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Abstract: The lateral capacity of exterior concrete columns subjected to a blast load is the key factor in
the building collapse probability. Due to potentially severe consequences of the collapse, efforts have
been made to improve the blast resistance of existing structures. One of the successful approaches is
the use of ultra-high-performance-concrete (UHPC) jacketing for retrofitting a building’s columns.
The columns on the first floor of a building normally have higher slenderness due to the higher first
story. Since an explosion is more likely to take place at the ground level, retrofitting the columns
of the lower floors is crucial to improve a building’s blast resistance. Casting a UHPC tube around
a circular RC column can increase the moment of inertia of the column and improve the flexural
strength. In this study, a retrofitting system consisting of a UHPC layer enclosed by a thin steel jacket
is proposed to improve the blast resistance of buildings in service. Most of the previous research is
focused on design aspects of blast-resistant columns and retrofitting systems are mostly based on fiber
reinforced polymers or steel jackets. A validated FE model is used to investigate the effectiveness
of this method. The results showed significant improvement both at the component and building
system levels against combined gravity and blast loading.

Keywords: blast loading; finite element analysis; reinforced concrete; retrofit; UHPC

1. Introduction

Prevention of progressive collapse due to blast is an important consideration in design
of modern buildings and bridges. Columns are the main elements for the stability of a struc-
ture and several approaches have been proposed in literature to improve the performance
of reinforced concrete (RC) columns under combined axial and extreme lateral loading. One
of these approaches is to use ultra high-performance concrete (UHPC) for retrofitting RC
columns to improve their blast resistance [1,2]. UHPC is a cement-based composite material
with superior mechanical performance compared to ordinary concrete. The compressive
and tensile strength of UHPC are 3–5 times as high as those of conventional concrete due
to optimized packing, water-reducing admixtures, and steel, polymeric or carbon fibers [3].
UHPC may be used in critical locations of a structure to improve its overall performance
under extreme loading scenarios. During an explosion, there is a risk of initial casualties
due to direct contact with the blast wave. In addition, there is a secondary and potentially
more severe risk due to the collapse of the building [4]. The secondary casualties might be
significantly more as it was observed in the Oklahoma City bombing in 1995 where 85% of
the deaths were due to the collapse of the building [5]. Effective retrofitting methods could
improve blast resistance and reduce secondary casualties in existing buildings.

Several numerical and experimental studies have been conducted to assess composite
sections under different loading scenarios. Zhang et al. [6] investigated concrete-filled
double-skin (CFDS) tubes and observed superior performance compared to a RC column
under near field blast loading. Four circular and seven square columns were tested. Both
the square and circular tubes had outer and inner dimensions of 210 mm and 100 mm,
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respectively, and the thickness of the outside and inside steel tubes was 5 mm. An emulsion
explosive equivalent to 1, 17, 35 and 50 kg of trinitrotoluene (TNT) at a standoff distance
of 1500 mm was used. It was observed that the specimen without an axial load had 25%
larger peak displacement compared to the specimen with 1000 kN of axial load. It was also
reported that the hollow area inside the column had an insignificant effect on the overall
structural response in terms of the period of oscillation, and the maximum and residual
deformations.

Wang et al. [7] evaluated the load resistance and residual strength of eight concrete-
filled steel tube (CFST) columns subjected to adjacent blast. Four of the columns were
circular with a diameter of 194 mm and the other four had a 200 mm square cross-section.
From each group of columns, two had 2.8 mm tube thickness and two had 3.8 mm tube
thickness. The two columns with thinner tubes in each group were subjected to a 500 kN
axial load while the other two columns were subjected to a 562 kN axial load (40% of the
axial load capacity). The standoff distance was 1.5 m for all the tests and the columns were
subjected to a blast ranging from 25 to 50 kg equivalent weight of TNT. The results showed
a strong dependence of the mid-span deflection on the weight of charge. Increasing the
charge weight by 10% tripled the mid-span deflection of the square column. The other
important result was regarding the influence of steel tube thickness. Increasing the tube
thickness by 1 mm reduced the peak mid-span deflection by 50 and 67% in the square and
circular columns, respectively. To assess the residual loading capacity of the columns, two
of the circular and two of the square columns were tested under axial loading following
the blast load. The axial residual capacity tests revealed that the columns with thicker steel
tubes retain a larger residual axial capacity in each group and the square columns have
more residual capacity compared to the circular columns.

