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Abstract
The stability of genomic evaluations depends on the amount of data and population parameters. When the dataset is 
large enough to estimate the value of nearly all independent chromosome segments (~10K in American Angus cattle), 
the accuracy and persistency of breeding values will be high. The objective of this study was to investigate changes 
in estimated breeding values (EBV) and genomic EBV (GEBV) across monthly evaluations for 1 yr in a large genotyped 
population of beef cattle. The American Angus data used included 8.2 million records for birth weight, 8.9 for weaning 
weight, and 4.4 for postweaning gain. A total of 10.1 million animals born until December 2017 had pedigree information, 
and 484,074 were genotyped. A truncated dataset included animals born until December 2016. To mimic a scenario with 
monthly evaluations, 2017 data were added 1 mo at a time to estimate EBV using best linear unbiased prediction (BLUP) 
and GEBV using single-step genomic BLUP with the algorithm for proven and young (APY) with core group fixed for 1 yr 
or updated monthly. Predictions from monthly evaluations in 2017 were contrasted with the predictions of the evaluation 
in December 2016 or the previous month for all genotyped animals born until December 2016 with or without their own 
phenotypes or progeny phenotypes. Changes in EBV and GEBV were similar across traits, and only results for weaning 
weight are presented. Correlations between evaluations from December 2016 and the 12 consecutive evaluations were 
≥0.97 for EBV and ≥0.99 for GEBV. Average absolute changes for EBV were about two times smaller than for GEBV, except 
for animals with new progeny phenotypes (≤0.12 and ≤0.11 additive genetic SD [SDa] for EBV and GEBV). The maximum 
absolute changes for EBV (≤2.95 SDa) were greater than for GEBV (≤1.59 SDa). The average(maximum) absolute GEBV 
changes for young animals from December 2016 to January and December 2017 ranged from 0.05(0.25) to 0.10(0.53) SDa. 
Corresponding ranges for animals with new progeny phenotypes were from 0.05(0.88) to 0.11(1.59) SDa for GEBV changes. 
The average absolute change in EBV(GEBV) from December 2016 to December 2017 for sires with ≤50 progeny phenotypes 
was 0.26(0.14) and for sires with >50 progeny phenotypes was 0.25(0.16) SDa. Updating the core group in APY without 
adding data created an average absolute change of 0.07 SDa in GEBV. Genomic evaluations in large genotyped populations 
are as stable and persistent as the traditional genetic evaluations, with less extreme changes.

Key words:   algorithm for proven and young, frequency of genomic evaluations, single-step genomic best linear unbiased 
prediction, stability of genomic predictions
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Introduction
The stability of genomic evaluations depends on the amount of 
data and population parameters, provided that no changes are 
made to the model. When the data are large enough to estimate 
the value of nearly all independent chromosome segments, 
the accuracy of genomic predictions will be high (Pocrnic et al., 
2019); hence, their persistency and stability will also be high. 
Independent chromosome segments are DNA regions that are 
inherited together in linked blocks (Stam, 1980) that are also 
called linkage disequilibrium blocks (Muir, 2007). The number 
of blocks that are inherited together depends on the past 
demographic history, the recombination landscape, the length of 
the genome (L), and the mating structure of the population (Stam, 
1980; Slatkin, 2008). The mating structure in finite populations 
under random mating is represented by the effective population 
size (Ne), thus the independent chromosome segments can be 
quantified as 4NeL (Stam, 1980). In Angus beef cattle populations, 
the number of independent chromosome segments ranges from 
10 to 15k (Pocrnic et al., 2016a). Given two populations with the 
same number of genotyped animals and phenotypes, the one 
with smaller Ne would yield genomic predictions of greater 
accuracy because a lower number of independent chromosome 
segments would need to be estimated (Misztal et al., 2020a).

