functional folded proteins of heterologous origin. Commonly, partially
folded proteins are confined to insoluble inclusion bodies and have to be extracted and refolded to
be active. These laborious processes are time consuming and can determine a reduction of the final
yield. Multiple strategies, including temperature reduction and optimization of induction conditions,
are employed to reduce the expression rate and better couple it to the protein folding. Alternative
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strategies comprise the co-expression of chaperone complexes, belonging to the protein quality control
system, assisting nascent polypeptides to reach their native structure [23]. A main concern in the
employment of bacterial expression systems during the production of biopharmaceutical drugs is that
of endotoxin contamination. Endotoxins can form stable interactions with other biomolecules thus
making their removal difficult after protein purification. Even if present in small quantities, they can
cause fever, inflammation, sepsis and tissue damage and even lead to death [24].

Eukaryotic protein expression systems, including yeast, insect and mammalian cells developed
more recently, allow for the addition of complex post-translational modifications (e.g., N-glycosylation)
and may regulate protein activity, stability and interactions with partner molecules [25,26].
For pharmaceutical purposes, recombinant expression in microorganisms is generally preferred,
as bacteria and yeast both offer a cost-effective high level of protein expression, fast cell growth, simple
media requirement and lower costs. In addition, a wide range of plasmids resulting in multiple
combinations of replicons, promoters, selection markers, multiple cloning sites and fusion protein
strategies, is available [27]. A significant proportion of eukaryotic proteins (around 50%) is glycosylated
and thus necessitates the introduction of N-glycans or more complex sugar modifications which is
undertaken in the endoplasmic reticulum (ER) and Golgi-complex by specific modifying enzymes [28],
essential for the production of Fc fusion protein drugs [29]. Proteolytic cleavage, phosphorylation,
acetylation and methylation are some examples of the modifications that are necessary for proteins to
achieve their native and thus functional, form, that can be better provided by eukaryotic cells [30].

More recently, eukaryotic microalgae have been proposed as platforms for light-driven synthesis of
recombinant proteins. The production has been established in algal chloroplasts - organelles containing
a minimal genome and therefore suitable for rapid engineering to allow high-level, regulated and
stable expression of the transgene. A clear advantage resides in the encapsulation into chloroplasts
allowing the accumulation of protein toxins otherwise dangerous for the host [31].

