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Despite the intensive research in the past decade on the microbial bioaccumulation of heavy metals, the significance of
redox state for oxidative stress induction is not completely clarified. In the present study, we examined the effect of redox-
active (copper and chromium) and redox-inactive (cadmium) metals on the changes in levels of oxidative stress
biomarkers and antioxidant enzyme defence in Trichosporon cutaneum R57 cells. This filamentous yeast strain showed
significant tolerance and bioaccumulation capability of heavy metals. Our findings indicated that the treatment by both
redox-active and redox-inactive heavy metal induced oxidative stress events. Enhanced concentrations of Cu2C, Cr6C and
Cd2C caused acceleration in the production of reactive oxygen species (ROS), increase in the level of oxidatively damaged
proteins and accumulation of reserve carbohydrates (glycogen and trehalose). Cell response against heavy metal exposure
also includes elevation in the activities of antioxidant enzymes, superoxide dismutase and catalase, which are key enzymes
for directly scavenging of ROS. Despite the mentioned changes in the stress biomarkers, T. cutaneum did not show a
significant growth diminution. Probably, activated antioxidant defence contributes to the yeast survival under conditions of
heavy metal stress.
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Introduction

Metal ions are considered very important and at the same

time very toxic for living organisms. They are some of the

main pollutants in the environment. Heavy metals are

present in soils as free or exchangeable metal ions, soluble

metal complexes, organically bound metals, precipitated

or insoluble compounds (oxides, carbonates and hydrox-

ides).[1] Recently, microbial systems, like fungi, bacteria

and algae, have been successfully used as adsorbing

agents for removal of heavy metals.[2,3] Different species

of Aspergillus, Pseudomonas, Sporophyticus, Bacillus,

Phanerochaete, etc. have been reported as efficient reduc-

ers.[4] The response of microorganisms towards toxic

heavy metals is critically important in the reclamation of

polluted sites. Living organisms exposed environmentally

to high metal concentrations follow various mechanisms

to counter potential toxicity. Among the group of microor-

ganisms used for bioremediation, yeasts are having a lead-

ing place.[5]

A possible consequence of heavy metal exposure is an

increased production of reactive oxygen species (ROS)

such as hydroxyl radical (HO�), superoxide radical (�O2
¡)

or hydrogen peroxide (H2O2) that could induce or exacer-

bate intracellular oxidative stress. These ROS may lead to

the unspecific oxidation of proteins and membrane lipids

or may cause DNA damage.[6] Defence mechanisms

which counteract the impact of ROS, including enzyme

and non-enzyme antioxidant systems, are found in all aer-

obic cells. Interaction between chemical elements, the

level of oxidative stress and antioxidant defence play an

important role in ecotoxicological response of microor-

ganisms in polluted environments.[7]

The high potential of Trichosporon cutaneum strain

R57 for heavy metal removal from contaminated waste

water has been demonstrated in several previous investiga-

tions, showing significant tolerance and bioaccumulation

capability for chromium (Cr), cadmium (Cd) and copper

(Cu).[8,9] Our previous study has also shown high ability

of the same yeast strain to grow in the media supplemented

with high content of phenols and resistant to toxic chemi-

cals, such as benzyl alcohol,[10,11] revealed that the

capacity of the strain to sustain toxic concentrations of

heavy metals in the medium often refers to its ability to

accumulate harmful ions in the cells.[12] The question
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arises regarding the relationship between redox state of the

metals and the oxidative stress induction in the yeast cells.

Copper and chromium as redox-active metals generate

ROS through redox cycling reactions.[13] Redox-inactive

Cd impairs antioxidant defences, especially those involv-

ing thiol-containing antioxidants and enzymes.

Copper has a dual role in terms of regulating the life

processes in the living organisms. As an essential trace

element copper acts as a cofactor in multiple enzymes,

including superoxide dismutase (SOD), ceruloplasmin,

Cu monooxygenases, cytochrome c oxidase, etc. At the

same time, copper is toxic to microorganisms and may

lead to their death even within minutes of their exposure

to copper.[14] The toxic effect may involve inhibition of

growth,[15,16] substitution of essential ions and blocking

of functional groups on proteins,[17] inactivation of

enzymes,[18,19] disturbances of the metabolism,[20]

alterations of membrane integrity and production of ROS.

[16,21,22]

Chromium is a relatively abundant element in the

Earth’s crust. It represents an essential micronutrient for

living organisms as a participant in the maintenance of

normal carbohydrate metabolism in mammals and yeasts.