Pocrnic et al. (2016b) showed in a simulated dataset that the 
accuracy of genomic selection was maximized when the genomic 
estimated breeding values (GEBV) of genotyped animals were 
conditioned on GEBV from a number of genotyped animals equal 
to the number of independent chromosome segments (4 NeL), or 
equivalently, the number of the largest eigenvalues explaining 
98% of the variation in the genomic relationship matrix (G). Using 
data from the American Angus beef cattle population, Pocrnic 
et al. (2016a) found that the accuracy of genomic predictions was 
marginally smaller using the number of the largest eigenvalues 
explaining 98% instead of 99% or 100% of the variation in G. The 
number of independent chromosome segments corresponds 
to the number of core animals in the algorithm for proven and 
young (APY; Misztal et  al., 2014a; Pocrnic et  al., 2016b). Pocrnic 
et  al. (2019) reported that accuracies were marginally smaller 
when using 25% instead of 100% of the optimal number of 
core animals in APY, suggesting that genomic selection acts on 
clusters of independent chromosome segments rather than on 
individual independent chromosome segments. In the same 
study, the authors also showed that a small amount of phenotypic 
data allowed only the estimation of the largest clusters (i.e., 
eigenvalues), and that the four largest clusters explained 10% 
of the variation in G. This would yield only moderate genomic 
prediction accuracies; thus, many more phenotypes would be 
required for additional improvements in accuracy.

Accuracy and possible changes in predictions when more 
data are added to the evaluation system are both based on 

the standard error of prediction (Van Vleck, 2016). The larger 
the amount of data available for an animal, the more stable its 
prediction is, and the lower the size of changes that may occur. 
Estimated breeding values (EBV) from the traditional best linear 
unbiased prediction (BLUP) are very stable even for animals 
with moderate accuracies. This outcome generated a high 
level of confidence in this method. The stability of predictions 
when new data are included is a desirable feature of genomic 
evaluations for proven animals or animals without new data. 
However, changes may occur due to limited accuracies, higher 
number of links between animals through genomic than 
pedigree relationships, and decay of genomic information 
across generations. Considering the large amount of phenotypic 
and genomic data available and the limited dimensionality of 
the genomic information in the American Angus population 
(independent chromosome segments  =  10,605; Ne  =  113), we 
hypothesized that all independent chromosome segments could 
be estimated accurately, and the stability of genomic predictions 
would be high for proven animals or animals without new data.

Genomic evaluations for large genotyped populations 
based on the single-step genomic BLUP (ssGBLUP) require 
special algorithms like APY for computational feasibility and 
efficiency. Recently, Misztal et al. (2019) showed that GEBV can 
change when the core group is updated, even if no extra data 
are added, and those changes can be as high as one additive 
genetic SD (SDa). Such changes happen because the APY relies 
on recursions of breeding values of noncore on core animals 
(Misztal et al., 2014a). The recursion formula for noncore animals 
in APY assumes that a fraction of variation in G (~98%) is due to 
information and the rest is noise (~2%). The noise is modeled 
in the formula by an error term, which varies with different 
random samples of core animals, leading to small changes in 
GEBV (Misztal et al., 2020b). Keeping the same core animals for 
a given time is a good strategy to minimize changes in GEBV.

The main objective of this study was to investigate changes 
in genomic predictions across monthly evaluations for 1 yr 
to assess the stability of predictions when new animals with 
phenotypic and genomic information are included in the 
evaluations. A second objective was to compare the changes in 
GEBV from adding new data and updating the core group in APY.

Materials and Methods
Animal Care and Use Committee approval was not needed 
because information was obtained from preexisting databases.

Data

The dataset was provided by the American Angus Association 
and contained phenotypes for birth weight, weaning weight 
(N = 8,881,124), and postweaning gain. The pedigree file consisted 
of 10,129,980 animals born between 1955 and 2017. A  total of 
484,074 animals had genotypes for 39,774 single nucleotide 
polymorphisms after quality control. The numbers of animals 
with genotypes, phenotypes for weaning weight, and pedigree 
records from December 2016 to December 2017 are presented in 
Table 1. Most of the data were added between January and April 
2017 because the vast majority of calves are born in the spring. 
Therefore, the 2017 data were added based on the birth date of 
the animals because this information was more abundant than 
processing dates. It is important to highlight that the dynamics of 
the data inclusion in the official database is based on processing 
dates, and the amount of data added to the database could have 
a different pattern. The number of animals added to the database 

Abbreviations

APY	 algorithm for proven and young
BLUP	 best linear unbiased prediction
EBV	 estimated breeding value
G	 genomic relationship matrix
GEBV	 genomic estimated breeding value
L	 length of the genome
Ne	 effective population size
SDa	 additive genetic standard deviation
ssGBLUP	 single-step genomic best linear 

unbiased prediction
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from December 2016 to December 2017 was 329,858, of which 
91,075 had genomic information and 250,897 had phenotypes for 
weaning weight.

