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Abstract: Sepsis, a potentially lethal condition resulting from failure to control the initial infection,
is associated with a dysregulated host defense response to pathogens and their toxins. Sepsis
remains a leading cause of morbidity, mortality and disability worldwide. The pathophysiology of
sepsis is very complicated and is not yet fully understood. Worse still, the development of effective
therapeutic agents is still an unmet need and a great challenge. Gases, including nitric oxide (NO),
carbon monoxide (CO) and hydrogen sulfide (H2S), are small-molecule biological mediators that are
endogenously produced, mainly by enzyme-catalyzed reactions. Accumulating evidence suggests
that these gaseous mediators are widely involved in the pathophysiology of sepsis. Many sepsis-
associated alterations, such as the elimination of invasive pathogens, the resolution of disorganized
inflammation and the preservation of the function of multiple organs and systems, are shaped by
them. Increasing attention has been paid to developing therapeutic approaches targeting these
molecules for sepsis/septic shock, taking advantage of the multiple actions played by NO, CO
and H2S. Several preliminary studies have identified promising therapeutic strategies for gaseous-
mediator-based treatments for sepsis. In this review article, we summarize the state-of-the-art
knowledge on the pathophysiology of sepsis; the metabolism and physiological function of NO, CO
and H2S; the crosstalk among these gaseous mediators; and their crucial effects on the development
and progression of sepsis. In addition, we also briefly discuss the prospect of developing therapeutic
interventions targeting these gaseous mediators for sepsis.
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1. Introduction

Sepsis is a life-threatening organ dysfunction that arises as a consequence of the host
response failure to control invading pathogens, including bacteria, viruses, fungi and
protozoa, as well as their toxins and subsequent dysregulation of the immune response.
Septic shock refers to a subgroup of sepsis with a higher risk of mortality due to severe
circulatory failure, in addition to cellular and metabolic abnormalities [1,2]. Sepsis/septic
shock develops in approximately 30 million people every year, and the reported incidence
of sepsis/septic shock keeps rising, making sepsis/septic shock a major health crisis world-
wide [3,4]. Notably, sepsis/septic shock is not only responsible for about 20% of deaths
worldwide, but it also takes a heavy toll on the quality of life of survivors. Patients who sur-
vive sepsis/septic shock usually suffer from post-sepsis sequelae, including neurocognitive
impairment and psychological deficits [2]. As a result, sepsis/septic shock has been identi-
fied as a leading cause of morbidity, mortality and disability [4–6]. As such, sepsis/septic
shock has become a global health priority since 2017 [5]. However, the development of
effective therapeutic agents for sepsis/septic shock is still an unmet need and a great med-
ical and scientific challenge. In order to address this health burden, gaining an in-depth
understanding of the mediators involved in sepsis/septic shock pathogenesis, together
with the biomarkers and therapeutic targets of sepsis/septic shock, is urgently needed.
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Gaseous mediators refer to several gaseous signaling messengers that are endoge-
nously and enzymatically produced [7,8]. Most of their functions do not occur when they
are in a gaseous state, although they are collectively termed gaseous mediators [9–13]. In re-
cent years, gases, such as sulfur dioxide, hydrogen cyanide and methane, have emerged as
potential novel gaseous mediators [8,14–16]; however, to date, only three small, chemically
reactive and freely permeable molecules comprise the novel signaling gaseous mediator
family, which includes nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide
(H2S) [8]. Importantly, NO, CO and H2S harbor several features in common. Firstly, these
gaseous mediators are widely distributed in various tissues and organs. In addition, the
biological half-life of each gas is short, with a range from seconds to minutes. Moreover,
although they are hazardous at moderate to high concentrations, they play multiple, in-
dispensable roles in a wide range of critical cellular functions and biological processes
in low amounts. Consequently, any disturbance with respect to the homeostasis of these
gaseous mediators, including their metabolism and bioavailability, can profoundly affect
various physiological and pathological functions in the body, thereby leading to the onset
and progression of various pathological conditions [17,18]. Recently, several studies have
appeared that indicate NO, CO and H2S may be involved in the development of different
stages of sepsis/septic shock [19–21]. However, the ways in which these gaseous signaling
molecules affect the pathophysiology of sepsis/septic shock are not yet fully clear.

A comprehensive review focusing on summarizing and comparing the roles of these
three gaseous messengers in sepsis/septic together would contribute to bridging the gaps
in our knowledge. In this review, we aim to summarize the state-of-the-art knowledge on
the pathophysiology of sepsis/septic shock and provide an update of the biometabolism,
bioavailability and biofunction of NO, CO and H2S, together with the potential interaction
among these gaseous mediators. Moreover, we attempt to emphasize the present-day
evidence that points to the potential effects of these gaseous mediators on the develop-
ment and progression of sepsis/septic shock. Additionally, we seek to briefly discuss the
prospect of developing therapeutic interventions for sepsis by targeting these gaseous
signaling molecules.

2. Pathophysiology of Sepsis

Sepsis affects nearly every organ system in living organisms; however, the lungs,
liver, kidneys, heart, central nervous system and hematologic system are found to be most
vulnerable and are frequently affected in sepsis [22]. Of note, as a well-characterized
hallmark of sepsis, multiple organ dysfunction syndrome serves as a major determinant of
the course and outcome of sepsis [23,24]. However, the underlying mechanism by which
multiple organ dysfunction syndrome occurs in sepsis is far from fully understood [25].

