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Abstract: We know little about the underlying genetic control of phenotypic patterns of seed traits
across large-scale geographic and environmental gradients. Such knowledge is important for un-
derstanding the evolution of populations within species and for improving species conservation.
Therefore, to test for genetic variation in Plantago lanceolata, we made reciprocal crosses between
northern and southern genotypes that span the species’ range in Europe. The results provide evi-
dence of transgenerational genetic effects on seed mass and germination timing. Northern mothers
produced larger seeds with delayed germination, in contrast to southern mothers, which produced
smaller seeds with accelerated germination. A maternal latitude affected both the seed coat, solely
maternal tissue, and embryo/endosperm tissues. Thus, latitudinal variation in seed size and germi-
nation timing can be explained, in part, by the direct influence of maternal genotype, independent of
zygotic genes that parents pass directly to the embryo and endosperm. Data suggest that researchers
exploring the existence and evolution of large-scale geographic variation within species test for
transgenerational genetic effects. In addition, data suggest that transgenerational control of seed
traits should be considered when developing procedures designed to facilitate species conservation
and restoration.

Keywords: transgenerational effects; maternal genetic effects; latitude; seed; germination; Plantago
lanceolata; species conservation

1. Introduction

Large-scale geographic variation has long been a focus of plant research [1–5], and much of
that research has focused on seed traits because of their large contributions to a species’ fitness.
Seed mass can impact seed germination, seedling establishment [6–9], and dispersal [10–13].
Germination timing, including dormancy, can strongly influence seedling establishment, sur-
vivorship, and reproduction, which contribute to lifetime fitness [9,12,14–21]. For all these
reasons, seed traits are also key determinants of agronomic success [22].

These contributions to fitness have motivated many evolutionary biologists to explore
how seed traits vary systematically along latitudinal/altitudinal/longitudinal gradients. In
addition, conservation biologists studying the effects of large-scale environmental change
(e.g., via climate change, urbanization, agriculture, and deforestation) have increased
efforts to sample and preserve seeds from multiple populations along these gradients.
Seed traits can influence a species’ ability to shift its range, recover from disturbance,
and adapt to local warming and increased drought in response to climate change. Thus,
understanding the underlying causes of large-scale variation (e.g., mass, germination,
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dormancy, and longevity) is expected to help reduce the probability of species extinction
and expand opportunities for crop improvement [23–28].

Thus far, large-scale studies have demonstrated that populations across the geographic
range of a species can vary phenotypically in seed mass and germination. However,
patterns are quite variable. In some species, mass declines poleward [26,29–41]. In others,
mass increases poleward [33,40,42–49], and with increasing altitude [30,50–53] or shows
no geographic trend [32,33,54–59]. Geographic patterns in temperature requirements for
germination and germination rate are equally diverse [36,51,53,60–65].

Such within-species phenotypic variation has frequently been interpreted as reflecting
genetic variation that has arisen through natural selection in response to variation in local
environmental pressures along latitudinal/altitudinal/longitudinal gradients. However,
there is limited evidence that phenotypic variation along these gradients can be explained
by genetic differences [60,66–68]. Contrasting explanations arise, in part, because multiple
seed tissues can contribute to the phenotypic variation. These tissues have different origins,
serve different functions, and can be differentially influenced by the environment where
seeds are produced.

Three tissues typically constitute a seed, and all three have the potential to indepen-
dently influence seed phenotype, e.g., mass (size, weight), % germination, germination
timing, and dormancy (Figure 1, [7,9,69]). The seed coat is completely derived from mater-
nal tissue, the embryo contains equal nuclear genetic contributions from the mother and
father, and the triploid endosperm contains twice the nuclear genetic contribution from the
mother than from the father, producing dosage effects. Resource availability influences seed
provisioning, which typically occurs in the endosperm. Additionally, the cytoplasms of
the endosperm and embryo (the zygotic tissues), which contain mitochondrial and plastid
DNA, are usually only maternally inherited (See [70]) for some exceptions). A maternal
phenotype can contribute materials, e.g., nutrients, hormones, and structural proteins to all
three tissues, and her contributions are influenced by resource availability and other local
environmental factors. Thus, maternal and paternal parents and the zygotic tissues can
contribute separately, or interactively, in different ways to seed traits, and contributions
could be genetic or environmentally induced. In addition, tissues could differ in their
phenotypic plasticity, i.e., in their responses to local environmental change [71–73].
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Pp = paternal phenotypic.
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The above contributions have evolutionary and conservation implications because only
the genetic variation in a trait is available for natural or artificial selection. Currently, aside
from Arabidopsis thaliana [60,68,74], there is little supporting evidence for the hypothesis
that the observed phenotypic variation in seeds across geographic ranges is explained by
genetic variation. A major reason for this negligible support is that very few large-scale
studies have tested the possibility that patterns could be explained by transgenerational
(e.g., parental) environmental effects. For example, multiple controlled experiments have
demonstrated that temperature and precipitation (primary determinants of climate) during
the parental generation can affect seed phenotypes [10,74–80]. Because most data from
large-scale geographic studies have come from tests of seeds collected directly from wild
populations growing under different environmental conditions, it is not possible to rule
out the hypothesis that parental environmental effects, rather than genetics, explain the
geographic patterns described above. For this reason, Donohue et al. (2010) [60] pointed
out that researchers need to grow the seeds gathered from wild-grown plants under
uniform conditions, and then researchers should measure the properties of seeds produced
by this second generation. Very few large-scale geographic studies have included this
additional step [3,31,44,47,67,81,82].