Li et al. [8] investigated the behavior of CFDS tube columns subjected to a close-range
blast. Four large scale experiments were conducted on three columns with 2.5 m height, 159
and 325 mm inside and outside concrete diameter, respectively, and 6 mm thick inside and
outside steel tubes. The first and the second tests were conducted on the first column from
300 and 200-mm standoff distances respectively placed at 400 and 500 mm from the footing
surface. These tests were intended to investigate the influence of the standoff distance in
which a 5 kg weight of TNT charge was used. The columns showed between 10 to 80 mm
local indentation with the largest measurement corresponding to the largest TNT charge
in the last test. In addition to the significant increase in the indentation, the larger charge
caused the steel tube close to the detonation to endure a fracture failure. The steel tube was
effective in preventing the concrete from spalling and dissipating the blast energy.

Kyei and Braimah [9] considered the effect of transverse reinforcement detailing
according to the Canadian concrete design code [10] and axial load on the blast response of
columns. Finite element (FE) models were developed and validated based on the results
of the experiments performed by Siba [11]. Three rectangular, 0.3 × 0.3 m configurations,
were considered with different stirrup spacing: normal with 300 mm spacing, seismic with
150 mm spacing at both ends, and 75 mm spacing at both ends and the center. It was
found that the reduced stirrup spacing does not improve the structural performance in
the long-range blast. In addition, under blast loading, the gravity loads from the upper
stories of the building resulted in a reduced lateral deformation. However, at high axial
load levels, the crushing of concrete and the buckling of longitudinal bars at mid-height
was observed.

Omran and Mollaei [12] performed an experimental and numerical investigation on
rectangular RC columns made with normal strength concrete. They proposed six different
retrofitting schemes based on steel jacketing to improve the blast resistance. The retrofitting
schemes included attachment of U-shaped plates, angles and straight plates to the column
as discontinuous jacketing along the height in such a way that all the schemes have equal
cross section after strengthening. The experiment was performed on 350 × 350 × 3000 mm
specimens sustaining an axial load in simply supported conditions. A blast load with a
scaled distance of 1.14 m/kg1/3 was applied on all four specimens. It was observed that
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the retrofitting method consisting of two steel channels enclosing the column had the best
performance compared to the other configurations.

Wang et al. [13] simulated hybrid fiber-reinforced polymer (FRP) concrete-steel double-
skin tubular columns under blast loading using a commercial FE analysis code. In their
proposed retrofitting scheme, the outer FRP tube provides confinement to the infilled
concrete and the inner steel tube provides flexural strength against blast loading. The
authors investigated the effect of several parameters on structural performance. The inner
steel tube thickness, hollowness ratio, axial load level, and fiber orientation were found to
be more effective than the concrete strength and the outer FRP tube thickness in improving
the blast-resistance.

Thai et al. [14], used a commercial FE analysis code to study the behavior of
250 × 250 × 3600 mm rectangular concrete columns retrofitted with a steel jacket un-
der blast loading having scale distances from 0.10 to 0.40 m/kg1/3. The effects of the axial
force and the steel thickness on the blast performance of the specimens were investigated.
It was found that an explosion close to the base of the column causes more severe damage
compared to that at mid-height. Increasing the steel thickness from 3 to 6 mm did not
prove to be an effective solution to reduce blast damage.

Cui et al. [15] investigated the damage response of two concrete-filled steel tube
columns subjected to near-filed blast loading with a scale distance of 0.14 m/kg1/3. The
column height was 1800 mm, and the charge was 500 mm away from the mid-height of
the columns. One of the columns was solid concrete strengthened with a 7 mm thick outer
steel pipe having a diameter of 273 mm. The other column was identical to the first one,
except for having a hollow section inside, and it was strengthened with a 3 mm inner
steel pipe having a 50 mm diameter. The explosive was a 50 kg TNT. The column with
a solid section of concrete and outer steel pipe resulted in 40% smaller deformation at
mid-height compared to the hollow concrete column with outer and inner steel pipes. The
deformations of the columns at the top and bottom were similar for both columns and
they were negligible compared to the deformations at mid-height. A summary of the most
recent relevant finite element (FE) and experimental (EXP.) research studies are provided
in Table 1.