[23] Moreover, it has also been suggested that Cr(III) is

involved in the tertiary structure of proteins and in the

conformation of cellular RNA and DNA.[24] At the same

time, chromium pollution caused serious problems in

many regions of the world. It is a transition metal, water

soluble, enters living cells easily and is toxic and carcino-

genic. Trivalent (Cr[III]) and hexavalent (Cr[VI]) com-

pounds are thought to be the most biologically significant.

[25] Inside living cells, the redox cycling of chromium

species in different oxidation states generates ROS via the

Fenton and Haber�Weiss reactions.[26]

Cadmium is a prevalent non-essential, redox-inactive,

highly toxic metal. It is an important heavy metal pollut-

ant. Cadmium shows high affinity towards functional

groups of biomolecules, i.e., amino, carboxyl, phosphate

and thiol groups,[27] and interferes with numerous bio-

chemical and physiological processes like photosynthesis,

respiration, plant�water relationships, nitrogen and pro-

tein metabolism, and nutrient uptake.[28] There are some

evidences that cadmium-induced oxidative stress in Sac-

charomyces cerevisiae, since strains deficient in antioxi-

dant defence enzymes have a high sensitivity to cadmium

and cells grown in the absence of oxygen are more toler-

ant to cadmium.[29] The bacterial response to cadmium

includes induction of expression of genes in many regu-

lons, including genes involved in metal transport, DNA

repair, the heat shock response and the oxidative stress

response (see [29]).

Despite the great interest in the microbial metal bioac-

cumulation, the mechanism of oxidative stress induction

by heavy metals with different redox status, particularly

redox-inactive metals, is not fully understood.

Therefore, the aim of present paper was to evaluate

and compare the effect of redox-active (copper and chro-

mium ions) and redox-inactive (Cd) metals on induction

of oxidative stress events in T. cutaneum R57 cells. To do

this, we determined the growth, ROS production and oxi-

dative damaged protein content in yeast cells exposed to

different concentrations of metal ions for 6 h. In addition,

the role of antioxidant enzymes SOD and catalase (CAT)

in the cell response was investigated.

Materials and methods

Yeast strain and culture conditions

The T. cutaneum R57 strain was obtained from National

Bank of Industrial Microbial and Cell Cultures, Bulgaria.

The basidiomycete yeast strain of T. cutaneum R57 has

been registered under N2414.[30]

The cultivation was performed as follows: 80 mL of

seed medium was inoculated with 5 mL preculture at a

concentration of 2 £ 108 CFU/mL in 500 mL Erlenmeyer

flasks, on a shaker (220 rpm) at 28 �C for 24 h. Then dif-

ferent concentrations of CdSO4 (1, 5 and 10 mmol/L),

K2Cr2O7 (1, 5 and 10 mmol/L) and CuSO4.5H2O (0.5, 1

and 3 mmol/L) ions were added to the culture medium

and cultivation continued for the next 6 h. These concen-

trations were chosen because they allow us to obtain

enough biomass for bioaccumulation experiments.

Cell-free extract preparation

The cell-free extract was prepared as described earlier.

[31] All steps were performed at 0�4 �C.

Enzyme activity determination

SOD activity was measured in cell-free extract by the

nitro-blue tetrazolium (NBT) reduction method.[32] One

unit of SOD activity was defined as the amount of SOD

required for inhibition of the reduction of NBT by 50%

(A560) and was expressed as units per mg protein (U/mg

protein). Catalase was assayed by the method of Beers

and Sizer,[33] in which the decomposition of H2O2 was

analysed spectrophotometrically at 240 nm. One unit of

catalase activity was defined as the amount of enzyme

that decomposes 1 mmol H2O2 min¡1 at an initial H2O2

concentration of 30 mmol/L at pH 7.0 and 25 �C. The spe-
cific activity is given as U/mg protein.

Determination of ROS

For measurement of �O2
¡ production rate, the method of

SOD inhabitable reduction of cytochrome c was used.[34]

A molar extinction coefficient of 2.11 £ 104 was used to

calculate the concentration of reduced cytochrome c.
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For measurement of hydrogen peroxide production,

the method of Pick and Mizel [35] was used. For calcula-

tions, a standard curve with H2O2 concentrations (from 5

to 50 mmol/L) was used.