3.1. Bacteria

Bacteria grow in rich complex media readily available and made from inexpensive components.
They can be transformed with exogenous plasmid DNA in a fast and easy manner [27]. The expression
of recombinant proteins within E. coli can be affected by several factors, including plasmid copy number,
mRNA stability, upstream elements required for efficient transcription, growth time, temperature and
codon usage. To date, toxins and ITs are mainly produced in bacterial and yeast host cells [32,33]. One
common problem to overcome during their production resides in their intrinsic toxicity toward the host
ribosomes. A few RIPs kill cells by affecting targets that are conserved from bacteria and yeast to plants
and animals. First efforts to express recombinant toxins in E. coli were very challenging, because, upon
toxin induction, the bacterial growth rate was significantly compromised due to depurination of E. coli
ribosomes [34–36]. To limit this deleterious effect, the expression has to be tightly regulated and some
E. coli mutants were specifically selected to withstand the expression of toxic proteins. Specialized E.
coli strains, for example BL21(DE3)pLysS, allow inducible gene expression, while suppressing the basal
expression of the protein, to avoid autointoxication [37,38]. The λDE3 lysogen carries the gene for T7
RNA polymerase under the control of the lacUV5 promoter. The target gene can be expressed only
in the presence of T7 RNA polymerase, which is induced by Isopropyl β-D-1-thiogalactopyranoside
(IPTG), an analogue of lactose. The pLysS encodes T7 lysozyme, which lowers the background
expression level of target genes under the control of the T7 promoter but does not interfere with the
level of expression achieved upon IPTG induction. Recombinant molecules, where toxic domains were
fused to the variable fragment (Fv) of a mAb [39] or more recently to single-chain Fv (scFv), which
consists of the Fv heavy and light chain fragments covalently connected with a flexible polypeptide
linker sequence, were inserted upstream or downstream of the catalytic domain of the toxins [33].
To further improve the stability of recombinant ITs, disulphide-stabilized Fv (dsFv) molecules were
successively developed [40].
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Another critical issue in the exogenous production is the efficiency of protein codon recognition
among different organisms. When the frequency of synonymous codons in the exogenous DNA is
substantially different from that of the host, a codon bias can occur. Consequently, a depletion of
low-abundance tRNAs takes place during the synthesis of the recombinant protein, causing amino
acid misincorporation and/or premature truncation of the polypeptide, resulting in a reduction of
the protein expression levels [41]. Upon detecting the presence of rare codons in a given gene
when E. coli is used as a host, codon optimization of the sequence improves the production yield
without affecting the protein activity [42]. So far, a considerable number of ITs have been produced
in bacteria and demonstrated to be active and specific in various preclinical models. For instance,
the recombinant IT D2C7-(scdsFv)-PE38KDEL, specific for both wild-type epidermal growth factor
receptor (EGFR) and for its deletion mutant EGFRvIII exhibited potent antineoplastic effects against
intracranial glioblastoma xenografts [43]. PEA-based recombinant immunotoxins anti-Tac(Fv)-PE38,
targeting CD25 and RFB4(dsFv)-PE38 (also known as BL22), targeting CD22, have each been tested
in patients with interesting results. In a phase I trial anti-Tac(Fv)-PE38 IT displayed clinical activity
in CD25-positive hematologic malignancies and was relatively non-immunogenic [44]. A phase II
trial conducted with BL22 confirmed the activity of the IT in chemoresistant hairy cell leukaemia [45].
To improve the affinity of BL22 for CD22, phage selection was used to identify random mutations in
the CDR3 domain of VH. A three amino acid mutant showed 14-fold enhanced binding affinity due
to lower off-rate [46]. The resulting disulphide-stabilized recombinant IT—named moxetumomab
pasudotox—was tested in preclinical models, showing similar toxicology and improved cytotoxicity
compared to BL22 [47]. A phase I clinical trial was conducted with moxetumomab pasudotox in
relapsed/refractory hairy cell leukaemia patients, showing a positive safety profile [48] and is now
undergoing multicentre phase III testing [49].

Recent advanced in the field are demonstrated by SL401, a recombinant fusion protein composed
of the catalytic and translocation domains of DT fused to IL-3, which is produced in E. coli and selective
for IL-3 receptor positive human myeloid leukaemia cell lines [50]. SL401 was demonstrated to be
effective (including complete remission) in blastic plasmacytoid dendritic cell neoplasm (BPDCN) and
in other haematological malignancies. [51,52]. Multiple phase I/II clinical trials have been conducted
using this drug, achieving encouraging results, and SL401 has been just approved by the FDA for adult
and paediatric BPDCN [53].

3.2. Intracellular Immunization and Issues Related to Host Auto-Intoxication

Host auto-intoxication was observed when we first expressed a secretory chimera preATF-saporin
in an eukaryotic expression system, as well as more recently expressing the precursor of a seed
saporin isoform in Tobacco Protoplast [54]. We showed in this case that, by using specific anti-saporin
neutralizing IgGs, we could protect the wheat germ ribosomes from intoxication, thus obtaining the
expression of wild type saporin in vitro. This demonstrated that ribosome protection was indeed due
to the concomitant presence of the immune Igs in the assay.

“Cytosolic immunization” was first used in the title of our FASEB J. Manuscript to indicate the
exploitation of neutralizing anti-saporin antibodies that were co-microinjected into the Xenopus oocyte
cytosol to allow for expression of a chimera between N-terminal fragment of human urokinase and seed
saporin isoform (preATF-SAP mRNA, which was co-injected). Co-injection of control IgG did not result
in any expression of the chimera [55]. This strategy allowed the production of a highly toxic secretory
protein in eukaryotic cells, avoiding cell suicide caused by autointoxication. The procedure consisted
of equipping host cells with cytosolic neutralizing antibodies directed toward the toxic domain of
the heterologous polypeptide and this intracellular immunization was found to be essential for the
synthesis of correctly folded, biologically active ATF-SAP in the high amounts needed to investigate its
in vivo anti-metastatic potential. For secreting a toxic chimera like the one described above, we would
need to have a mammalian cell system stably expressing in the cytosolic compartment the variable
domains essential to neutralize the tiny amounts of newly synthesized toxic polypeptide that would
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escape ER-segregation. Single domain antibodies (sdAbs) are nowadays available from camels or
sharks, being comprised only of the variable heavy chain domain. These “sdAbs” seem to be very
stable, nonaggregating molecules as compared to whole antibodies or to single chain Fv fragments,
being potentially the best suited novel inhibitors of cytosolic proteins [56].