Table 1. Summary of recent studies on strengthening of columns against blast loading.

No. Study Year Methodology Retrofit Scheme

1 Cui et al. [15] 2020 FE 1 Steel jacket
2 Thai et al. [14] 2020 FE Steel jacket
3 Li et al. [8] 2019 FE + EXP. 2 Concrete-filled double-skin tube
4 Wang et al. [13] 2018 FE FRP-concrete-steel tube
5 Wang et al. [7] 2017 EXP. Steel jacket
6 Omran and Mollaei [12] 2017 FE and EXP. Steel jacket
7 Kyie and Braimah [9] 2017 FE RC with improved stirrup spacing
8 Zhang et al. [6] 2016 EXP. Concrete-filled double-skin tube

1 FE: finite element analysis. 2 EXP.: experimental.

In this study, as shown in Figure 1, a retrofitting system, consisting of a UHPC layer
confined by a steel jacket is proposed to provide increased lateral load resistance against
blast loading. This method is introduced to improve the flexural capacity of the RC columns
subjected to the blast load. This configuration is called the composite section hereafter.
First, holes are drilled in the footing and the slab above and adhesive steel anchors are
installed. Then, the steel jacket, made of two half-circular steel tubes, is placed and welded
around the existing column and anchors. Then the gap between the jacket and column is
filled with UHPC through holes drilled in the tube such that the anchors are embedded in
the UHPC.
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Figure 1. Proposed retrofitting system for existing columns against blast loading. Note the shear
studs are attached to the inner surface of the steel jacket.

The perfect composite interaction between the steel and UHPC is obtained by installing
studs inside the steel jacket. Several advantages have been reported for this composite
section such as high flexural stiffness, improved fire resistance, and enhanced ductility,
energy absorption, and stability [16]. Concrete filled tubes are generally efficient because
the cost of the rebar cage is eliminated, and faster construction can be achieved. This
method is proposed to improve the structural response of columns against axial and lateral
loads caused by a blast or an earthquake. The confinement of the UHPC layer could also
be provided by FRP composites. However, a steel jacket provides better integrity against
projectiles, flying fragmentation, and high temperature in terms of strength and bond loss.
In addition, formwork for casting UHPC is not needed in the case of steel jacket and unlike
FRP, no hazardous fumes are generated in the presence of flames. As will be shown later in
this paper, the proposed method increases the axial and flexural capacity of the column.
Additionally, it improves the blast performance by increasing the mass and ductility of
the member.

The structure of this study is presented in Figure 2. 3D nonlinear FE analyses were
conducted using ABAQUS/EXPLICIT (Version 6.14) [17] to investigate the flexural and
axial capacity of an RC column retrofitted with the proposed approach. Validation of the FE
model is performed using a scaled RC column subjected to a cyclic load with a maximum
drift ratio of 7.69%. Separate models were prepared for a single column and part of a
multi-story building frame. During the analysis, first, an axial service load was applied on
the column and then the column was subjected to a near-field blast load. Finally, a vertical
displacement was applied on top of the column to obtain the residual capacity of the blast
damaged column. The residual capacity is compared to the initial capacity of the column
and the loss of the capacity of the non-retrofitted column, caused by the blast, is assessed.
Finally, the improvement of the residual capacity due to the presence of the UHPC and
steel confinement layers is evaluated.
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Figure 2. Flowchart of the study.

2. Experimental Program

In the experimental program, a scaled column made with normal strength concrete
(NSC) was tested under combined axial and lateral loading. Additionally, material tests
according to relevant American Society for Testing and Materials (ASTM) International
standards were performed on prisms and cylinders made from NSC and UHPC to obtain
the mechanical properties of both materials. The data from the material tests were used as
inputs for the constitutive models.