Many researchers have centered their focus on the involvement of a dysregulated
host defense response in sepsis. A normal host defense response to infection can localize
and control pathogen invasion and simultaneously initiate the repair process at the site of
inflammation. However, the host immune system is profoundly perturbed in sepsis; thus,
the host defense response in sepsis appears to be inappropriate and detrimental [26,27].
Inflammation plays a critical role in many other pathological conditions, such as cancer [28].
Specifically, the devastating infection caused by these invasive pathogens can lead to a
multifaceted imbalance of proinflammatory response and anti-inflammatory response in
the body [29,30]. To make matters worse, this destructive and uncontrolled host defense
response can further result in systemic inflammatory response syndrome and cytokine
storm, thereby ultimately progressing to multiple organ failure or even death [29,31]. As
a result, sepsis has been treated as an exaggerated inflammation-led clinical trajectory
from local microorganism infection to multiple organ dysfunction or death [22]. On the
other hand, upon infection, the hypoinflammatory response/immune paralysis termed
“endotoxin tolerance” is triggered simultaneously with the activation of proinflammatory
response [32,33]. Due to the concomitant paralyzed immune system, the host’s ability
to eradicate the invading microbes is severely compromised, which opens the way for
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late infections to develop and leads to unresolved organ failure. Hence, a prolonged
and disorganized host hypoinflammatory response/immune paralysis is also detrimental
and contributes to the increased risk of death in sepsis [34,35]. On top of the extensive
involvement of an overactive host defense response, the importance of microcirculation
dysfunction, coagulation impairment, mitochondrial damage, endoplasmic reticulum stress,
cellular alterations and organ–organ crosstalk is also becoming increasingly evident and
recognized [24,25] (Figure 1).
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3. Gaseous Mediators

NO, CO and H2S are known for their toxic activity, but they are believed to have
contributed to the origin of life and the appearance of eukaryotic animals, which should
not be ignored [13]. More importantly, NO, CO and H2S are known to play crucial roles in
diverse physiological and pathological conditions. To that end, increasing attention has
been paid to these gaseous signaling mediators.

3.1. Nitric Oxide (NO)

NO, a colorless and toxic gas with a slight odor, was the first identified gaseous
mediator. The endogenous synthesis of NO in eukaryotic cells is predominantly catalyzed
by nitric oxide synthase (NOS) isozymes [36]. To date, three distinctive NOS isoforms
comprise this enzyme family in mammals, which are neuronal NOS (nNOS), endothelial
NOS (eNOS) and inducible NOS (iNOS) [37]. While the isoforms of nNOS and eNOS are
calcium dependent and are constitutively expressed in cells, the iNOS isoform is calcium
independent, and its expression is upregulated in response to many proinflammatory
stimuli, including cytokines and lipopolysaccharide (LPS) [37,38]. More recently, the
mitochondrial NOS (mtNOS) isozyme has been identified. This is also calcium dependent
and constitutively expressed. Even though it is still somewhat controversial, this enzyme
is emerging as the fourth member of the NOS family, since it is capable of catalyzing the
synthesis of NO [39]. It is noteworthy that all these enzymes catalyze the same stepwise
biological process. With the catalysis of these enzymes, L-arginine is hydroxylated and
eventually converts to L-citrulline in the presence of molecular oxygen, nicotinamide
adenine dinucleotide phosphate (NADP) and several cofactors, such as tetrahydrobiopterin
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(BH4). From this two-step enzymatic reaction, NO is liberated [40,41]. NO can be further
oxidized to stable end products, namely nitrite and nitrate. Recently, it turned out that
nitrate and nitrite are not only the oxidation products of NO but also the major biological
reserves of NO [42]. On top of the oxidation of L-arginine, NO can be generated by
the reduction of nitrite and nitrate. This noncanonical pathway is thought to be the
compensatory mechanism for NO synthesis under hypoxic and acidic circumstances [42,43].
As a gaseous free radical, NO is highly reactive [44].

NO is best known as an endothelium-derived relaxing factor due to its role in me-
diating the dilation of blood vessels [8,45,46]. NO is also responsible for the regulation
of vascular tone, platelet–vessel interactions, blood flow, angiogenesis and heart func-
tion [45–48]. Therefore, NO is very important, as the cardiovascular system is involved in
various pathological conditions, including cancer [49]. Apart from this, as a versatile cellu-
lar signaling messenger, NO exerts a wide range of functions in many other organ systems,
such as the nervous system, endocrine system, respiratory system, immune system and
digestive system. Specifically, NO plays a significant role in the regulation of nerve devel-
opment and neurotransmission, insulin secretion, airway tone, immune response reaction,
wound healing and intestinal peristalsis [36,50]. In addition, it is becoming apparent that
NO also functions as an endogenous regulator in epigenetics, including DNA methylation,
DNA demethylation and histone post-translational modifications [51]. Moreover, NO
has been shown to counteract oxidative stress, inhibit cell death and facilitate pathogen
scavenging [44]. Dysregulated metabolism of NO is central to the pathogenesis of many
diseases, including, but not limited to: sepsis, cancers, hypertension, stroke, inflammation,
diabetes and retinopathy [19,36,52,53].