At that time (2000) we had, however, no such novel strategy in our hands and the principal
idea deriving from the intracellular immunization approach described in the X. oocyte expression
system was planning to obtain a “protected” universal eukaryotic host, exploiting a CHO cell line, that
was already under investigation in our lab [57], able to perform complex N-glycosylation patterns.
Normally, CHO cells lack the Golgi enzyme, α-2,6-sialyltransferase (α-2,6-SiaT) but are able to add core
structures of O-glycosylation found in human proteins (a modification also present in the human ATF
domain); for a comprehensive review on CHO glycosylation patterns please refer to Reference [58].
In addition, the α-2,6-SiaT cells were also able to grow in suspension in fermenters, allowing for the
purification of secreted therapeutic molecules from the conditioned media.

Stably transformed CHO alpha2,6-sialyltransferase cells should have ideally expressed in the
cytosol the saporin neutralizing variable fragments to avoid host auto-intoxication. In order to achieve
this, we first planned to adopt library-panning procedures in order to identify potentially neutralizing
single chain antibodies against saporin in collaboration with E. Benvenuto’s laboratory in Enea, where
panning procedures and single chain scFv libraries were widely used. Surprisingly, the panning
procedure was deleterious when using seed-extracted saporin loaded on the column where the phage
library was being passed: instead of selectively enriching phages, we observed a gradual and constant
depletion in phages, suggesting a possible intoxication of the bacterial layer by the immobilized toxin
(A. Desiderio; R. Ippoliti and MS Fabbrini, unpublished observations). We later explored the Pichia
pastoris platform where PAP and DT-containing chimaeras could be successfully expressed and secreted
by these eukaryotic microbial hosts [59,60]. However, even in this eukaryotic system we observed
some toxicity-related issues.

When initially transforming with pPicSAPWT Pichia pastoris yeast cells, we observed that only
very few colonies with unusual phenotypes could be obtained (morphology was disrupted with the
colonies, instead of being round, were a sort of “meringue” in shape (A. Lombardi and MS Fabbrini,
unpublished observation), while parallel transformations with a pPicSAPKQ saporin catalytic-site
mutant gave rise to an expected number of transformed (round-shaped) colonies. We reasoned that
such an event could be due to truncated polypeptides or translation-arrested partial saporin-derived
peptides that were still able to intoxicate/interfere with the yeast host cell. This preliminary observation
prompted us to synthesize a yeast-optimized saporin gene version for further investigation, which
gave the positive expected results [61]. We therefore adopted the strategy of codon-optimization with
all of the subsequent constructs we expressed in P. pastoris to avoid interruption or stress-related events
during the exogenous protein translation [33,62].