Analyses and computations

The analyses were carried out with the BLUP90IOD2OMP1 
program (Misztal et  al., 2014b) utilizing a three-trait model 
used by Angus Genetics Inc. (St. Joseph, MO) for routine genetic 
evaluations (Lourenco et  al., 2015). To compute traditional 
pedigree-based predictions, the analyses included pedigree 
and phenotypes, and to compute genomic predictions, the 
analyses included pedigrees, phenotypes, and genotypes. When 
genotypes were included, GEBV were computed by ssGBLUP 
using APY. The G matrix was constructed based on VanRaden 
(2008), blended with 10% of the pedigree relationship matrix for 
genotyped animals (A22) to avoid singularity problems, and then 
rescaled to have the same means of diagonals and off-diagonals 
as A22 (Vitezica et al., 2011).

To mimic a system with monthly evaluations, phenotypes, 
genotypes, and pedigree information were added every month, 
from January to December 2017. We computed traditional BLUP 
and ssGBLUP evaluations monthly and compared the resulting 
EBV and GEBV for genotyped animals born until December 2016 
with the values obtained in the evaluation from December 2016 
or with the values obtained in the evaluation of the previous 
month. For example, we compared the evaluations obtained 
with data until May 2017 with the evaluations obtained with 
data until December 2016 and also with the evaluations obtained 
with data until April 2017. We computed correlations between 
EBV in December 2016 and EBV in the 12 monthly evaluations 
in 2017 as well as correlations between GEBV in December 2016 
and GEBV from the 12 monthly evaluations in 2017. In addition, 
we obtained the distribution of changes for EBV and GEBV when 
comparing monthly evaluations in 2017 with evaluations in 
December 2016 and computed average, top 1%, and maximum 
absolute changes in EBV and GEBV expressed as SDa and kg. 
Correlations and changes were evaluated separately for six 
groups of animals: all genotyped animals born until December 
2016 (n = 392,999), genotyped animals born until December 2016 
with (n = 387,743) and without (n = 5,256) phenotypes, genotyped 
animals born until December 2016 with (n = 45,848) and without 

(n  =  347,151) new progeny phenotypes after December 2016, 
and for young genotyped animals born in 2016 with neither 
phenotypes nor progeny (n = 1,444).

To implement ssGBLUP with APY, two scenarios were used. In 
the first scenario, 20k genotyped animals from December 2016 
dataset were randomly selected to be the core group, and this 
group remained unchanged in all the genomic evaluations of 
2017. In the second scenario, updated core groups were utilized 
from December 2016 to December 2017, meaning that every 
month the core was updated considering also the genotyped 
animals newly added to the database, which means 20k animals 
were again randomly selected from all the genotyped animals 
available at that point in time. This second scenario was useful 
to investigate the impact of adding new data vs. the impact 
of changing the core group. The comparison between the two 
evaluations in December 2016 using different core groups was 
termed contrast zero. The evaluations obtained with fixed and 
updated core are hereafter referred to as GEBV and GEBV_UC, 
respectively.

Results and Discussion
Only results for weaning weight are presented here because 
monthly changes in EBV and GEBV were similar among traits. 
Correlations between evaluations in December 2016 and the 
12 subsequent monthly evaluations in 2017 were greater than 
or equal to 0.97 for EBV and 0.99 for GEBV. Figure 1a shows the 
distribution of cumulative changes in EBV for weaning weight 
between the evaluations in December 2016 and the 12 monthly 
evaluations in 2017 for the set of all genotyped animals born until 
December 2016. Similarly, Figure  1b shows the corresponding 
distribution of cumulative changes in GEBV between these 12 
contrasts. The main cumulative changes occurred in the first 4 
mo of 2017 because approximately 90% of the phenotypes and 
genotypes were added during this period (spring calving season; 
Table  1). An increasing dispersion was observed from January 
to April (Figure 1 and Table 3). Changes from May to December 
2017 were negligible in comparison with the previous months 
(Figure  1 and Table  4) because substantially less pedigree, 
phenotypic, and genotypic information were added to the 
dataset (Table 1).