3.2. Carbon Monoxide (CO)

CO, a colorless, poisonous and odorless gas, was recognized as a gaseous mediator
following NO. The majority of endogenous CO production is catalyzed by heme oxygenase
(HO) isozymes [54,55]. Similar to NOS isozymes, this enzyme family also encompasses
three different isoforms, namely HO-1, HO-2 and HO-3 [55]. HO-1 and HO-2 are two
common and functionally active isoforms of HO. Specifically, HO-1, also known as heat
shock protein 32, is inducible and highly dynamic; however, HO-2 is constitutively ex-
pressed, and its expression is much less regulated [44,56]. Controversially, a new isoform
of HO was discovered in rat tissues and was referred to as HO-3 [56]. Despite HO-3 having
significant homology to HO-2 in the amino acid sequence (as high as 90%), its enzyme
activity is much inferior to that of HO-2 [55,56]. CO is produced during the degradation
of heme. Specifically, HO-catalyzed CO synthesis starts with the catabolism of heme. In
this process, heme is firstly oxidized to α-metahydroxyheme in the presence of oxygen
and NADP; afterward, α-metahydroxyheme further reacts with oxygen, from which CO is
produced [57]. This HO-catalyzed heme catabolism is biologically crucial, as this reaction
is responsible for around 85% of CO production in living organisms. In addition to HO,
many other enzymes, including cytochrome P450 reductase, human acireductone dioxyge-
nase and tyrosinase, also contribute to the endogenous production of CO. Compared with
heme-independent CO synthesis, heme-independent CO production, namely the oxidation
of phenols, the peroxidation of lipids and the photo-oxidation of organic compounds, is
minor; however, these reactions are also contributory [54,55]. Although CO can be further
oxidized to CO2, the oxygenation of CO in mammals under normal conditions has not
been observed. Unlike NO, the predominant catabolism of endogenous CO is either by
exhalation (approximately 80%) or by binding to hemoglobin and other heme proteins.

CO is bioactive and plays a pivotal role in a variety of biological systems [58,59]. In the
cardiovascular system, although it is not as potent as NO, CO also serves as a vasodilator
in the body because of its role in inducing the relaxation of vascular smooth muscle. In
addition, CO has been found to promote angiogenesis and inhibit the aggregation and
adhesion of platelets and the activation of monocytes [44,60]. In the respiratory system,
CO acts as a crucial bronchodilator, as it is essential for reversing methacholine-induced
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bronchoconstriction and relaxing tracheal smooth muscle [61]. In the digestive system, CO
has been found to be gastroprotective due to its involvement in maintaining gastric mucosal
integrity and promoting gastric ulcer healing [62]. CO also acts as a neurotransmitter due to
its versatile roles in regulating the functions of the nervous system, such as neurodevelop-
ment, long-term memory and sensory discharge [44]. CO is also an endogenous modulator
of inflammation, cell death, oxidative stress and immune responses [10,63]. Alternations in
CO metabolism have been observed in various pathological disturbances, such as sepsis,
lung injury, anemias and liver cirrhosis [64–66].

3.3. Hydrogen Sulfide (H2S)

H2S, a colorless, flammable and notorious gas with a pungent odor of rotten eggs,
has emerged as the third gaseous signaling mediator. The endogenous generation of H2S
in mammalians mainly arises from the desulfydration of L-cysteine or homocysteine. To
date, three enzymes with ascribed roles in this conventional source of H2S biosynthesis
have been recognized. These are cystathionine β-synthase (CBS), cystathionine γ-lyase
(CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) [67–69]. Among these enzymes,
CBS and CSE, two pyridoxal 50-phosphate (vitamin B6)-dependent enzymes, catalyze
transsulfuration reactions, whereas 3-MST is responsible for L-cysteine catabolism [70].
Specifically, CBS, the first enzyme in the transsulfuration pathway, generates H2S, mainly by
the condensation reaction of L-cysteine and homocysteine, while CSE, the second enzyme
in the pathway, produces H2S, predominantly by the α, β-elimination of L-cysteine [67,71].
While CBS is believed to be the main source of H2S biosynthesis in the central nervous
system, CSE is thought to be the major contributor to endogenous production of H2S in the
peripheral tissues [67,72]. As the third enzyme involved in H2S biosynthesis, 3-MST, along
with cysteine aminotransferase (CAT), also contributes to the endogenous production of
H2S [72]. Particularly, 3-MST-catalyzed H2S generation requires the presence of reducing
substrates, and most of the yielding H2S is bound in the form of sulfate sulfur. While CBS
and CSE are primarily cytosolic enzymes, 3-MST is mainly localized in the mitochondrion
and with some in the cytoplasm. Consequently, CBS- or CSE-catalyzed H2S biosynthesis
mainly occurs in the cytoplasm, whereas 3-MST-mediated H2S generation takes place in
both places [70]. More recently, the production of H2S by 3-MST and the D-amino acid
oxidase (DAO) pathway has been identified [73]. Apart from these enzyme-catalyzed
reactions, it has become increasingly apparent that many other sources, including the
natural liberation of H2S from persulfides and polysulfide species, also contribute to H2S
biosynthesis [74]. The predominant pathways by which H2S is metabolized in vivo include
oxidation to thiosulfate and sulfate in the mitochondrion and methylation to methanethiol
in the cytoplasm. In addition, H2S can be eliminated by methemoglobin or metallo- or
disulfide-containing molecules. Moreover, thiosulfate and sulfate excretion by urinating
also leads to the clearance of H2S [69,75]. Unlike its two counterparts, NO and CO, which
employ soluble guanylyl cyclase to transduce their signals, it is yet not clear whether H2S
also has its second messenger. Nonetheless, as a gaseous free radical similar to NO, H2S is
also biologically reactive [76].