Additionally, just as transgenerational environmental effects can limit one’s ability
to interpret large-scale phenotypic data, so also can the absence of knowledge about the
sources of genetic variation in seeds, e.g., parental vs. zygotic control. Multiple controlled
experiments have detected strong maternal genetic effects on seed traits, independent of
zygotic genes transmitted directly from mother to offspring and independent of maternal
environmental effects [7,14,82–89]. In addition, theoretical models have demonstrated
that transgenerational genetic effects can substantially impact the rate and direction of
evolutionary change in a population in response to directional selection [90–92]. Theoretical
and empirical experiments argue strongly for examining the role(s) of transgenerational
genetic effects in explaining geographic patterns of seed traits.

We had the opportunity to test the presence of these effects on seed weight and
germination timing in Plantago lanceolata L. (English, or ribwort, plantain), Plantaginaceae
across its native range in Europe. P. lanceolata genetically varies in thermal plasticity of
floral color, reflectance, and in flowering time along its latitudinal/altitudinal ranges in
Europe [93]. Using seeds from a QTL experiment to explore the genetics of these thermal
plasticities [94], we tested the hypothesis that northern and southern populations differ
genetically in seed mass and germination timing. Specifically, we asked: (1) Are seed
mass and germination timing influenced by transgenerational genetic effects? (2) Are these
transgenerational effects associated with latitude? If so, what is the pattern? (3) Are the
transgenerational genetic effects transmitted via the mother, father, or both? (4) Are the
effects on total seed mass explained by differences in embryo/endosperm mass, seed coat
mass, or both? (5) Do the effects on seed mass contribute to differences in germination
timing? (6) Are the effects likely adaptive?

2. Results

In Experiment 1, we found strong evidence of a transgenerational genetic effect on
seed mass. Reciprocal crosses significantly differed from each other (F = 22.31, p < 0.0001).
Northern mothers produced heavier and larger seeds than did southern mothers, and ma-
ternal latitude explained 57% of the variance in seed mass (Figure 2 mean seed mass + s.e.
of northern mothers: 1.63 ± 0.13 mg; southern mothers: 0.82 ± 0.04 mg). The difference
between seeds produced by northern vs. southern mothers within a genotypic cross was
highly statistically significant for five of seven crosses. Differences in seed mass among
northern mothers were statistically significant (F = 12.39, p = 0.002), whereas differences
among southern mothers were not (F = 2.67, p = 0.11). Mass was positively correlated with
maternal latitude (r2 = 0.67, p = 0.024).
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France (FRH), Castel Volturno, and Italy (ICA). Dark blue = northern mother/southern father; Light 
blue = southern mother/northern father. *** = p < 0.0001. (B) Representative seeds produced by a 
northern mother (SCST 13) and by a southern mother (ICA 3) for a genotypic cross. 
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duced statistically heavier seed coats (F = 6.64, p = 0.042) and embryo/endosperm mass (F 
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uted to the statistically significant difference in total seed mass between northern and 
southern mothers (F = 9.20, p = 0.023; mean ± S.E.: Northern = 1.75 ± 0.08 mg, Southern = 
0.86 ± 0.02 mg). In addition, germination occurred later in seeds of northern mothers than 
in southern mothers. The difference in timing was statistically significant (F = 6.72, p = 
0.041). Mean germination time for seeds of northern and southern mothers was 4.000 days 
and 3.167 days, respectively (range = 3–6 days; germination = 100% on day 7). Germination 
timing was significantly correlated with seed mass (Pearson correlation coefficient = 0.933, 