Figure  2 shows average, top 1%, and maximum absolute 
changes in EBV and GEBV for weaning weight across 
evaluations for all genotyped animals born until December 2016 
in the American Angus population. Table  2 presents average 
and maximum (in parenthesis) absolute changes between 
evaluations in December 2016 and evaluations in January 2017 
and between evaluations in December 2016 and evaluations 
in December 2017 for the six comparison groups of genotyped 
animals born until December 2016. For all the genotyped 
animals, the average, top 1%, and maximum absolute changes 
between December 2016 and January 2017 were 0.02, 0.19, 
and 2.20 SDa for EBV and 0.05, 0.15, and 0.88 SDa for GEBV, 
respectively (Figure  2). The corresponding average, top 1%, 
and maximum absolute changes between December 2016 and 
December 2017 were 0.06, 0.37, and 2.95 SDa for EBV and 0.10, 
0.35, and 1.59 SDa for GEBV (Figure  2). As expected, EBV and 
GEBV absolute changes were larger over a 12-mo period than 
over a 1-mo period.

The average absolute changes for EBV were approximately 
two times smaller than the average absolute changes for GEBV 
for all genotyped animals, genotyped animals with and without 
own records, genotyped animals without new progeny records 

Table 1.  The number of animals in the pedigree, animals with 
genotypes, and animals with weaning weight in the American Angus 
population1

Period Pedigree Genotypes
Weaning  
weight

December 2016 9.800 0.393 8.630
January 2017 9.876 0.416 8.688
February 2017 9.965 0.443 8.763
March 2017 10.046 0.462 8.831
April 2017 10.081 0.467 8.860
May 2017 10.092 0.469 8.868
June 2017 10.095 0.469 8.869
July 2017 10.097 0.470 8.871
August 2017 10.104 0.474 8.874
September 2017 10.117 0.479 8.879
October 2017 10.125 0.482 8.881
November 2017 10.128 0.483 8.881
December 2017 10.130 0.484 8.881

1In millions.
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after December 2016, and genotyped young animals (Table 2). 
Genotyped animals with new progeny records after December 
2016 had similar average absolute changes for EBV and GEBV 
(Table 2).

The average absolute changes for EBV were greater for the 
group of animals with new progeny phenotypes added after 

December 2016, about two times compared with the other 
groups. Therefore, in this case, the changes were driven by the 
new phenotypes. The average absolute changes for GEBV were 
similar across the six comparison groups; thus, in this case, not 
just the new phenotypes but also the new genotypes were the 
main forces driving the changes (Tables 2–4). In general, the group 

Figure 1.  Distribution of cumulative changes in EBV (a) and GEBV (b) contrasting the evaluation for weaning weight in December 2016 with subsequent monthly 

evaluations in 2017 for all genotyped animals (Cx = contrast between December 2016 and month x of 2017; with x varying from 1 [January] to 12 [December]). All changes 

and statistics are presented in SDa units. The major changes occurred in the first four evaluations due to a considerable increase in the number of phenotypes and 

genotypes from January to April 2017. 
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of animals with new progeny phenotypes added after December 
2016 presented the greater average absolute changes, but, even in 
this case, and after 1 yr of adding new data, the average absolute 
changes were small (≤0.12 SDa for EBV and ≤0.11 for GEBV). The 
maximum absolute changes were always greater for EBV than 
for GEBV and in line with the theory of outliers in the normal 
distribution (≤2.59 SDa for EBV and ≤1.95 SDa for GEBV). Lastly, 
the maximum absolute changes were smaller for young animals, 
a desirable feature because this group represents selection 
candidates. The changes in (G)EBV are bounded by the accuracy 
or precision of the estimates; therefore, smaller maximum 
changes for GEBV, when compared with EBV, are likely because 
the genomic information is expected to reduce the prediction 
error variance (Misztal et al., 2020b). The reason for this is the 
more accurate estimation of Mendelian sampling effects with 
genomics (Hayes et al., 2009; Cole and VanRaden, 2011).