H2S has been found to be a versatile modulator of various organs and systems [77].
In the context of a pivotal role of an endothelium-derived relaxing factor for NO, H2S is
regarded as an endothelium-derived hyperpolarizing factor [46,78]. However, H2S also
possesses a potent vasoconstrictive effect [79]. More significantly, it is reported that en-
dogenous H2S can regulate the bioavailability of NO in the cardiovascular system [80].
Apart from the regulatory effect on vascular tone, H2S also participates in regulating the
proliferation and death of vascular smooth muscle cells, inhibiting oxidative stress suppres-
sion inflammation inhibition and modulating vascular permeability and angiogenesis [81].
In the respiratory system, H2S profoundly affects various respiratory functions, such as
regulating the respiratory rhythm and maintaining the development and homeostasis
of the pulmonary vessel [82,83]. In the immune system, H2S regulates the viability and
functions of various immune cells, including neutrophils, macrophages, dendritic cells,
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T lymphocytes and B lymphocytes; thus, it greatly shapes the landscape of innate and
adaptive immunity [84]. In the central nervous system, H2S serves as an antioxidant and
antineuroinflammatory mediator; thus, H2S plays a significant role in neuroprotection.
Moreover, H2S is closely associated with neurotransmission [85]. H2S also affects the
functions of many other systems, such as the reproductive system, digestive system and
endocrine system [77]. Notably, similar to NO, H2S is discovered to be an important endoge-
nous epigenetic modulator [51]. Aberrant H2S metabolism occurs in many pathological
states, such as sepsis, inflammation, coronavirus disease 2019, hypertension, atherosclerosis,
obstructive respiratory disease, lung injury, macrophage activation, retinal diseases and
neurodegenerative disease [77,81,86–89].

3.4. Interplay among NO, CO and H2S

Accumulating evidence has pointed to the crosstalk among NO, CO and H2S [86,90].
To date, four interaction mechanisms have been identified, which are competition/synergy
for heme in heme-containing proteins, modulation of the generation of other gases and
competition for post-translational modification sites in proteins and formation of hybrid
molecules [91–93]. Among these four mechanisms, the regulation of the biosynthesis of
other gaseous mediators has been widely explored. Firstly, NO has been shown to up-
regulate the endogenous production of CO by increasing the level of HO-1, whereas NO
can suppress the activity of HO-2 [94,95]. The regulatory effects of NO on H2S generation
are also complex. While NO has been shown to inhibit the activities of CBS and CSE, it
can also promote CSE-mediated H2S production [96–98]. Secondly, CO has been shown to
reduce the production of NO and H2S by suppressing the activities of iNOS and CBS [99].
Thirdly, H2S also greatly affects the biosynthesis of NO and CO. H2S can promote or stabi-
lize eNOS activity; however, it can also inhibit eNOS function [97,100,101]. Additionally,
in the presence of NO, the activities of nNOS and iNOS were suppressed by H2S [102].
Moreover, H2S can inhibit iNOS activity by promoting HO-1 activity [103]. However, NO
production can be enhanced by H2S as it can promote iNOS expression [104]. Importantly,
the crosstalk among NO, CO and H2S may differ in different organs or under different
conditions, leading to the complicated or even opposite regulatory effects of one gaseous
mediator on the biosynthesis of others.

Table 1 briefly summarizes the characteristics of NO, CO and H2S.

Table 1. Characteristics of currently recognized gaseous mediators.

Nitric Oxide Carbon Monoxide Hydrogen Sulfide

Formula and molecular weight NO (30.01 g/mol) CO (28.01 g/mol) H2S (34.08 g/mol)
Biological half-life Seconds Several minutes Seconds–minutes

Chemical reactivity Very high Moderate Very high
Properties of free radicals Yes No Yes

Endogenous production enzymes nNOS; iNOS; eNOS; mtNOS a HO-1; HO-2; HO-3 a CBS; CSE; 3-MST/CAT;
3-MST/DAO b

Main substrates for biosynthesis L-arginine Heme
L-cysteine; 3-mercaptopyruvate;

D-cysteine b

Clearance sources Oxidization
Being exhaled from the airway;

Binding to heme proteins;
Oxidization c

Oxidization (mitochondrion);
Methylation (cytoplasm); Being

excreted from urine

End products Nitrite and nitrate Carboxyhemoglobin;
Carbon dioxide c

Thiosulfate and sulfate;
methanethiol

Second messenger sGC sGC NA
Involvement in sepsis Yes (Mainly detrimental) Yes (Mainly beneficial) Yes (Mainly detrimental)

Abbreviations: neuronal nitric oxide synthase (nNOS); inducible nitric oxide synthase (iNOS); endothelial
nitric oxide synthase (eNOS); mitochondrial nitric oxide synthase (mtNOS); heme oxygenase-1 (HO-1); heme
oxygenase-2 (HO-2); heme oxygenase-3 (HO-3); cystathionine β-synthase (CBS); cystathionine γ-lyase (CSE);
3-mercaptopyruvate sulfurtransferase (3-MST); cysteine aminotransferase (CAT); D-amino acid oxidase (DAO);
soluble guanylyl cyclase (sGC); Not applicable (NA). a Controversial; b newly discovered; c has not been observed
under physiological conditions.
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Figure 2 briefly summarizes the ways in which NO, CO and H2S are enzymatically
produced and that in which the biosynthesis of one gaseous mediator is affected by the
remaining two.
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Figure 2. Enzyme-derived endogenous production of NO (A), CO (B) and H2S (C). Endogenous
NO is produced from a two-step biological process catalyzed by NOS. L-arginine is hydroxylated
to Nω-hydroxy-l-arginine; the latter is further oxidized to L-citrulline and NO. Endogenous CO
is generated from the degradation of heme. Firstly, heme is oxidized to α-metahydroxyheme in
the presence of oxygen and NADPH. Secondly, α-metahydroxyheme reacts with oxygen, resulting
in the biosynthesis of CO. NADHP is also required for this reaction. Relatively, the biosynthesis
of H2S is more complex as H2S can be generated from four enzymatic pathways. Briefly, H2S is
naturally produced from the desulfydration of L-cysteine or homocysteine catalyzed by CBS, CSE and
3-MST/CAT. Specifically, CBS and CSE are involved in transsulfuration reactions, whereas 3-MST is
responsible for L-cysteine catabolism. Recently, the 3-MST/DAO pathway has gained acceptance
as the fourth pathway for H2S biosynthesis, using D-cysteine as the substrate. The biosynthesis of
every gaseous mediator might be affected by the remaining two gases. Purple arrow: activation; blue
arrow: suppression.