Figure 2. Experiment 1: (A) Mean individual seed mass ± 95% CI shown by reciprocal cross and
maternal parent for each of seven reciprocal genotypic crosses. Genotypic crosses are identified by
brackets. Each parental genotype is identified by grandparental wild population and maternal ID.
Northern populations: Veno, Denmark (DV). Lund, Finland (FL), Cupar, Scotland (SCC), St. Andrews,
Scotland (SCST), and Upsala, Sweden (SU); Southern populations: Hameau de St. Felix, France (FRH),
Castel Volturno, and Italy (ICA). Dark blue = northern mother/southern father; Light blue = southern
mother/northern father. *** = p < 0.0001. (B) Representative seeds produced by a northern mother
(SCST 13) and by a southern mother (ICA 3) for a genotypic cross.

In Experiment 2, parental latitude explained 60% of the variance in whole seed mass,
52% in coat mass, and 61% in embryo/endosperm mass (Figure 3). Northern mothers
produced statistically heavier seed coats (F = 6.64, p = 0.042) and embryo/endosperm
mass (F = 9.52, p = 0.021) than did southern mothers. Both coat and embryo/endosperm
contributed to the statistically significant difference in total seed mass between northern
and southern mothers (F = 9.20, p = 0.023; mean ± S.E.: Northern = 1.75 ± 0.08 mg,
Southern = 0.86 ± 0.02 mg). In addition, germination occurred later in seeds of northern
mothers than in southern mothers. The difference in timing was statistically significant
(F = 6.72, p = 0.041). Mean germination time for seeds of northern and southern mothers
was 4.000 days and 3.167 days, respectively (range = 3–6 days; germination = 100% on
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day 7). Germination timing was significantly correlated with seed mass (Pearson corre-
lation coefficient = 0.933, p = 0.002). Larger seeds germinated later. Although we lacked
information to statistically test for differences within genotypic crosses, we can see that the
mean differences between northern vs. southern mothers with genotypic crosses in this
experiment paralleled the statistically significant differences observed in Experiment 1.
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Figure 3. Experiment 2: Mean ± 95% CI for seed components and days to germination shown by
reciprocal cross and maternal parent for each of four reciprocal genotypic crosses. Genotypic crosses
are identified by brackets. Each parental genotype is identified by grandparental wild population and
maternal ID. Dark blue = northern mother/southern father, Light blue = southern mother/northern
father. Statistical difference between mothers within genotypic crosses were not determined, as in
Figure 3, because we lacked information about clonal cross for all reciprocal pairs in this experiment.
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3. Discussion

If we are to understand the nature of large-scale phenotypic variation in seeds within
species, we need to determine how seed traits vary genetically across geographic gradi-
ents, e.g., in [24,60]. We have found seven studies that have tested for genetic differences
in seeds produced by plants that were derived from wild populations along a latitudi-
nal gradient but then had been grown in a common environment [3,31,44,47,67,68,81].
Four studies provide evidence consistent with genetic variation in seed mass and % germi-
nation associated with latitudinal, longitudinal, altitudinal and/or seasonal temperature
gradients, exception: [47]. Wagmann et al. (2012) [67] and Debieu et al. (2013) [68] found
evidence of a latitudinal gradient of parental genetic effects on seed dormancy. Because
we used reciprocal crosses for our experiments, our results add new information about the
nature of such genetic variation along latitudinal gradients.

Results of our reciprocal crosses combined with data from earlier studies provide
evidence that latitudinal variation in seed size and germination timing can be directly influ-
enced by parental genotype. In quantitative genetic terms, latitudinal differences between
northern and southern genotypes explained the total variance in seed mass and germination
timing in P. lanceolata more strongly than did the differences between the parental nuclear
contributions to seeds. We cannot eliminate the possibility of epigenetic effects, which are
poorly understood [74,95]. However, our data are derived from populations experimentally
grown in similar environments. In addition, an earlier experiment with P. lanceolata demon-
strated that statistically significant transgenerational temperature effects on seed mass
disappeared in the grandoffspring generation [79]. Groot et al. (2017) [74] observed similar
thermal effects using multiple accession of Arabidopsis thaliana from different portions of
its species range. Taken together, our results for P. lanceolata provide additional support
that transgenerational genetic effects should be considered as an explanation for variation
in seed traits in other species across their geographic ranges. To test for transgenerational
genetic effects, we encourage future studies to incorporate reciprocal crosses of genotypes
from different regions into experimental designs. The reciprocal cross design has been used
to detect the parental source of transgenerational genetic effects in crop species (e.g., see
references in [96]). This type of cross would allow researchers to test for parental genetic
effects along large-scale geographic gradients, and to test for transgenerational epigenetic
effects, if crosses were conducted in multiple controlled environments.