Figure  3 shows the distribution of the changes in EBV (a), 
GEBV_UC (b), and GEBV (c) when contrasting the predictions 
from December 2016 with those from December 2017 for 
genotyped sires (n = 7,299) with own weaning weight phenotype 
and progeny phenotypes. Average absolute changes for sires 
with 50 or less progeny were 0.26, 0.15, and 0.14 SDa for EBV, 
GEBV_UC, and GEBV, respectively. Average absolute changes for 
sires with more than 50 progeny were 0.25, 0.17, and 0.16 SDa, in 
the same order. Maximum absolute changes in EBV, GEBV_UC, 
and GEBV were 2.95, 1.62, and 1.59 SDa for sires with 50 or less 
progeny and 2.11, 1.19, and 1.17 SDa for sires with more than 50 
progeny. In general, changes were greater for sires with no or 
few progeny before December 2016. Proven sires with more than 
50 progeny had similar average absolute changes but smaller 
maximum absolute changes than sires with 50 or less progeny. 
For this group of sires with own phenotype and progeny 

Table 2.  Average (maximum) absolute changes in EBV and genomic EBV for weaning weight between December 2016 and January 2017 and 
between December 2016 and December 2017 for genotyped animals born until 2016 in the American Angus population1

Contrast2

Genotyped animals

All With records Without records With new records after 2016 Without new records after 2016 Young3

C1_EBV 0.02 (2.20) 0.02 (2.20) 0.01 (0.70) 0.04 (2.20) 0.02 (1.15) 0.02 (0.70)
C1_GEBV 0.05 (0.88) 0.05 (0.88) 0.04 (0.25) 0.05 (0.88) 0.05 (0.45) 0.05 (0.25)
C12_EBV 0.06 (2.95) 0.06 (2.95) 0.04 (1.44) 0.12 (2.95) 0.05 (1.39) 0.05 (0.69)
C12_GEBV 0.10 (1.59) 0.10 (1.59) 0.10 (0.53) 0.11 (1.59) 0.10 (0.75) 0.10 (0.53)

1Absolute changes in SDa units.
2C1, contrast between December 2016 and January 2017; C12, contrast between December 2016 and December 2017.
3Born in 2016 with neither phenotypes nor progeny.

Figure 2.  Maximum (Max), top 1% (Top1), and average (Avg) absolute changes in EBV and GEBV contrasting the evaluation for weaning weight in December 2016 with 

subsequent monthly evaluations in 2017 for all genotyped animals (Cx = contrast between December 2016 and month x of 2017; with x varying from 1 [January] to 12 

[December]). All changes and statistics are presented in SDa units. Average absolute changes in GEBV were approximately two times greater than those in EBV, but 

maximum and top 1% absolute changes were larger in EBV.
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phenotypes, the average and maximum absolute changes in 
GEBV were smaller than in EBV. Additionally, updating the core 
group in APY generated a marginal increase in the absolute 
average and maximum changes.

Looking at the decomposition of EBV and GEBV might help 
to understand the changes. The EBV can be decomposed into a 

parental average, a yield deviation, and a progeny contribution 
(VanRaden and Wiggans, 1991). Additionally, the decomposition 
of GEBV also includes a direct genomic value and a pedigree 
prediction, and the last one is needed to avoid double counting 
of relationships (Aguilar et  al., 2010; Lourenco et  al., 2015). 
Without new information for an animal (i.e., new progeny 

Figure 3.  Distribution of changes in EBV (a), GEBV_UC (b), and GEBV (c) as a function of the number of progeny for genotyped sires with own weaning weight phenotype 

and progeny with weaning weight phenotypes, when contrasting the evaluations for weaning weight in December 2016 with the evaluations in December 2017. 

Changes are presented in SDa units. Average and maximum absolute changes in GEBV were smaller than those changes in EBV; updating the core group in APY 

generated a marginal increase in the absolute average and maximum changes.