2.1. Material Properties

The proportions of the NSC and UHPC mixture developed by the authors are pre-
sented in Table 2. To prepare the UHPC, Dramix straight steel microfibers that are 13 mm
long and 0.21 mm in diameter (aspect ratio equal to 62) were added to the mixture at a
volume ratio of 2.5%. The tensile strength and the modulus elasticity of the steel fibers are
2750 and 200,000 MPa, respectively. The material tests are illustrated in Figure 3 and the
results are summarized in Table 3.

Table 2. Mixture proportioning of UHPC.

Components
Weight Ratio Max. Particle Size

UHPC 1 NSC 2 (µm)

Cement (Type I/II) 1.00 1.00 200
SF Densified (Gry from Norchem) 0.25 0.00 20

Silica Powder (SCS40 from US Silica) 0.25 0.00 250
Fine Sand (L60 from US Silica) 0.40 1.20 600

Coarse Sand (GS#22 from US Silica) 0.60 2.00 2000
Water 0.27 0.40 -

HRWR 3 (Sikament 2110) 0.02 0.00 -
1 UHPC: ultra high-performance concrete. 2 NSC: normal strength concrete. 3 HRWR: high range water reducer.

Table 3. Material properties of NSC and UHPC.

Property NSC 1 UHPC 2 Standard

Compressive Strength (MPa) 42 146.2 ASTM C39 [18]

Split Tensile Strength (MPa) 4.3 15.1 ASTM C496 [19]

Direct Tensile Strength (MPa) N.A. 3 10.2 N.A.

Modulus of Rupture (MPa) 4.1 17.6 ASTM C78 [20]

Modulus of Elasticity (GPa) 27 41 ASTM C469 [21]
1 NSC: normal strength concrete. 2 UHPC: ultra high-performance concrete. 3 N.A.: not available.
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2.2. Column Testing

As mentioned earlier, a scaled RC column, shown in Figure 4, was tested under
combined axial and cyclic lateral load. The NSC column had an aspect ratio of 4, it
was reinforced with U.S. #6 (19 mm diameter) longitudinal rebar (1.75% by volume) and
confined with U.S. #3 (9.53 mm diameter) spiral reinforcement at 75 mm spacing (0.46% by
volume). The axial load was kept constant at 5% of the axial capacity of the column (or
334 kN) during testing. The lateral load was applied following a quasi-static cyclic loading
protocol as shown in Figure 5. The loading protocol included two cycles at each of 0.27,
0.38, 0.52, 0.73, 1.02, 1.42, 2, 2.8, 3.92, 5.48, 7.69% drift ratio levels.
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As shown in Figure 6a, the deformation of the column was recorded using nine string
potentiometers with a 635 mm stroke. In addition to the string potentiometers, 12 strain
gauges, shown in Figure 6b, were installed on two of the longitudinal rebar to monitor
yielding. The rotation of the column cap was measured to calculate the drift and the
horizontal component of the vertical actuator force, and obtain the base shear. The results
of the experiment are discussed and compared with the FE model in Section 3.2. The
damage and crack patterns after testing are shown in Figures 7 and 8.
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3. Modeling, Analysis and Discussion
3.1. Sectional Analysis

Preliminary parametric analyses were performed using CSICOL [22] software to
evaluate the effect of the steel and UHPC thicknesses on the overall performance of the
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column. Based on the results, values for the thicknesses are determined before more
computationally intensive 3D FE simulations are conducted in Section 3.2.

The calculation of axial and flexural capacity is based on ACI 314 [23]. A rectangular
distribution of stresses was used for the NSC. The software assumes no slip between the
steel and UHPC, or steel and NSC. Therefore, the results from the software are an upper
bound to the flexural capacity. In fact, the studs welded to the steel jacket prevent slippage
between the steel and UHPC; however, some relative displacement may be observed
between the UHPC and NSC core at high drift levels. Two separate models with the
cross-sections called RC and composite sections (shown in Figure 9) were developed for
analysis. The difference between the two models is the presence of the UHPC layer and the
steel jacket in the composite section.
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Figure 9. Model configuration (a) RC and (b) UHPC retrofitting with a steel jacket.