Measurement of protein carbonyl content

Protein oxidative damage was measured spectrophotomet-

rically as protein carbonyl content using the 2,4-dinitro-

phenylhydrazine (DNPH) binding assay,[36] slightly

modified by Adachi and Ishii.[37] Following metal treat-

ment, the cell-free extracts were incubated with DNPH

for 1 h at 37 �C; proteins were precipitated in 10% cold

trichloroacetic acid and washed with ethanol:ethylacetate

(1:1), to remove excess DNPH and finally dissolved in

6 mol/L guanidine chloride, pH 2. The optimal density

was measured at 380 nm, and the carbonyl content was

calculated using a molar extinction coefficient of

21 (mmol/L)¡1 cm¡1, resulting in final measurement of

nanomoles of DNPH incorporated (protein carbonyls) per

mg of protein.

Determination of reserve carbohydrates

In order to determine glycogen and trehalose content, a

procedure previously described by Becker [38] and Van-

dercammen et al. [39] and then modified by Parrou and

Francois [40] was used. Soluble reducing sugars were

determined by the Somogyi�Nelson method.[41]

Other analytical methods

Protein was estimated by the Lowry procedure [42] using

crystalline bovine albumin as a standard.

Microbial growth was monitored by measuring the dry

weight using Electronic Moisture Balance (KERN,

Germany).

Results and discussion

Effect of metal ions on growth

The effects of heavy metals on yeast cell growth mainly

depend on the mechanisms of metabolic or passive uptake

of toxic ions into the cells. The highest concentrations of

the metals used are chosen in our preliminary investiga-

tions as limiting for the organism survival (data not

shown).

Growth of T. cutaneum R57 was studied in relation to

0�3 mmol/L CuSO4.5H2O exposure under submerged

conditions (Figure 1(A)). Presence of copper ions in cul-

tural medium induced yeast growth. Mycelia weight

increased with rising of metal concentrations. The highest

biomass production was detected at a concentration of

3 mmol/L (167% compared with the control).

As shown in Figure 1(B), chromium concentrations of

5 and 10 mmol/L led to 16% less biomass production than

the control. Slight reduction of the dry weight at 1 and

5 mmol/L was observed as a result of yeast cell treatment

with cadmium ions. Exposure to the next concentration

used (10 mmol/L Cd) caused only a minor increase (8%)

in biomass yield compared to the control (Figure 1(C)).

Effect of metal stress on ROS generation

In the present experiments, all heavy metal concentrations

applied to yeast culture induced oxidative stress events. It

should be noted that the presence of copper, chromium or

cadmium ions drastically changed ROS level in T. cuta-

neum R57 cells. Table 1 shows the effect of copper, chro-

mium and cadmium ions on �O2
¡ and H2O2 production in

T. cutaneum R57 cells after 6 h of exposure to the metal

ions. Elevation in �O2
¡ content was found for all metal

concentrations tested.

As is apparent from Table 1, the treatment by copper

ion concentrations in the range from 0.5 to 3 mmol/L

resulted in gradual increase in �O2
¡ level above

0.5 mmol/L. The maximum response was achieved with

3 mmol/L (182% compared with the control).
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Figure 1. Growth of T. cutaneum R57 cells in the presence of
different concentrations of metal ions (A) Cu, (B) Cr, and (C)
Cd.
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Short-term exposure to 1 and 5 mmol/L chromium

ions increased the �O2
¡ level by about 1.5 and 2.7-fold,

respectively, as compared to the control. The cells treated

with 10 mmol/L showed extremely high �O2
¡ levels

(threefold higher than controls).

Cadmium ions had a similar effect on �O2
¡ produc-

tion. The level of �O2
¡ increased depending on the metal

concentrations. Maximum superoxide production was

observed by the treatment with 10 mmol/L cadmium ions

(349% in comparison with the control).

Metal treatment also caused an increase in H2O2 levels

in concentration-dependent manner. A significant induc-

tion in H2O2 production was observed after 6 h of incuba-

tion with copper ions (1.6- and 1.7-fold higher in

comparison with the control at concentrations of 1 and

3 mmol/L, respectively). Exposure to 1, 5 and 10 mmol/L

chromium ions led to a significant increase in H2O2 levels

compared to the control (2.2-, 2.5- and 1.9-fold, respec-

tively). The same trend was shown for the Cd ions � 1.4-,

1.6- and 1.8-fold increase after exposure to 1, 5 and

10 mmol/L, respectively.