Seed mass has most often been found to be determined by the maternal parent [97],
and recent molecular studies support this. For example, maternal interactions between
signaling pathway and phytohormones can function to regulate seed size in all three seed
tissues [98–101]. Our results provide support for maternal genetic control. Parental latitude
significantly affected the seed coat, which is solely maternal tissue. Because the thickness
of the seed coat can influence dormancy and timing of germination [9,71,78], the maternal
genetic effect on the seed coat may also indirectly affect germination timing. The observed
effect on the embryo/endosperm tissue suggests either an endosperm dosage effect or
a cytoplasmic effect mediated by the mother. However, significant sire contributions to
germination timing have been detected in other species [89,102,103], and therefore, cannot
be eliminated from consideration in our data analysis. Because of the limited number of
reciprocal crosses available to us, we were not able to test for the presence of paternal
genetic effects. Such sire contributions might explain why the patterns for seed mass and
germination timing in Experiment 2 differ (Figure 3). Results suggest that using a more
complete reciprocal design, and diallel crosses, in future large-scale geographic studies
of seeds of species, generally, would be useful because they would allow researchers to
partition transgenerational effects into maternal vs. paternal components.

Little is known about the evolution of transgenerational control of seed traits along
latitudinal and altitudinal gradients [60,74,95,104]. Two adaptive hypotheses seem rel-
evant to seed mass and germination timing. Maternal genetic control of seed size and
germination timing is likely to be increasingly favored (1) first, as the harshness of the
environment increases, i.e., with increasing latitude and altitude, and (2) second, in vari-
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able environments. Such control could offset the negative effects of a temporary extreme
environmental influence, e.g., a bad year for a perennial, and thus serve as a bet-hedging
mechanism against negative environmental fluctuations. Empirical results from multiple
studies of P. lanceolata, including this one, provide support for both hypotheses. In this
study, we observed that northern mothers produced larger seeds with delayed germina-
tion, in contrast to southern mothers. Maternal seed mass was positively correlated with
latitude. There was also an association between maternal seed mass and the grandparental
population’s thermal environment during growing season. Scottish mothers produced the
largest seeds, on average, and were derived from populations having the coldest mean
monthly temperatures during the growing season (compare Figure 4B with Figure 2A).
Harsher conditions for seedling establishment should favor larger seeds [8,34,42,53,105].
In addition, delaying germination in the northern portion of the species range is likely to
be adaptive. In the southern portion of the range in North America, seed dispersal begins
in summer, with germination and seedling establishment occurring in autumn and the
following spring, depending on rainfall. Further north and at higher altitudes, autumnal
growing seasons are cooler and shorter. This latitudinal/altitudinal pattern characterizes
the species’ range in Europe [106]. Thus, with increasing latitude/altitude, the duration of
time when temperatures suitable for successful seedling establishment in autumn diminish.
This diminution should selectively favor mothers that both postpone offspring germination
until the following spring and provide germinating offspring with more nutrients in the en-
dosperm to facilitate winter survival and spring seedling establishment. Such a hypothesis
needs testing.

Multiple empirical experiments with P. lanceolata now support the hypothesis that
maternal genetic effects, maternal environmental effect and maternal genetically based
thermal plasticity influence offspring. Seed traits can be affected by (1) temperatures
during the maternal generation, (2) maternal genotype, (3) thermal plasticity of the mother,
and (4) maternal genotype by temperature interactions [75,78,84]. The positive association
between the maternal control of seed traits and latitude parallels the latitudinal pattern
for genetically based maternal thermal plasticity in flower color [93,94,106]. Coupling this
maternal thermal plasticity with maternal genetic controls could synergistically enhance
offspring establishment in cooler and temporally variable environments, and secondarily
provide environmental flexibility when dispersing to a new habitat.