Based on the afore-mentioned assumption, even just a single catalytic active site/polypeptide can
irreversibly harm the host cell. Therefore, successful toxin or chimaera expression requires the absence
of quality control by resident chaperones in the ER, which would otherwise lead to the undesired
retro-translocation of the toxic nascent protein/chimaera polypeptides to the cytosol for degradation.
Instead, we should try our best to favour an efficient and smooth passage along the secretory route to
achieve extracellular secretion of the toxic polypeptides. In fact, if the scFv or the targeting domain
have intrinsic folding problems (as we have experienced with our synthetic anti-CD22 scFv, [33] this
may raise the kind of issues that we first reported and discussed above. These parameters are important
to keep in mind when choosing the most effective signal peptide for insertion into the ER—secretory
route of a toxic chimaera or when designing the optimal linker peptides that join the different domains
(both those linking the heavy and light variable antibody chains, as well as the precise order—either
VH-linker-VL or VL-linker-VH). In this regard, we showed that the native signal peptide of saporin
behaves as a stress-sensor, favouring its translocation to the cytosol, when we expressed precursor
saporin polypeptides in plant Tobacco protoplasts [54], whereas the signal peptide of ER-resident
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chaperones, such as binding immunoglobulin protein (BiP) or protein disulphide isomerase (PDI),
having quite different biochemical properties [18] may behave in the exact opposite way and may
therefore represent an option to consider. Synthetic assembled domains (as in the case of scFv) could
indeed show folding problems tending to form protein aggregates. We have constructed and tested
ten different alternative chimeric fusions that were expressed in P. pastoris: the best option for the
antiCD22scFv domain was the anti-CD22 RB4 fused to PE38 with a (G4S)3 linker between the VH-VL
chains [33]. This type of strategy should be explored when designing a toxic protein chimaera with
several alternative choices to be systematically assayed in order to find the best performing one, not
only for the yeast expressed proteins but also for the expression of PE38-based IT.

3.3. Yeast

Eukaryotic systems present several advantages compared with bacteria, including the possibility of
the recombinant protein being secreted into the culture media and of effecting complex post-translational
modifications. However, the main drawbacks of these organisms are the higher cost, laborious
management of cultures and time-consuming processes of production. Yeast maintains the advantages
of unicellular organisms in terms of cell cultures combining them to specialized management of protein
production. The methylotrophic yeast Pichia pastoris has been largely used for the production of
heterologous proteins since it allows only secretion-competent polypeptides to reach the extracellular
medium by assuring a proper oxidative folding process [63,64]. This system is particularly suitable for
the expression of certain toxins such as mellitin [65], diphtheria toxin, killer toxin or saporin [61,66], since
heterologous protein production can be induced by switching the carbon source from glycerol/glucose
to methanol when high biomass has been achieved and toxic proteins can be rapidly and efficiently
sorted in the secretion pathway and secreted. The safety of this expression system was confirmed for
saporin by demonstrating that the expression of a catalytically inactive saporin KQ mutant displayed
the same growth rate and production yield than for the wild type toxin [62]. The GS115 yeast
strain was found to be particularly tolerant to the expression of bacterial toxins and the recombinant,
CD3-targeting Diphtheria toxin-based immunotoxin fusion was one of the first successfully expressed
up to 10mg/L [60]. One important issue being the insertion into the endomembrane system and for
this purpose an efficient signal peptide must be used to avoid auto-intoxication problems [18]. Other
toxins or toxin-based products were designed and efficiently expressed in P. pastoris yeast, displaying
catalytic activity comparable to wild type proteins. For instance, recombinant PAP-I produced in yeast
demonstrated the same enzymatic activity of native PAP extracted from Phytolacca americana L. Host
toxicity was avoided through rapid and efficient secretion of the toxin into the culture medium [59]. SAP
and SAP chimera production in P. pastoris was improved following codon-usage optimization, which
greatly increased expression levels with the product as cytotoxic as the seed-extracted protein [61].
Monovalent, bivalent and single-chain fold-back diabody anti-human CCR4 DT-based immunotoxins
were successfully produced in yeast and demonstrated to be effective and specific in a human CCR4+

tumour bearing NSG mouse model [67].
In order to select the best microbial system for expression of a chimeric scFv-toxin, we have