4. Gaseous Mediators in Sepsis/Septic Shock

As three significant endogenous regulators that play indispensable roles in maintaining
the homeostasis of organ systems in living organisms [18], NO, CO and H2S have been
shown to play vital roles in the intricate pathophysiology of sepsis/septic shock.

4.1. NO in Sepsis/Septic Shock

Overproduction of NO throughout the organism resulting from the excessive acti-
vation of iNOS is one hallmark of sepsis. NO has emerged as a significant modulator
in sepsis, as it has been shown to extensively impact the pathophysiology and outcome
of sepsis [105,106]. The level of NO was correlated with the increased severity of sepsis-
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and endotoxemia-associated systemic inflammation and organ injury, while the inhibition
of NO production mitigated these alterations [107–109]. Specifically, in rats with cecal
ligation and puncture (CLP)-induced sepsis or LPS-induced endotoxemia, the level of
iNOS in the diaphragm was upregulated. The elevated iNOS and attendant increased
production of NO were involved in endotoxemia- and sepsis-induced diaphragm injury,
as alterations that occurred in the diaphragm (sarcolemmal injury and myofiber damage)
were obviously mitigated by the administration of a nonselective NOS inhibitor named
L-NMMA [107]. In addition, it was reported that the level of NO was elevated in mice with
Escherichia coli infection-induced sepsis, and the increased NO production was associated
with sepsis-associated alterations, such as dysregulated systemic inflammation, as indicated
by elevated proinflammatory mediators, oxidative stress (increased malondialdehyde) and
organ dysfunction (liver failure and kidney failure). However, the pretreatment of L-NAME,
a nonselective inhibitor of NOS, significantly reduced sepsis-induced overproduction of
NO and consequently mitigated sepsis-associated abnormalities [108]. Moreover, as shown
by Luo et al., once the activity of the toll-like receptor 4 (TLR4)/myeloid differentiation pri-
mary response 88 (MyD88)/nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-κB) pathway was inhibited, iNOS became inactive, leading to an enhancement of vas-
cular responsiveness and an increase in the survival of mice with CLP-induced sepsis (mean
survival time increased from 1.7 days to 4.5 days) [109]. Similarly, compared with patients
without sepsis, the concentration of serum NO in sepsis patients was significantly upregu-
lated [110]. More importantly, monitoring of the level of NO in serum may contribute to
precise of evaluation the severity of sepsis [110]. Among the organs and systems affected
by elevated NO in sepsis and endotoxemia, the cardiovascular system has attracted the
most attention. While a physiological level of NO is essential to the maintenance of the car-
diovascular system, sepsis-associated hemodynamic instability, including vasorelaxation,
hypotension and shock, has been attributed to an aberrant NO-induced macrovascular
compromise, myocardial dysfunction, vascular hyporesponsiveness, direct cellular toxicity
and bioenergetic failure [47]. Furthermore, when the amount of endogenous NO reaches a
certain threshold, the production of NO is inhibited, since the high concentration of NO
itself can suppress the activity of NOS [37]. Moreover, compared with iNOS, nNOS and
eNOS are more sensitive to the autoinhibitory effect of NO. Therefore, once the biosynthe-
sis of NO catalyzed by iNOS is activated in response to the proinflammatory stimuli in
sepsis, the essential basal effects of eNOS may be insufficient to support the function of
the fragile cardiovascular system in sepsis [46,105]. Thus, the aberrant production of NO
catalyzed by active iNOS is thought to be a primary cause of hemodynamic instability in
sepsis [47,111]. Worse still, these NO-induced hemodynamic alterations can further result
in hypoxia in multiple organ systems, leading to progressive organ dysfunction [112]. In
addition, many studies have shown that there is extensive involvement of NO in sepsis-
and endotoxemia-induced abnormalities and derangements in the respiratory system, renal
system, immune system, central nervous system and digestive system and identified the
underlying mechanisms by which these organs and systems are disturbed by dysregulated
NO in sepsis and endotoxemia [105].

Not surprisingly, several studies have also concluded that the increased generation of
NO may have potential benefits in sepsis, since NO has been shown to facilitate bacterial
destruction [112]. For example, in a controlled trial of inhibition of nNOS either by phar-
macological blockage or gene deletion, there was an increase in mortality (hazard ratio of
death was 1.71) and blood bacterial counts (1.4-fold greater) in mice with sepsis induced by
CLP. This was accompanied by an upregulation of proinflammatory mediators, including
tumor necrosis factor (TNF)-α and interleukin (IL)-6, and peritoneal lavage cell counts
were increased. These results indicate that the nNOS/NO pathway improves survival from
sepsis plays an important role in modulating the inflammatory response [113]. In another
study, sepsis was induced in wild-type mice and genetically deficient iNOS-knockout mice
by infection with Salmonella typhimurium (a Gram-negative pathogen). The deletion of the
iNOS gene attenuated sepsis-induced systemic inflammation, as evidenced by lower levels
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of proinflammatory mediators and neutrophil accumulation in the peritoneal cavity. In
addition, the deficiency of the iNOS gene also increased the bacterial load, decreased the
thymic atrophy, aggregated the hepatic and cardiovascular dysfunction and increased the
risk of mortality of mice. By contrast, the pretreatment of iNOS-deficient mice with DETA-
NO (a NO donor) significantly attenuated these sepsis-associated abnormalities. These
findings revealed the protective roles played by the iNOS/NO pathway in sepsis [114].