Finally, transgenerational controls of seed traits have important implications for facili-
tating species conservation and preservation. First, conservation biologists often collect
seeds from multiple populations for seed preservation or breeding. Transgenerational
effects can influence the success of collection methods. In the extreme case of purely
parental genetic determination, natural selection on seeds occurs completely via selec-
tion on parental genotypes, not on the zygotic components of a seed [85,107]. Therefore,
if seed traits are strongly determined by transgenerational effects in outcrossing species,
one should sample many mothers in each population. If traits are determined by the zygotic
genes, sampling multiple mothers becomes less critical because within a maternal family,
genetic diversity would be greater. In addition, transgenerational control might change
across geographic gradients.

Second, the strength of transgenerational control of seed traits could impact the success
of breeding cultivars for habitat and species restoration. Breeding is increasingly being
used in the restoration of degraded habitat and for transplantation beyond a current species’
range [9,23]. Artificial selection in the absence of knowledge about parental vs. zygotic
control of seed traits could produce unintended results. For example, intra-family selection
can be used effectively to preserve genetic diversity if seed traits are controlled by zygotic
nuclear genes. However, if traits are controlled uniparentally via parental genetic effects,
then one would need to use inter-family selection to maintain genetic diversity. In addition,
one should consider the possibility that parental genetic effects can retard responses to
selection. These effects can theoretically produce time lags in the responses to selection
and/or accentuate or reduce responses [90,91,108]. In the absence of information about the
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causes of seed trait variation, generations of breeding in a common environment are likely
to reduce genetic diversity [24,109].
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4. Materials and Methods
4.1. Biology of Plantago lanceolata

Plantago lanceolata L. (English, or ribwort, plantain), Plantaginaceae, is a temperate,
weedy, herbaceous perennial rosette species, native to Eurasia but now well established
in disturbed areas, lawns, and grasslands in North America [93] and other continents.
Photoperiodically controlled flowering occurs under long days. Flowers are protogynous,
obligately outcrossing [94,110] and predominately wind-pollinated [93]. Thermal plasticity
in flower color is positively correlated with latitude and altitude. These correlations are best
explained by local adaptation in response to the duration of the reproductive season and to
the amount of time during the reproductive season when temperatures are low [91,111,112].
Seeds, produced over several months, do not naturally disperse far from the mother.
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Many studies have documented genetic variation in seed traits in and among lo-
cal populations [23,77,106,113–120]. Parental environment and maternal genotype in
P. lanceolata can influence seed mass and germination, as evidenced by both controlled
and field experiments [73,77,82,114]. Studies have provided evidence that (1) cool parental
temperature increases total seed weight and reduces germination relative to the effects of
warm parental temperature [73,82], (2) maternal families differ in thermal response [73,82],
and (3) an increase in seed coat mass, but not embryo/endosperm mass, explains the
increase in total seed mass at cooler temperature [76]. These results help to explain the
observation by Mondoni et al. (2011) [52] that seeds collected from an alpine population
were phenotypically heavier than those from a lowland population.

4.2. Experimental Design

Our two experiments derive from a QTL experiment, in which Marshall et al. (2020) [94]
explored the genetic architecture of differences in thermal plasticity in flower color and
flowering time between northern and southern European populations. Because we used
F1 seeds from this experiment, we summarize aspects of the QTL experiment and refer
readers to Marshall et al. (2020) [94] and to an earlier experiment describing the latitu-
dinal variation in thermal plasticity in flower color (Lacey et al., 2010 [106], for more
details). The northern and southern parents used in the QTL study displayed high and
low thermal plasticity, respectively, and represented plasticity extremes found in a sample
of 29 European P. lanceolata populations. Parents in the QTL study were derived from
wild European populations differing in thermal regime and duration of the growing season
(Figure 4, see also Lacey et al., 2010 [106]). To reduce maternal environmental effects,
Lacey et al. (2010) [106] had induced genotypes to flower and set seed while keeping
the wild populations separated but in similar controlled environments. To maintain ge-
netic variation within populations, multiple plants were grown per population. Pop-
ulations grew vegetatively in a greenhouse and then isolated in growth chambers and
separate greenhouse rooms set at 22 ◦C, 16-h day/17 ◦C, 8-h night to allow for random
within-population wind pollination and seed production. Seeds produced from these
outcrossed plants were collected by the maternal family and germinated; the resulting
29 populations were maintained in the greenhouse for subsequent experiments. In 2012,
Marshall et al. (2020) [94] reciprocally crossed combinations of four genotypes from 2 north-
ern and 2 southern populations (4 genotypes total). These parental genotypes produced the
F1 seeds used in our experiments (Figure 4). Multiple clones of parental genotypes were
used to produce F1 seeds. For all crosses, the single growth chamber was set at 20 ◦C, 16-h
day/15 ◦C, 8-h night. F1 seeds were harvested, counted, and stored at room temperature in
the lab for several months, which allowed time for after-ripening (2–3 months, Lacey, pers.
observation) to be completed. Then we sampled seeds for the two experiments, described
below. For both, we chose seeds that were brown and shiny and avoided seeds that were
black and flat, which indicated that the seeds had been aborted.