Copyedited by: SU

Hidalgo et al.  |  9

phenotypes), the EBV based on parental average is expected to 
be stable (assuming that the parents had high accuracy EBV). 
However, the addition of new progeny phenotypes can result 
in large changes in EBV for an animal because, in the absence 
of large progeny groups (i.e., few or no progeny), the additional 
information is sizeable respective to the parental average. 
In this case, the magnitude of the change in EBV has a direct 
relationship with the phenotypic information that is added.

In the case of GEBV, every genotyped animal with phenotypic 
information influences the direct genomic value of all 
genotyped animals. Consequently, the GEBV of animals with no 
additional phenotypic information of their own or their relatives 
could change. However, if the reference population is large, the 
accuracy of the direct genomic value will be high (Lourenco 
et  al., 2015); thus, additional phenotypic records would have 
a lower impact on GEBV because they would contribute with 
less information than the direct genomic value. In our study, 
average absolute changes for GEBV in the group of genotyped 
animals with new progeny records after December 2016 were 
similar compared with the remaining groups, indicating that 
the accuracy is high, which was expected because of the large 
reference population.

For milk yield in Holsteins, the information from the sire 
and the dam, both with 99% reliability, is equivalent to having 
14 daughters with phenotypic records (VanRaden and Wiggans, 
1991). With genomic information, the genotype of an animal 
provides information equivalent to 37.5 daughters for milk yield, 
240.6 daughters for daughter pregnancy rate, and 780.2 daughters 
for heifer conception rate (https://queries.uscdcb.com/eval/
summary/comparexml_menu.cfm?R_menu=v_2004.v_Young_
Bulls.v_Holstein_wddx#StartBody). For weaning weight in 
Angus beef cattle, having the genotype of an unproven bull is 
equivalent to having 27 calves with weaning weight records 
(https://www.angus.org/AGI/GenomicEnhancedEPDs.pdf).

Genotypes create stronger relationship ties among animals 
and at the same time reduce the prediction error variance of 
GEBV as demonstrated by Misztal et  al. (2020b) in a research 
study carried out to investigate the magnitude of changes in 
relation to accuracy. In the preceding research study, the authors 
compared two genomic evaluations with the same amount of 
data but different core groups in APY and concluded that the 
largest differences were for animals with accuracy lower than 
0.7; the animals with greater accuracy (smaller prediction error 
variance) had considerably smaller changes. In our study, the 
stronger relationship ties and the reduced prediction error 
variance resulted in greater average absolute changes in GEBV 
but lower maximum absolute changes than those from EBV. In the 
group of animals with new progeny phenotypes after December 
2016, the average absolute changes in GEBV were similar to the 
average absolute changes in EBV, and the maximum absolute 
changes were smaller for GEBV than those for EBV. Additionally, 
genotyped sires of progeny with weaning weight phenotypes 
had smaller changes for GEBV than for EBV, indicating that 
genomic evaluations were as stable as traditional evaluations 
and with less extreme changes because of their greater accuracy 
when animals had new phenotypic information.

An implicit assumption in this study was that the amount 
of information was sufficient to estimate the values of nearly 
all independent chromosome segments and their clusters with 
high accuracy. The predictivity of GEBV (Legarra et  al., 2008), 
calculated as the correlation between phenotypes adjusted for 
fixed effects (using the whole dataset) and GEBV (estimated using 
a partial dataset where the phenotypes for validation animals 
were removed), for animals with weaning weight records and 

born in 2017 (n = 250,897) was 0.44. Assuming a heritability of 
weaning weight (0.20), the population accuracy calculated 
as predictivity/

√
heritability would be very high (0.98). This 

formula depends on the heritability of the trait in the validation 
population and the adjustments to phenotypes. Although the 
computed accuracy seems overly high, the actual accuracy was 
likely high, thus explaining the high persistency of GEBV in 
this study. Hidalgo et  al. (2020) found that the heritability for 
traits under strong genomic selection change over time, which 
could also lead to changes in GEBV accuracies. Thus, validation 
methods that do not explicitly depend on heritabilities (e.g., 
linear regression [LR] validation from Legarra and Reverter, 
2018) may provide better estimates of GEBV accuracies. The 
LR method assumes that the additive genetic variance for the 
subset of validation animals is known. This additive genetic 
variance can be computed and is smaller than the population-
based estimate in populations undergoing selection; however, 
its computation is intricate and requires a special method based 
on Gibbs Sampling (Sorensen et al., 2001). The implementation 
of this method is out of the scope of this research study and 
deserves future research.