4.2. CO in Sepsis/Septic Shock

Increased generation of CO is also commonly observed in sepsis and endotoxemia,
and many studies have implicated the beneficial effects of CO in sepsis [115]. Kyokane et al.
reported that endogenous production of CO catalyzed by HO-1 in the liver was upregulated
in rats with LPS-induced endotoxemia and concluded that the increased production of
CO played an important role in protecting the liver from dysfunction [116]. Similarly,
HO-1-derived CO resulted in an enhancement of phagocytosis and host defense response
directed at microorganism invasion, leading to an enhancement of pathogen clearance
without suppressing the host inflammatory response in CLP-induced sepsis in mice. In
addition, the administration of the tricarbonyldichlororuthenium (II) dimer, a CO-releasing
molecule (CORM), significantly improved the survival probability of mice in sepsis [117].
The protective role of CO has been confirmed in CLP-induced sepsis, as well as LPS-induced
endotoxemia, both in vivo and in vitro [118]. Specifically, in vivo, the administration of
HO-1 inducers or CORM-2 suppressed the activity of high-mobility group box 1, improving
the survival of sepsis. In addition, sepsis-associated systemic inflammation was alleviated
by the treatment of HO-1 inducers and CORM-2, as indicated by a drop of proinflammatory
cytokines, including TNF-α, IL-1β and interferon-β. In vitro, the induction of LPS-induced
endotoxemia activated the activity of high-mobility group box 1, thereby promoting the
proinflammatory response in macrophages. However, the pretreatment of HO-1 inducers
or CORM-2, as well as the transfection of HO-1, greatly reversed these alterations [118].
Since several CORMs have been developed [119], many researchers have used different
CORMs in their research, and the protective roles of the HO-1/CO pathway in sepsis
and endotoxemia have been firmly established. For example, several studies showed that
the CO released from CORM-2 or CORM-3 was capable of suppressing the activation
of inflammasome related to pyroptosis; as a result, the function of multiple organs and
systems (cardiac fibroblasts, intestine and kidney) were preserved, and the elimination of
pathogens was promoted in rodents with CLP-induced sepsis [120–123]. Apart from the
effects on dampening proinflammatory response and inhibiting pyroptosis, many other
mechanisms, such as supporting the energetic metabolism of mitochondrion coupled with
activating the biogenesis of mitochondria, reducing the levels of cardiac contractile proteins,
inhibiting the activation of NF-κB, downregulating the expression of the TLR4/myeloid
differentiation factor-2 (MD2) complex on myeloid cells, suppressing the overactivation
of platelets and enhancing autophagy, also contribute to the protective actions of CO in
sepsis and endotoxemia [124–129]. Of note, the nuclear factor-erythroid factor 2-related
factor 2 (Nrf2) has been shown to be essential to the anti-inflammatory roles of CO released
from CORM-2 in LPS-induced endotoxemia, as the deletion of Nrf2 significantly abolished
the beneficial effects of CO [130]. Interestingly, exposure of mesenchymal stromal cells
to CO enhanced the therapeutic response in mice with CLP-induced sepsis [131]. This
study showed that CO exposure greatly improved the treatment efficacy of mesenchymal
stromal cells, as these cells have been shown to enhance pathogen elimination, promote
inflammation resolution and alleviate organ injury in septic mice. Consistently, increased
biosynthesis of CO has also been observed in septic patients; more importantly, survivors
had higher levels of CO than nonsurvivors, indicating the beneficial effect of increased CO
production in sepsis [64,132].

Only a few investigations have demonstrated that the upregulation of endogenous
CO is detrimental to sepsis. For instance, Iwasashi and coworkers found that the active
HO-1/CO pathway was associated with liver dysfunction in rats subjected to CLP-induced



Int. J. Mol. Sci. 2022, 23, 3669 10 of 19

sepsis. It was reported that HO-1-induced excessive generation of CO led to an immoderate
dilation of liver sinusoidal and attendant liver failure, whereas the administration of
HO inhibitors (Sn-PP and Zn-PP) significantly alleviated sepsis-induced liver injury, as
evidenced by lower plasma aspartate aminotransferase and lower liver cyclic guanosine
monophosphate, as well as promoted the survival of rats (61.5% and 66.7% vs. 26.7%) [133].

4.3. H2S in Sepsis/Septic Shock

The biosynthesis of H2S is significantly upregulated in sepsis. Accumulating evidence
has shown proinflammatory effects of H2S on sepsis and endotoxemia. Induction of
septic shock and endotoxic shock has been reported to greatly increase the arterial level
of H2S in rats, and the elevated H2S has a negative correlation with the hemodynamic
parameters, including the heart rate, the mean arterial pressure and the +dP/dt max in
rats [134]. This investigation aroused great attention in exploring the roles of H2S in
sepsis and the mechanisms of action. As showed in a landmark study that detailed the
significant role of endogenous H2S in CLP-induced sepsis, the expression (both mRNA
and protein) of CSE and the level of endogenous H2S were greatly upregulated after the
induction of sepsis [135]. The administration of DL-propargylglycine (PAG, 50 mg/kg,
intraperitoneal injection), an irreversible inhibitor of CSE, significantly attenuated sepsis-
induced neutrophil accumulation, as indicated by tissue myeloperoxidase activity and
histological alterations in the liver and lungs, whereas the treatment of sodium hydrosulfide
(NaHS, 10 mg/kg, intraperitoneal injection), a fast-releasing H2S donor, further exacerbated
sepsis-associated systemic inflammation and organ injury [135].