The moment-curvature diagrams for the RC and composite sections are compared in
Figure 10a,b without and with the axial load, respectively. In the experiment, a 334 kN
axial load (about 5% of the ultimate capacity) was applied to the specimen. The same load
was applied to the model in the software for consistency. The maximum moment in the
RC and composite section were obtained as 138 and 495 kNm, respectively, under no axial
load. These values were calculated as 179 and 543 kNm under axial loading.
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The interaction diagram for the RC and the composite sections are compared in
Figure 11 where a significant improvement in the flexural capacity is observed. The hori-
zontal line in Figure 11 corresponds to the 5% axial service load of the RC section.
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Figure 11. Interaction diagrams for RC and composite column sections.

Several analyses with different steel and UHPC thicknesses were performed to under-
stand the effect of the retrofit geometry on the overall flexural capacity. The thickness of
the steel tube, tsteel, and the thickness of the UHPC layer, tUHPC, were varied in the ranges:
20 mm < tUHPC < 80 mm and 5 mm < tsteel < 20 mm. A surface was determined using the
Surface Fitting function in MATLAB R2019b [24] considering zero axial load. Figure 12
shows the flexural strength of the retrofitting system as a function of steel and UHPC
thicknesses. It is preferable not to increase the retrofitted diameter of a column drastically
not to disrupt the use of the building. Therefore, the maximum combined thickness of
35 mm is considered for the retrofitting layer (shown as the vertical surface in Figure 12).
According to Figure 12, compared to the UHPC layer, the steel jacket is more effective in
improving the flexural capacity. However, the total cost of retrofitting is highly affected by
the steel thickness considering the cost for rolling, welding and ease of handling. Therefore,
a thickness of 5 mm is used for the steel and consequently, 30 mm is selected for UHPC.
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3.2. Finite Element Model Validation

In this section, a more advanced non-linear FE analysis using representative material
models is conducted with the dimensions determined for the retrofit in the previous section.
The concrete damage plasticity (CDP) model is used for modeling NSC and UHPC [25].
The model considers the degradation of the elastic stiffness caused by plastic straining both
in tension and compression. More details about the model are available in the ABAQUS
user manual and literature [17,26,27]. The material properties and input parameters for
the CDP model for the NSC and UHPC are presented in Table 4. The stress-strain data
points obtained from the experiment were fitted with the constitutive equation for CDP
model in Abaqus. The elastic modulus obtained from this fit was slightly different than
that obtained in the experiment as specified in the standards.

Table 4. Parameters of the CDP model [15,28].

Parameter Notation NSC 1 UHPC 2

Dilation Angle Ψ 38 10
Flow Potential Eccentricity ε 0.1 0.1

Biaxial/Uniaxial Compression Plastic Stress Ratio f b0/f c 1.16 1.10
Second Stress Invariant Ratio Kc 0.667 0.667

Viscosity Parameter µ 0.0001 0.0001
Density (kg/m3) ρ 2400 2500
Poisson’s Ratio γ 0.19 0.2

Modulus of Elasticity (GPA) E 31 39
Compressive Strength (MPa) f’c 42 146

1 NSC: normal strength concrete. 2 UHPC: ultra high-performance concrete.

An elastic-perfectly plastic model with isotropic strain hardening was used for the steel
reinforcement and the steel jacket. The input parameters for the model are summarized in
Table 5.

Table 5. Material properties of steel jacket and rebar.

Section
Yield Stress

(MPa)
Modulus of

Elasticity (MPa)
Yield
Strain

Ultimate Stress
(MPa)

Ultimate
Strain

fy Es εy fu εu

Steel Jacket (ASTM A36 [28]) 250 200,000 0.0013 400 0.20
Reinforcement (ASTM A615 [29]) 420 200,000 0.0024 620 0.14

The FE model, shown in Figure 13, was developed with the same geometry as in
the experiment. All degrees of freedom were fixed at the bottom of the model. A perfect
bond was created between the NSC and the steel reinforcement using the “embedded”
command in ABAQUS [17]. Solid C3D8R elements, which are eight node brick elements
with quadratic shape functions and reduced integration, were used for the NSC. The
reinforcement was modeled using two-dimensional truss elements (T3D2). The total
number of elements in the column (except the top and bottom caps) was 28,400 including
1580 rebar elements. Considering the non-linear behavior and the expectation of large
deformations in a short period, an explicit integration scheme was adopted.
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Figure 13. Finite element mesh of models (a) NSC and (b) reinforcement.