prepared two constructs expressing the anti-CD22 scFv fused to either PEA or SAP and compared
their expression in E. coli or P. pastoris [33]. Bacteria were faster in producing the ITs but they had to
be extracted from inclusion bodies and renatured, while yeast cells necessitated a longer time for the
production phase but the secreted ITs were fully functional after an easier purification step. The ITs
containing a toxin moiety of bacterial origin are better expressed in the E. coli host, while saporin-based
ITs are best expressed in the P. pastoris system. Notably, the activity of the resulting ITs was comparable
on Burkitt’s lymphoma cells overexpressing the CD22 receptor [33]. This result corroborates the
assumption that a unique host for the expression of all the toxins does not exist. Proteolysis may occur
at different levels of the yeast secretory pathway, during vesicular transport by resident proteases
or in the extracellular space by secreted or cell wall-associated proteases. Additionally, during high
cell density culture proteases can be released in the supernatant as a result of cell disruption [63].
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To tackle proteolysis problems, multiple strategies have been tested by modifying each of the following:
fermentation parameters (pH, temperature and growth rate), the media composition (addition of amino
acids or peptone, reduction of salt concentration), the application of protein engineering strategies to
remove critical sequences and engineering the expression host to obtain protease-deficient strains [68].
Every variation in the toxin sequence can induce a conformational modification thus affecting the
catalytic activity and has to be carefully evaluated. The use of protease-deficient strains for the
expression of protease-sensitive proteins has been reported for at least two decades with heterogeneous
results. The principal reason is that in several cases, more than one protease can be involved in
the degradation process and, hence, it becomes very challenging to optimize the expression of a
heterologous protein by knocking out just a single hydrolytic activity.

3.4. Plant Cells

To prevent self-intoxication of producing cells, most of native plants synthesize RIPs as inactive
precursor proteins and store them in vacuoles. In this way, the mechanism of toxin biosynthesis ensures
that enzyme and substrates never encounter, leaving overall protein synthesis unaffected [69]. The idea
to use plant cells to produce RIPs was realized by using plant tobacco protoplasts. Preproricin was
successfully expressed in tobacco protoplasts and its processing and targeting of the vacuole occurred
efficiently, avoiding any toxicity for the host, while the expression of RTA is retro-translocated to the
cytosol followed by protein synthesis inhibition [70]. The type I precursor protein preprotrichosanthin
was properly processed in tobacco protoplasts and the final protein product showed toxic activity
similar to the native one only when the precursor included the C-terminal propeptide [71], indicating
an efficient ER-segregation signal for this RIP or that the C-terminal propeptide did interfere with its
toxicity. However, the saporin precursor was not efficiently expressed in tobacco protoplasts and thus
an incomplete ER translocation of the nascent polypeptide precursor due to an ER-stress response could
be the reason for this observation. The selection of ER signal peptides, for example chaperones such as
PDI or BIP, may be an important criterion to allow a proper folding and an efficient ER-segregation of
toxic protein chimeras including saporin [54].

Recently, eukaryotic green microalgae have been explored as a potential platform for the
production of complex therapeutic and industrially relevant recombinant proteins. To date, more
than 20 therapeutically important proteins such as vaccines, human antibodies and ITs [72] have been
successfully expressed in this unicellular green biosystem, mainly in Chlamydomonas reinhardtii [73].
The use of unicellular algae as cell factories represents, a low-cost, low-tech and sustainable approach,
especially for countries that cannot have fermentation infrastructures. Their high growth rate (their
biomass doubles within 24 h and a very short period of time is required to scale up the initial microalgal
transformant volumes needed for large scale production), ease of cultivation (which can be carried out
phototrophically or heterotrophically in photobioreactors, where parameters such as light intensity
(2500–5000 lux), temperature (18–24 ◦C), pH (8.2–8.7), nutrient quantity, carbon dioxide (1.85 g CO2/g
biomass or higher) can be monitored and controlled) lead to both improving the management of the
bioprocess and ensuring a robust final yield of the product of interest. In addition, many green algae
are edible and algal species for the food ingredients and health food markets already have the GRAS
(generally recognized as safe) status. This provides the possibility to explore the oral delivery of
bioactive proteins, so avoiding costly investment in the purification process [31]. The use of green
microalgae for heterologous proteins production has many advantages over bacteria, including the
ability of the former organisms to perform complex post translational modifications like glycosylation
and to produce secreted proteins [74–76].

The diatom P. tricornutum, for instance, was used to produce a monoclonal antibody directed
against Hepatitis B virus surface protein. The heavy and light chain were successfully expressed,
retained in the endoplasmic reticulum by DDEL retention peptides and shown to be correctly assembled
and glycosylated [77]. One year later, the same group demonstrated that omitting the ER retention
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signal from the constructs, the antibody was similarly correctly folded and secreted in the culture
medium in the active form [78].