Since then, we have conducted a series of studies to further explore the role played by
H2S in sepsis-induced multiple organ dysfunction and to elucidate the underlying mecha-
nism. For example, in mice subjected to CLP-induced sepsis, NF-κB was activated by the
elevated H2S, leading to an upregulation of the production of proinflammatory cytokines
(IL-1β, IL-6 and TNF-α) and chemokines (monocyte chemotactic protein-1, and macrophage
inflammatory protein-2), the rolling and adherence of leukocytes, the expressions of vari-
ous adhesion molecules (intercellular adhesion molecule-1, P-selectin and E-selectin) and
eventually exaggerated lung injury and liver injury [136,137]. Thereafter, we found that
the extracellular signal-related kinase (ERK) pathway was involved in the activation of
NF-κB by H2S following sepsis, as the treatment of the ERK kinase inhibitor significantly
abolished H2S-mediated NF-κB activation and consequently attenuated sepsis-associated
systemic inflammation and organ injury [138]. Subsequently, taking the advantage of using
the tachykinin precursor 1 gene (the gene that encodes substance P)-deficient mice, as
well as using inhibitors of tachykinin receptor 1, the functional receptor of substance P
and transient receptor potential vanilloid type 1 (TRPV1), we found that in mice with
CLP-induced polymicrobial sepsis, TRPV1-mediated priming of the substance P-tachykinin
receptor 1 axis was involved in H2S-induced activation of the ERK/NF-κB pathway and
further resulted in sepsis-associated alterations, including systemic inflammation and or-
gan injury [139–141]. We also found that the involvement of TRPV1-mediated an increase
in cyclooxygenase-2 and prostaglandin E metabolite production in H2S-induced sepsis-
associated alterations in mice [142]. Furthermore, the proinflammatory effect of H2S in
polymicrobial sepsis was confirmed as the treatment of small interference RNA that targets
the CSE gene reduces the accumulation of leukocytes and the levels of proinflammatory
mediators in the liver and lungs [143].

More recently, sepsis was induced in genetically deficient CSE-knockout mice and wild-
type mice, by which we further shed light on the proinflammatory action of H2S in sepsis.
The liver sinusoid plays a significant role in maintaining the hepatic function; however, its
homeostasis is frequently disrupted in sepsis and endotoxemia. Building on the finding that
H2S serves as a vasoconstrictor in the liver sinusoid in endotoxemia [144,145], we further
explored the effects of H2S on liver sinusoid in sepsis. In wild-type mice, sepsis-induced
elevated H2S caused several alterations in the liver sinusoidal endothelial cells (LSECs),
including the defenestration and gaps formation, suggesting that the liver sinusoidal
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function was impaired by H2S in sepsis. However, these alterations were significantly
reversed in mice genetically deficient in CSE [146,147]. Furthermore, the underlying
mechanisms were investigated. We found that the activation of the ERK1/2-NF-κB p65
pathway and the substance P-tachykinin receptor 1 axis plays a central role in H2S-induced
liver sinusoidal dysfunction [146,147]. Similarly, aberrant metabolism of H2S has been
observed in patients with sepsis and animals with LPS-induced endotoxemia [148–150].

A potential beneficial effect of a very low dose of H2S or slow-release H2S donors
on sepsis and endotoxemia has also been reported. In mice with CLP-induced sepsis,
either prophylactic or therapeutic treatment of H2S donors (NaHS or Lawesson’s reagent)
promoted the rolling and adhesion of leukocytes and the migration of neutrophils, thereby
reducing the bacteremia levels, as well as alleviating hypotension and lung lesions, even-
tually leading to increased survival. Conversely, the administration of PAG significantly
aggravated CLP-induced alterations in mice [151]. It is noteworthy that there were many
differences between this study and those discussed above. While this study mainly focused
on the role of exogenous H2S in sepsis, the research discussed above mainly focused on
endogenous H2S. In addition, the way in which mice received the treatment of CSE in-
hibitors and H2S donors was also different. This may differ the pharmacological effects of
these compounds (subcutaneous injection vs. intraperitoneal injection). Furthermore, the
dose of PAG (about 4.5–4.9 g/kg vs. 50 mg/kg) and NaHS (0.56–5.6 mg/kg vs. 10 mg/kg)
used in this study and those discussed above was significantly different. These differences
may underlie the opposite effects of H2S in sepsis reported in these investigations. The
protective role of exogenous H2S was further confirmed by Ahmad and colleagues as they
found that delayed treatment of NaHS was favorable to rats subjected to CLP-induced
sepsis [152]. In addition, it is reported that the preservation of mitochondrial function by
NaHS treatment resulted in the improvement of diaphragm weakness and the decline of
mortality rate in CLP-induced sepsis rats [153]. More recently, two studies have shown that
the pretreatment of GYY4137 (25 mg/kg and 50 mg/kg intraperitoneal injection), a novel
slow-releasing H2S donor, protected against acute lung injury caused by CLP-induced sep-
sis in mice [154,155]. A similar salutary effect of H2S was also reported in urinary-derived
sepsis, pseudomonas aeruginosa sepsis and pneumococcal pneumosepsis, together with
LPS-induced endotoxemia [21,156–159].