As a result of the high computational cost of explicit analysis, only the last full cycle
with 120 mm peak displacement in each direction was simulated in the FE model. The
results from the column testing are compared with the FE model in Figure 14. As seen,
the model accurately captures the lateral capacity, and strength and stiffness degradation
observed in the experiment.
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Figure 14. Comparison of experiment and finite element model results.

Next, the depth of the plastic hinge is estimated from the FE model and it is compared
with the results from the experiment. The portion of the rebar in the FE model that has
yielded is shown in Figure 15a. The maximum strain readings at the locations of the strain
gages are shown in Figure 15b. All the strain gauges in the experiment installed as high as
500 mm above the foundation showed yielding. The estimated depth of plastic hinge from
the FE model is 620 mm, which agrees well with the observed data from the experiment.
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Figure 15. (a) Nominal strain from the FE model. Gray color in the legend indicates a strain larger than 2100 µε, which is
assumed to be the yield strain of steel. (b) Recorded strain obtained from strain gages in the vertical rebar.

Finally, the depth of spalling in the finite element model is compared with the experi-
ment in Figure 16. A reasonable agreement is observed between the experiment and the
computer simulation.
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3.3. Blast Loading Simulations

An explosion involves chemical reactions, which cause a rapid increase in the temper-
ature and pressure of the atmosphere surrounding the explosion source of the detonated
products. The pressure wave travels away from the source with a spherical front in the
radial direction at high velocity (see Figure 17). The blast load is a function of the distance
from the source, R, and the equivalent charge weight, W, in terms of TNT weight. Conver-
sion factors are available to obtain the equivalent TNT weight of other explosive materials.
The intensity of a blast load is commonly normalized to a scaled distance, Z, which is the
ratio of standoff distance to the cube root of the charge weight. A blast load with a scaled
distance above 5.88 m/kg1/3 corresponding to 5 kg TNT at 10 m distance causes significant
deformation and immediate failure of the column considered in this study. Therefore, a
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scaling distance higher than 5.88 m/kg1/3 was found inapplicable for the FE analysis. The
pressure as a function of time is obtained using Friedlander’s equation [30] as

P(t) = Pmax

[
1 − t

∆t

]
exp

[
A × t

∆t

]
(1)

where P(t) is the overpressure in kPa as a function of time, t; Pmax is the maximum pressure
in kPa; ∆t = t2 − t1 is the positive phase duration in ms, and A is a dimensionless negative
wave decay parameter.
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Figure 17. Variation of pressure with time: t0 is the time of detonation and t1 is the time of arrival.

The variation of temperature due to the explosion is not considered in this study and
the pressure-time history is applied to the column using the Conventional Weapons Model
(CONWEP) built-in ABAQUS [17]. The model introduced by Kingery and Bulmash [31]
calculates the pressure at each time step for all nodes in the predefined target surface using
Equation (1). The charge amount is defined in equivalent TNT and the explosion source
is selected by the user before the analysis. The program calculates the decay coefficient,
correct distance, and angles of incidence based on the input parameters.

In this section, the behavior of a single column under blast loading is investigated. To
represent a more realistic condition, the height of the column was increased to 4 m while
the diameter was kept at 0.4 m similar to what is presented above. Due to a limitation in our
experimental setup, the length of the column was restricted to 1.8 m. In the finite element
analysis, the length of the column was increased to 4 m. Since the material properties
(including steel, rebar and concrete) and all geometries except the length in the FE model
remained the same as those in the experiment, the scaling procedure was not applicable
and thus was not considered. All the degrees of freedom were fixed for both the foundation
and the end cap of the column except the vertical displacement at the top. In the first phase
of the analysis, the column was subjected to a monotonically increasing axial loading until
failure. This loading scenario is important for the columns away from the blast incident
where the axial load increases due to a potential loss of a column due to the explosion. The
effect of the volumetric ratio of the confining steel on the axial capacity and ductility of
concrete columns has been extensively studied in literature [32,33]. Confinement increases
absorbed energy by the concrete core by providing additional strain energy of the yielding
hoop steel reinforcement.