Another important feature that encourages the use of green microalgae as expression system is
the availability of different transformation methodologies for nuclear, chloroplast and mitochondrial
genomes, which results in the quick generation of positive transformants [79]. A potential drawback
of nuclear expression is characterized by proteolytic degradation into the cytosol. Proteolytic
enzymes are essential for endogenous protein processing and removal of defective or abnormal
native proteins. For nuclear-expression, proteins synthesis can be targeted to the ER by adding
an H/KDEL C-terminal tetrapeptide tag in the construct [80,81]. This strategy leads to decrease
the cytosolic proteolytic degradation of the product and to a final yield, which is generally 2-fold
to 10-fold higher [80]. Another possible strategy to minimize proteolytic degradation of proteins
requiring post-translational modification could consist of targeting the nuclear-expressed proteins to
the chloroplast for accumulation and storage [82].

The majority of the research in this field has focused on chloroplast genome manipulation
for expressing and assembling complex heterologous proteins, even though it results in a lower
productivity compared to the nuclear genes and it lacks a post translational modification system
(e.g., glycosylation) [83,84]. This organelle contains a minimal polyploid genome, deriving from a
cyanobacterial progenitor that mostly encodes for core components of the photosynthetic complexes
and the chloroplast’s transcription/translation apparatus. It is characterized by a circular molecule
of 200 kb, which is present in roughly 80 identical copies, all of them needed to be converted in the
recombinant form. Since plastid transformation is achieved through homologous recombination,
transgenes can be precisely targeted to specific genomic loci and regulated [85,86]. In order to optimize
the protein production machinery, many different steps affecting chloroplast gene expression and
translation should be considered in the genetic engineering process. Among these, the most relevant
are transcription, mRNA processing, mRNA splicing, mRNA stability, initiation of translation and
protein turnover which are regulated by nuclear-encoded factors, often gene specific [87–94]. Indeed,
some studies demonstrated that 5 ′UTRs of plastid mRNAs contain key elements for translational
regulation [95–98]. In 2005, Barnes et al. fused different promoters and 5′ (atpA, rbcL, psbA, psbD and
16S rRNA) and 3′ (atpA, rbcL, psbA or tRNA arg) UTR regions of Chlamydomonas chloroplast genes
to a GFP reporter gene, obtaining different fusion products which were integrated in the chloroplast
genome [99]. These fusions resulted in the proportional accumulation of chimeric mRNA and proteins
at very different levels, with a peak for fusions carrying atpA or psbD promoters and 5′UTRs. A very
low protein accumulation was detected under control of rbcL and psbA, in contrast to 16S rRNA 5′UTR,
which did not induce any at all [99]. PsbA and atpA chloroplast promoters were also used to support
the expression of three recombinant proteins such as 14FN3, VEGF and HMGB1 [100]. Interestingly,
the psbA promoter along with the corresponding UTRs allowed the achievement of a 20-fold increase
in protein accumulation with respect to constructs carrying the atpA promoter and its 5′UTR. Algal
derived VEGF was found to have a dose dependent binding activity to its receptor, with a slightly
lower affinity compared to its bacterial derived homologue, probably due to the presence of misfolded
or truncated VEGF in the assayed samples [100].

Unlike bacteria, chloroplasts contain a wide range of chaperones and folding enzymes that allow
them to correctly fold the complex proteins of the photosynthetic apparatus as well as recombinant
proteins, which accumulate as soluble and functional molecules within the chloroplast [84]. However,
although the chloroplast does not possess the machinery for protein glycosylation, it is capable
of correctly folding and assembling antibodies for which glycosylation is not essential to bind
their target [101]. Transgenic strains producing either the monovalent or divalent CD22-targeted,
gelonin-based ITs have been developed and demonstrated to express soluble, enzymatically active
products capable of specific binding to target cancer B-cells and reducing their viability [102]. Not only
plant RIPs but also bacterial toxins were selected as catalytic domain for the IT production in the
same context. Anti-CD22-PEA ITs were efficiently expressed and correctly folded in chloroplasts of
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microalgae. Both monovalent or divalent ITs induced apoptotic cell death in Burkitt’s lymphoma cells
and significantly inhibited tumour growth in a xenograft mouse model, improving animal survival
rate [103].