5. Gaseous-Mediator-Based Therapeutic Strategy for Sepsis/Septic Shock

The recognition of the involvement of NO, CO and H2S in the physiopathology of
sepsis/septic shock and endotoxemia has led to the development of therapeutic approaches
targeting these gaseous mediators for sepsis (Figure 3). To date, in addition to NO inhala-
tion, many other strategies targeting the regulation of the activity of NOS, the clearance of
NO and the bioavailability of the substrate have been widely investigated [105,106,111,160].
Inhaled NO possesses promise in sepsis treatment, since it was reported that systemic
oxygenation was improved after NO inhalation [161]; however, inhaled NO (40 ppm) failed
to augment microcirculatory perfusion and improve organ function in patients with sep-
sis [162]. As mentioned by the researchers, one possible reason for the failure of inhaled NO
in sepsis is that the macrocirculatory hemodynamics of these patients had been optimized
prior to the treatment of inhaled NO. Considering the deleterious effects of overproduction
of endogenous NO in sepsis, several NOS inhibitors, including selective and nonselective,
have been developed, and the therapeutic efficacy and safety of these compounds have
been widely investigated. Unfortunately, these studies have produced mixed results; thus,
whether to treat sepsis by NOS inhibitors is still a matter of debate [111,163]. While a
phase II trial showed that L-NMMA, a nonselective NOS inhibitor, improved systemic
vascular response in patients with septic shock, a phase III trial conducted subsequently
was terminated. as L-NMMA increased mortality in patients with septic shock [164,165].
The larger phase III investigation was thought to reveal an adverse outcome of L-NMMA
treatment that was not detected by the smaller phase II study [165]. In the reactions leading
to the NOS-catalyzed production of NO, BH4 does not only act as a crucial cofactor, but
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it also serves as an endogenous regulator of NOS activity. Overproduction of BH4 and
an attendant increase in conversion of BH4 to BH2 result in a high level of BH2 in sepsis.
BH2 can bind to NOS and consequently suppress the activity of NOS, leading to a decrease
in NO biosynthesis [166]. Promisingly, the administration of the BH4 analog attenuated
hemodynamic instability, organ dysfunction and declined mortality in animals with sepsis
or endotoxemia [111,163]. Similarly, several novel NO-based therapeutic strategies target-
ing the enhancement of NO clearance or the improvement of NO bioavailability have been
developed for sepsis [111].
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Figure 3. Therapeutic perspective of NO, CO and H2S in sepsis. Multiple organ dysfunction resulting
from excessive inflammation caused by an aberrant host defense response directed at invasive
pathogens and their toxins is one hallmark of sepsis, which can eventually lead to death (as shown in
white boxes). To promote the survival of sepsis, several medical countermeasures targeting sepsis
pathophysiology, including pathogen clearance, immune restoration, inflammation resolution and
organ function preservation, have been developed (as shown in light orange boxes). While the
feasibility, safety and efficacy of NO-, CO- and H2S-based treatments should be further assessed, the
therapeutic promise of gaseous-mediator-based treatments has been observed in many investigations.

The recognition of the beneficial effects of CO in sepsis in animal models has prompted
the development of CO-based therapy for sepsis. The administration of low-dose inhaled
CO showed a protective effect in sepsis, as it has been shown to rescue mice from severe
sepsis induced by Staphylococcus aureus infection [125]. More recently, the feasibility and
safety of low-dose inhaled CO administration in patients with sepsis-induced acute respira-
tory distress syndrome were established in a phase 1 trial [167]. In addition, this study also
demonstrated that the administration of low-dose inhaled CO significantly reduced the
concentrations of mitochondrial DNA in the plasma, indicating the potential effect of in-
haled CO treatment in preserving mitochondrial function in sepsis [167]. Taking advantage
of the knowledge that exogenous CO releases from CORMs, including CORM-1, CORM-2
and CORM-3, have potent protective roles in sepsis and endotoxemia, increasing attention
has been paid to treating animals with sepsis using these novel compounds [120,121].

Accumulating evidence has revealed the complicated actions played by H2S in sepsis,
leading to the increasing attention being paid to develop therapeutic approaches targeting
H2S for sepsis. Although several preclinical animal studies have shown the protective role
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of using PAG in sepsis [136,141], many other investigations have also indicated that the
administration of inhaled H2S or H2S donors, either fast-releasing donors or slow-releasing
donors, such as NaHS and GYY4137, is beneficial to sepsis and endotoxemia, resulting in
uncertainties in the possible role of H2S-based treatment for sepsis [20,152–155]. Given
the promise of the countermeasures targeting gaseous mediators in sepsis therapy, the
establishment of an optimal therapeutic protocol, including the dose and delivery, for
gaseous-mediator-based therapy for sepsis will be meaningful and another step forward.

6. Conclusions

In sepsis, a dysregulated host defense response directed at invasive pathogens and
their toxins can cause excessive systemic inflammation, consequently leading to multiple
organ dysfunction and death. Accumulating evidence, from our laboratory and others,
has revealed the important roles of NO, CO and H2S as novel mediators in regulating the
onset, development, progression and outcome of sepsis. Furthermore, the understanding
of the significant roles of NO, CO and H2S in the pathophysiology of sepsis, including their
effects on host immune response, pathogen elimination, systemic inflammation and organ
dysfunction, has led to the development of several novel therapeutic strategies targeting
NO, CO and H2S for sepsis, such as inhaled NO, CO and H2S, the inhibitors of NOS, HO
and CSE and the slow-releasing donors of NO, CO and H2S. Although more research is
needed to evaluate the feasibility, safety and efficacy of these gaseous-mediator-based
treatments, early results have shown the promise of these novel therapeutic strategies.
Thus, it is important to put more effort and resources in order to investigate the therapeutic
prospects of NO, CO, and H2S in sepsis.
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