The axial capacity of the two columns (RC and composite with the proposed retrofit
approach) is compared in Figure 18. The composite section showed about 14% increase in
the peak axial capacity in compression (7045 versus 6180 kN). The results also showed a
larger post-peak residual capacity up to 40 mm axial displacement. The residual axial ca-
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pacity of the composite section was higher than that of the RC section. The residual strength
of the composite column was 3.7 times that of the RC column at 40 mm displacement. The
increase in the strength is due to the added axial bearing capacity of the retrofitting layer
and the NSC core strength gain due to confinement provided by the retrofitting system.
The horizontal line in Figure 18 is the nominal axial capacity of the RC column equal to
6400 kN calculated based on ACI 318 [34].
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Figure 18. Comparison of the axial capacity of the RC and composite sections.

In the second phase of the analysis, the column was subjected to a blast load with
a charge of 5 kg of TNT and the source was located at 10 m standoff distance and 1 m
above the base of the column. In this phase, the goal is to evaluate the flexural behavior;
therefore, no axial load was applied. The boundary conditions were kept identical to
the axial loading simulation described above. The lateral displacement at mid-height of
the column is taken as an indicator of the blast resistance. The results of the analysis are
compared in Figure 19. It is seen that the maximum deformation in the RC column is 2.29
times that of the composite column (202 versus 462 mm).
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Figure 19. Comparison of the mid-height lateral deformation of the columns under blast loading
(with no axial load).

In addition, the effect of axial load is compared between the RC and composite
sections in Figure 20. Three cases of 0, 5 and 10% axial load of the maximum capacity were
considered, and the columns were subjected to the blast load. In the case of RC section,
increasing the axial load increased the lateral deformation. 10% axial load resulted in the
total failure of the RC column while the presence of the axial load reduced the lateral
deformation in the composite section (compare Figure 20a with Figure 20b). The composite
column with a 10% axial load experience 189 mm deformation in the middle whereas
the deformation was 205 mm for the same with zero axial load. Therefore, it could be
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concluded that the axial load can improve the structural performance of the composite
section under blast loading as long as it is not excessive to cause large second order effects.
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ite columns.

In the final step of the analysis, an axial displacement was applied on top of the blast
damaged columns to obtain the residual strength. The residual capacity is defined as the
maximum axial load that could be sustained by the column after experiencing the blast
load. The maximum residual capacities of the RC and composite sections were obtained
as 2034 and 5485 kN, respectively, as shown in Figure 21. The drastic improvement in the
case of the composite column is explained by the fact that the UHPC layer protects the
core by minimizing the lateral deformation and associated damage during the blast. It also
provides additional capacity by providing confinement for the core in the subsequent axial
loading.
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3.4. Progressive Collapse Simulations

In this section, a part of a concrete frame consisting of two columns and two slabs
was developed for detailed analysis. Although the previous analyses on a single column
provide insights about the structural behavior, this configuration is more realistic since a
blast induces uplift forces due to the pressure in the vertical direction applied to the bottom
of a slab in a building (see Figure 22). In addition, the presence of the slab provides a more
realistic boundary condition for the column. In the previous section, the axial load was only
applied to the NSC core and the retrofit layer provide confinement and flexural strength.
In the frame model, the contribution of the retrofit layer in the axial capacity of the system
is also added. For this purpose, a flat slab with 150 mm thickness was considered in the
structural system. Linear elastic properties were assigned to the slab concrete. The live load
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for an office space as per ASCE 7 [35] for the tributary area of the column was combined
with the dead load of the slab and applied as downward pressure on the column. The load
from the higher floors was also added as a concentrated axial load to the top of the second
story column. The geometry and the loading and boundary conditions of the system are
shown in Figure 23. The blast source was placed 10 m away from the column in the first
story without any offset. The column was fixed at the bottom and the lateral displacement
of the slabs in the two in-plane directions was restrained. It is assumed that the specimen
is a part of a large building; therefore, considering the small blast charge, the horizontal
displacement of the slab is ignored. The FE mesh of the system consists of 59,300 elements
as shown in Figure 24. A second model was also developed with a similar geometry except
that the retrofitting system with a 30 mm UHPC layer and a 5 mm steel jacket was added.
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The loading protocol during the blast analysis is shown in Figure 25. The system
was loaded in three steps. In the first step, a service load equal to 2.4 kN/m2 (office area)
pressure in normal direction was applied to both slabs. The axial load from higher floors
was considered 5% of maximum axial capacity. Summing up the load from the higher
floors, the slab weight and the service load, the total applied load on the first story column
is 5.3% of the column’s axial load capacity. In the second step, the blast load was applied.
In the final step, the axial load in the column was linearly increased up to the failure of the
system. Thereby, the residual capacity of the system after the blast load was estimated for
the RC and the composite column systems.
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in the FE analysis.