Table 3 presents the average and maximum absolute changes 
in EBV, GEBV, and GEBV_UC (i.e., updated core) for all genotyped 
animals born until December 2016, those that had new progeny 
records added after December 2016, and the young ones. All 
changes are shown in SDa and in kg, but discussions are in SDa 
for simplicity. The contrast zero represents absolute changes 
between initial evaluations in December 2016 and evaluations 
in December 2016 with updated core. The contrasts 1 to 12 
represent absolute changes among evaluations in December 
2016 and evaluations from January to December 2017 adding 
data, and either with fixed or updated core.

The average absolute changes updating the core group for 
APY and adding a new pedigree, genotypic, and phenotypic 
information (contrasts one to twelve) were about 0.02 SDa 
greater than with the fixed core group. The maximum absolute 
changes were similar for the groups of all genotyped animals 
born until December 2016 and those that had new progeny 
records added after December 2016 but about 0.12 SDa greater 
for young animals when compared with using a fixed core 
group. The average absolute changes for contrast zero were 0.07 
for all groups of animals, which was similar to those changes in 
contrast two with fixed core group. This means that the impact 
of changing the core animals in the estimation of GEBV is the 
same as the impact of adding 2 mo of data, but keeping the 
same core, it is important to highlight that we refer to those 
months with the majority of data. Therefore, the changes in 
GEBV because of core updating may have more impact when no 
data or a small amount of data is added from one evaluation to 
the next. To avoid larger changes, the core group can be fixed for 
a period of time, that is, 1 yr, and updates should be done when 
large amounts of data are added to the evaluation system.

Table 4 contains average and maximum absolute changes in 
EBV, GEBV, and GEBV_UC for all genotyped animals born until 
December 2016, those that had new progeny records added after 
December 2016, and the young ones. All changes are shown in 
SDa and in kg, but discussions are in SDa for simplicity. The 
contrasts 1 to 12 represent absolute changes among evaluations 
of 2017 in the current and the precedent month. The largest 
average absolute changes in both EBV and GEBV were observed 
in the first four contrasts (from January to April 2017) and were 
marginal afterward. The maximum absolute changes were larger 
in the first four contrasts and decreased afterward, as expected, 
because less information was added from May to December 

https://queries.uscdcb.com/eval/summary/comparexml_menu.cfm
https://queries.uscdcb.com/eval/summary/comparexml_menu.cfm
https://www.angus.org/AGI/GenomicEnhancedEPDs.pdf
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2017. Updating the core group in APY caused an average absolute 
change in GEBV of ~0.7 SDa. The maximum absolute changes for 
GEBV updating the core group in APY ranged from 0.61 to 1.17 
SDa for all the genotyped animals and those with new progeny 
phenotypes. Maximum absolute changes were smaller for the 
group of young animals (~0.4 SDa).

Conclusions
When new pedigrees, genomic, and phenotypic data were 
included in the genomic evaluations of animals in the American 
Angus population, the average absolute changes in GEBV were 
about twice as large as those in EBV for most of the genotyped 
animals but for the ones with new progeny phenotypic records. 
The most extreme maximum absolute changes were observed 
for EBV. The deep pedigree and ample phenotypic and genomic 
data from the American Angus population yielded accurate 
estimates for all independent chromosome segments and their 
clusters, contributing to high persistency of genomic evaluations 
and leading to stable genomic evaluations during the year of 
the study. Genomic evaluations were as stable as traditional 
evaluations for animals with new progeny phenotypic records. 
If the APY is used, changes in GEBV due to changes in the core 
group can be avoided by keeping the same core group for 1 yr 
and updating it when a large amount of data is added.
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