The current experiments indicated that metal treat-

ment significantly increased production of �O2
¡ and

H2O2. This increase did not depend on the type of metals

(redox-active or redox-inactive) but depended on their

concentrations. Even a small increase of metal concentra-

tion in the cell led to ROS generation. Redox-active met-

als, such as copper and chromium, are prone to participate

in the formation of ROS via a Fenton-like reaction.[25]

Similar direct analyses of ROS content in microbial cells

have not often been reported. Transition metal copper is

one of the most potent elements catalysing Fenton’s reac-

tion. Copper treatment induced ROS generation in yeasts

S. cerevisiae [43] and fungi Podospora anserina,[44]

Humicola lutea [16] and aquatic hyphomycetes Varico-

sporium elodeae and Heliscus submersus.[45] Similar

results have been reported for several plants [46] and

human cells.[47,48] Chromium ion exposure also induced

ROS generation in yeasts, fungi [49] and plants.[50] The

redox-inactive metal cadmium affected ROS production

in the model strain T. cutaneum R57 in the same way as

copper and chromium. Cadmium, as the least representa-

tive member of the transition element group, does not

induce production of ROS though a Fenton-like redox

cycling mechanism, as is the case with copper and chro-

mium.[51] However, this metal inhibits mainly complexes

II and III of the electron transport chain and this inhibition

induces ROS generation in the mitochondria. We found

that cadmium induces �O2
¡ and H2O2 about 3.5- and

1.9-fold, respectively, as compared to the control. This

supports previous studies that suggested possible role of

elevated ROS production in mediating Cd toxicity to bac-

teria,[52] yeast [53] and plants.[54]

Metal exposure caused protein oxidation

As a consequence of excessive ROS production, oxidative

damages of proteins occurred.[55] Protein carbonylation,

one of the most harmful irreversible oxidative protein

modifications, is used as a biomarker of metal-induced

oxidative stress. Exposure to elevated copper concentra-

tions did not significantly affect carbonyl content with

Table 1. Increase in ROS generation in the intact cells of T. cutaneum R57 treated by enhanced concentrations of Cu, Cr and Cd ions.

Cu Cr Cd

Variants

�O2
¡

(nmol /mg d.w./h)
H2O2

(mmol /L.mg d.w./h)

�O2
¡

(nmol/mg d.w./h)
H2O2

(mmol/L.mg d.w./h)

�O2
¡

(nmol/mg d.w./h)
H2O2

(mmol/L.mg d.w./h)

Control 0.63 13.1 0.60 15.20 0.69 14.00

0.5 mmol/L 0.65 13.1 Nd Nd Nd Nd

1 mmol/L 0.89 22.4 0.90 33.9 0.86 20.80

3 mmol/L 1.15 21.6 Nd Nd Nd Nd

5 mmol/L Nd Nd 1.58 37.5 1.20 22.00

10 mmol/L Nd Nd 1.80 28.6 2.41 25.6
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Figure 2. Protein oxidation induced in T. cutaneum R57 cells
by Cu (A), Cr (B) and Cd (C) ions.
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exception of 1 mmol/L when the carbonylated protein

showed 42% higher level than in the control (Figure 2(A)).

In contrast, treatment with enhanced chromium ion

concentrations up to 5 mmol/L caused significant increase

in the protein carbonyl content (about 2.3-fold compared

with the control). It should be noted that the subsequent

concentration (10 mmol/L) resulted in a sharp decrease in

the amount of oxidative damaged protein (Figure 2(B)).

When the T. cutaneum R57 cells were treated with

cadmium ions, the trends of protein carbonyl content

showed a similar profile as after treatment with copper

ions, and the highest level of damaged protein was found

at 1 mmol/L concentration (Figure 2(C)).

The results mentioned above indicate that exposing T.

cutaneum R57 to elevated concentrations of copper, chro-

mium and cadmium ions inflicts oxidative damage on the

intracellular proteins. It is worth noting that the redox-

active metal ions (copper and chromium ions) demon-

strated more drastic changes in oxidative damaged protein

content. The majority of proteins that were oxidized over

the course of the investigation demonstrated an increase

in their relative abundance after exposure to 1 mmol/L

CuSO4.5H2O, 5 mmol/L K2Cr2O7 and 1 mmol/L CdSO4.

The subsequent decline in abundance after treatment with

higher concentrations could be explained by enhancing

both degradation of proteins by proteases and aggregation

of heavily oxidized proteins (see [16]). Evidence for a

positive correlation between increased levels of ROS and

damaged proteins has been published for various micro-

bial cells.[16]

Effect of stress on glycogen and trehalose content

The metal exposure of T. cutaneum R57 was accompanied

by quantified changes in the reserve carbohydrates such as

trehalose and glycogen. Level of reserve carbohydrates

was influenced by all the metal ions added (Figure 3). We

observed reduction of trehalose amount after 6 h of metal

treatment. This reduction was the most significant in the

variant treated with 10 mmol/L Cr (65% lower than the

control) (Figure 3(B)).