3.5. Toxin-Resistant Cells

Liu and co-workers explored the possibility of specifically engineering eukaryotic cells in order
to create DT resistant strains able to improve the production yield of DT-based products [104].
In particular, they used for the first time a DT-resistant CHO cell line to produce a monovalent,
truncated anti-T cell immunotoxin, DT390-scFvUCHT1. The mutation was achieved using chemical
mutagenesis by substituting an arginine to glycine at position 701 of EF-2 encoding gene, making EF-2
non-ADP-ribosylatable by DT or PEA [104]. The resulting CHO-K1 RC1.22c mutant cell line has been
successfully used for expression of the immunotoxin [105,106] achieving a level of 4 µg/mL active
product secreted into the medium. A few years later, the same group focused on the production of
the bivalent anti-T cell immunotoxin A-dmDT390-bisFv(G4S), a multi-domain protein containing the
catalytic (A chain) and translocation domains of DT and four Fv domains (VL and VH) of the anti-CD3
antibody UCHT1, highly effective in depleting T cells in the treatment of T cells leukaemia. For this
purpose, given the advantage of P. pastoris in the expression of heterologous proteins, they generated a
DT- resistant strain by inserting a single substitution of arginine for glycine, resulting in a resistance to
ADP-ribosylation of EF-2 exerted by the toxin [104]. The IT expression by the secretory route was able
to achieve up to 10–35 mg/L in shake flask or bioreactor culture, respectively 2- to 7-fold higher than
what could be attained by CHO cells [104,105]. Furthermore, EF-2 yeast mutants were found to be
highly resistant to DT-A chain, showing an increased viability compared to WT strains. However, the
amount of immunotoxin produced was not augmented but generated more degradation products that
were found both in cell medium and pellet, most likely to be caused by intracellular proteolysis, since
the medium derived immunotoxin exhibited stability both in the presence and absence of cells. In this
work, they also demonstrated that the secretory machinery of the expressing cells can produce only a
limited amount of the heterologous product, as suggested by the fact that a double copy expression
resulted in an increased amount of the truncated form of the IT, suggesting that the excess material
was degraded.

4. Concluding Remarks

Toxins have been studied for decades and have been exploited as potent and versatile weapons
against cancers or other human diseases. In this context, ITs were developed as soon as monoclonal
antibodies were inserted in the concept of targeted therapy, characterized by specificity and limited
adverse effects. Increasing knowledge about toxins’ structure, properties, intoxication route and
mechanism of action enabled the conversion of a lethal molecule into a therapeutic agent. Codon
optimization, removal of potential antigenic epitopes combined with the possibility to employ
humanized antibody domains have led to a significant improvement of IT expression and application.
IT expression has been investigated in multiple organisms, including bacteria, yeast and plant cells.
As recombinant proteins’ therapeutic efficiency mostly relies on their correct folding, eukaryotic
hosts are preferable to bacteria. In fact, even if the advantage of microbial expression platforms is
the cost-effectiveness together with their easy scaling up process for industrial production, complex
organisms are more appropriate production platforms as they are able to guarantee a well assembled
final product. Chinese hamster ovary (CHO) cells, for instance, have been widely used to this purpose,
mainly due to their glycosylation machinery, which is very similar to that of human cells [58,106].
Of relevance is an artificial CHO cell line, called ‘universal host’ (UH CHO), engineered to express a
rat derived alpha2,6-sialyltransferase (EC 2.4.99.1;K2,6-ST), thus able to introduce N terminal sialic
acid residues to both K2,3- and K2,6-linkages of glycans of human origin [57]. This acquired ability
has led to the production of interferon (IFN) gamma-based recombinant proteins with improved
pharmacokinetics compared to IFN-gamma secreted by regular CHO cells. However, improving
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protein yield is one of the first and foremost goals and it is the prerequisite to scale up the production.
Genetic engineering of the hosts allowed for the selection of appropriate strains to tolerate high amount
of ITs, without being intoxicated [104,105]. The further improvement of heterologous expression hosts
coupled with cost-effective production is likely to give a substantial contribution in terms of efficacy
and safety, making ITs suitable for clinical applications mainly in combination with surgery, chemo-
or radiotherapy.
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