The compressive and tensile damage in the RC system at maximum deformation is
shown in Figure 26. The deformation at mid-height of the first floor column is compared
respectively in Figures 27 and 28 for the RC and composite systems. It is seen that the
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maximum horizontal deformation at the mid-height of the column in the first story in the
RC system is 3.19 times that in the composite system.
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The residual axial capacity of the systems after the blast is shown in Figure 29. The
force is the reaction at the lower column and the displacement is the vertical displacement
at the top of the upper column. The maximum axial capacity was obtained as 3180 kN for
the composite section and 1620 kN for the RC section. It could be concluded from Figure 29
that the retrofit system could increase the capacity of the damaged column by a factor of
1.96 (from 1620 to 3180 kN).
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Figure 29. Comparison of residual axial capacity after blast damage between the two systems.

The same pattern is observed as for the results in Figure 21 for the single column.
Furthermore, the dissipated energy of each system is calculated as the area under each
curve up to a displacement corresponding to a 20% reduction in the maximum reaction
force in the post-peak regime. The corresponding displacements are determined as 74 and
83 mm for the composite and RC columns respectively (shown with circles in Figure 29).
The dissipated energy for both columns is shown in Figure 30. The composite section
showed 1.74 times more energy dissipation capacity compared to the RC section up to the
20% reduction limit.
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Figure 30. Cumulative dissipated energy for the RC and composite systems after blast damage.

In the final part of the study, the effect of blast on the axial capacity of the frame was
evaluated. The retrofitted frame was subjected to an increasing axial load with and without
the blast damage. Results (see Figure 31) showed that the composite section can tolerate up
to 6250 kN before the damage and after the damage, the capacity is reduced to 3180 kN.
This reduction could be attributed to tension developed in the column from the uplift of
the floors and also the flexural deformation resulting from the lateral drift.
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4. Conclusions

In this study, non-linear explicit analysis has been performed to investigate the struc-
tural performance of reinforced concrete columns retrofitted with a UHPC layer and a
steel jacket under lateral loading. Material tests were performed for calibration of the
constitutive models. The FE model was validated using experimental data from a scaled
column. The effect of the blast load on the lateral deformation and residual axial capacity
was investigated. The following key conclusions are drawn from the results obtained.

• The confinement provided by the UHPC and steel layer increased the peak and
residual capacity of the undamaged column. The residual capacity of the composite
section was higher by a factor of 3.7 in the uniaxial compression loading scenario at
40 mm axial deformation.

• The investigated retrofitting method was found to improve the residual axial capacity
of the column subjected to the blast load by protecting the NSC core from the plastic
hinging at mid-height. In the case study, for a 400 mm diameter single column, a
30 mm UHPC layer and a 5 mm steel jacket, the axial capacity of the column was
increased by a factor of 2.70. The maximum deformation in the mid-height of the RC
column was 2.29 times that of the composite column.

• Considering the results from the detailed frame model, the residual strength of the
composite column with the service load equal to 5.3% of the ultimate axial capacity
was 1.96 times that of the RC column and the energy dissipation capacity was 1.74
times that of the RC column. The lateral displacement in the RC column at mid-height
of the first story was 3.19 times that in the composite section.

• The results also showed that the application of axial load can reduce the lateral
displacement of the column under blast load and thus the marginal extra weight from
the retrofitting system is beneficial to the structural performance.
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