The other carbohydrate glycogen showed a different

behaviour. The glycogen amount in T. cutaneum R57 was

not influenced after 6 h of copper treatment (Figure 3(A)).

We observed an increase in the level of glycogen in

the other variants tested. Experiments with chromium

ions showed a trend of enhancing this carbohydrate

(above 48%) in variants with 1 and 5 mmol/L and then a

slight decrease similar to the control level (Figure 3(B)).

A similar trend is observed in variants with cadmium

ions. After a 40% increase in glycogen level, a sharp

decrease was observed at 10mmol/L Cd (Figure 3(C)).

As was mentioned above, the metal exposure of T.

cutaneum R57 results in changes of the reserve carbohy-

drates such as trehalose and glycogen. Both compounds

have different physiological effects and mode of action:

trehalose might be a more general stress protectant and

assists chaperones in controlling protein denaturation

and renaturation, and glycogen is a storage carbohydrate.

[56,57] Our results indicated that chromium and cad-

mium ion treatment led to a significant increase in glyco-

gen content. These findings agree with earlier studies

about the microbial response against heavy metal stress

including chromium and cadmium ions.[21] In contrast,

no changes were found in the amounts of glycogen in

the cells treated with copper ions. Similar data has been

reported by stress response in yeasts.[58] Furthermore,

Arapaima gigas (a carnivorous fish) and the fry of com-

mon carp demonstrated a decrease in glycogen level

under conditions of copper stress.[59,60] The possible

explanation is a progressive glycogenolysis (breakdown

of glycogen (n) to glucose-1-phosphate and glycogen

(n ¡ 1)) in the cells.[61]

In addition, the trehalose amount gradually decreased

with increase in the metal ion concentration. These results

could be due to the active metabolism of trehalose, its

simultaneous synthesis and degradation during the period

of stress.[62] Probably, after 6 h of exposure to metal

stress neutral trehalase (enzyme responsible for trehalose

degradation) exhibits higher activity than trehalose

6-phosphate phosphatase (enzyme responsible for its

synthesis).
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Metal effect on SOD and CAT activity

Fungi, like all aerobic organisms, have a set of defence

mechanisms to deal with oxidative stress.[63] The mecha-

nism of metal-induced formation of ROS is strongly mod-

ulated by the action of cellular antioxidants. The presence

of metal ions stimulated enzyme antioxidant defence in

T. cutaneum R57 cells. The results shown in Figure 4(A)

demonstrate a gradual elevation in SOD activity after

exposure to enhanced concentrations of copper ions. The

maximum activity was observed at the concentration of

3 mmol/L when about 1.5-fold higher specific enzyme

activity was achieved. While the treatment of yeast cells

with 1 or 5 mmol/L chromium caused an insignificant

increase in the level of SOD (19% compared to the con-

trol), the next concentration (10 mmol/L) resulted in a

reduction of 22% compared with the highest enzyme

activity (Figure 4(B)). The activity of SOD raised dose-

dependent manner in a variant of cadmium ions treatment.

The highest enzyme activity was observed at the concen-

tration of 10 mmol/L (Figure 4(C)).

As shown in Figure 4, the effect of metal treatment

was more pronounced for CAT than for SOD. All of the

metal ions tested increased CAT activity in a concentra-

tion-dependent manner. The maximum enzyme activity

was 1.8-, 2.5- and 1.6-fold higher for copper, chromium

and cadmium ions, respectively, than the activity in the

corresponding control variant.

Enzymes, such as SOD and CAT, have been reported

to be activated as a result of elevated ROS levels in sev-

eral organisms exposed to heavy metal stress.[16,64]

These enzymes are crucial for cellular detoxification, con-

trolling the levels of superoxide anion radical and hydro-

gen peroxide.[63] Higher activities of SOD and CAT are

associated with the induced resistance of the mycetes to

different stress factors.[65,66] Our result indicated that all

the metals used induced activation of the enzymes

involved in antioxidant defence. Treatment of yeast cells

with copper, chromium and cadmium ions showed a clear

tendency of concentration-dependent stimulation of SOD

and CAT activity.

Conclusion

In summary, our results provide additional confirmation

for metal-mediated oxidative stress in filamentous yeasts.

Both redox-active and non-redox-active metals caused

oxidative stress events which included enhanced levels of

oxidatively damaged proteins, changes of glycogen and

trehalose levels, and activation of the antioxidant enzymes

SOD and CAT. Despite the significant induction of anti-

oxidant enzyme activity, copper exposure still has delete-

rious effects, probably mediated by the overloading of

antioxidant defences.
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