Experiment 1: Five northern parental genotypes (one per population) were reciprocally
crossed with five southern genotypes (one from a French population and four from an Ital-
ian population). The four genotypes from the Italian population were descended from
different grandmothers. The two southern populations showed strong genetic differences
between them [93]. For each reciprocal cross, we randomly sampled 20 seeds per clonal
cross (1–3 clonal cross per reciprocal) and weighed seeds, each to the nearest 0.001 mg.

Experiment 2: After completing Experiment 1, there were enough seeds from 4 geno-
typic crosses to conduct a second experiment. Using these crosses again, we collected
data on total seed mass, coat mass, endosperm/embryo mass, and days to germination.
Fifteen seeds per reciprocal cross were selected randomly and independently of clone. After
weighing each seed individually per reciprocal cross, we placed 3 seeds in each of 5 petri
dishes lined with filter paper that was saturated with water. The petri dishes were placed in
a growth chamber set at 20 ◦C, 16-h day/15 ◦C, 8-h night, and water was added as needed
to keep the filter paper moist. Seeds were checked daily. We recorded the day of appearance
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of a radicle protruding from the seed coat. As germination continued, we collected the seed
coats, which drop off after germination. Coats were dried and stored at room temperature
for a week after all germination had ceased. All seeds germinated within 7 days from the
day of placement in the growth chamber.

4.3. Statistical Analysis

For both experiments, we used general linear models (SAS, version 9.4) to look for the
presence of transgenerational genetic effects. Given that we were working with a specific
group of parental genotypes, we treated the independent factors as fixed. For experiment
1, data were gathered from 7 pairs of northern/southern genotypic crosses (14 reciprocal
crosses), each defined by a maternal and paternal genotype, and 1–3 clonal crosses per recip-
rocal. The average seed mass per clonal cross served as the replicate values for reciprocals.
We assessed the seed mass differences for: (1) 14 reciprocal crosses, (2) reciprocals having
southern mothers, (3) reciprocals having northern mothers, and (4) reciprocals within each
genotypic cross. Analyses based on paternal latitude produced the same results as those
for maternal latitude. We present our results based on maternal latitude because many
controlled experiments have demonstrated that seed traits are more often determined by
the mother than the father (discussed above). Southern European mothers were repre-
sented by the French and Italian genotypes, while northern mothers were represented by
the Danish, Scottish, Finnish, and Swedish genotypes. We also regressed seed mass on
maternal latitude. Latitude values were extracted from Lacey et al. (2010) [106].

For Experiment 2, we tested the hypothesis that seed mass, coat mass, embryo/endosperm
mass, and days to germination were associated with maternal latitude. The coat mass was
subtracted from seed mass to determine embryo/endosperm mass. Because information
about parental clones within reciprocal crosses was missing, we treated the data conser-
vatively and used the mean values of reciprocal crosses as independent replicates for the
analyses. For the same reason, we could not statistically test for differences in maternal
latitude within genotypic crosses. We could, and did, determine the extent to which seed
mass and days to germination were linearly related.

5. Conclusions

Multiple biologists have argued that we must begin to examine how populations within
species vary genetically across geographic and environmental gradients [24,60,63]. This re-
quires taking advantage of experimental designs that focus specifically on characterizing
the genetic control of seed traits. This means not only taking seeds collected from wild
populations through one generation in a common environment before measuring seed
traits [60]. It also means conducting reciprocal crosses of plants derived from the same and
different geographic regions or environmental regimes. Reciprocal and more extensive
diallel crosses can inform us about the relative strengths of transgenerational genetic and
environmentally induced effects, and zygotic genetic effects and their interactions on the
phenotypic expression of seed traits. It is the phenotypic expression of these seed traits that
determine subsequent life history traits and fitness in a given environment. Understanding
these relative strengths will improve our ability to predict how populations of species are
responding and will continue to respond in the short term and evolutionarily to global
environmental change.
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