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Abstract: In the present work, and for the first time, three whey protein-derived peptides (IAEK,
IPAVF, MHI), endowed with ACE inhibitory activity, were examined for their antiviral activity against
the SARS-CoV-2 3C-like protease (3CLpro) and Human Rhinovirus 3C protease (3Cpro) by employing
molecular docking. Computational studies showed reliable binding poses within 3CLpro for the three
investigated small peptides, considering docking scores as well as the binding free energy values.
Validation by in vitro experiments confirmed these results. In particular, IPAVF exhibited the highest
inhibitory activity by returning an IC50 equal to 1.21 µM; it was followed by IAEK, which registered
an IC50 of 154.40 µM, whereas MHI was less active with an IC50 equal to 2700.62 µM. On the other
hand, none of the assayed peptides registered inhibitory activity against 3Cpro. Based on these results,
the herein presented small peptides are introduced as promising molecules to be exploited in the
development of “target-specific antiviral” agents against SARS-CoV-2.

Keywords: antiviral peptides; protease inhibitors; molecular docking; rhinovirus; COVID-19; milk

1. Introduction

On 11 March 2020, the World Health Organization (WHO) declared the novel coro-
navirus (COVID-19) outbreak a global pandemic for the rapid spread of severe acute
respiratory syndrome coronavirus-2 (SARS-CoV-2) worldwide [1]. To date, the SARS-CoV-
2 infection has caused more than 4 million deaths around the world [2].

The advent of effective vaccines and the adoption of restrictive prophylaxis measures,
as well as appropriate sanitization procedures, have improved the global fight against
SARS-CoV-2 [3]. However, the world still urgently needs new and affordable approaches
to better counteract the spread of SARS-CoV-2 and prevent the spectrum of lethal adverse
effects, especially in immunocompromised and vulnerable people. Thus, a wide range of
therapies tackling the effects of COVID-19 in frail, symptomatic patients is increasingly
gaining ground in clinical practice. They include both antivirals based on nucleotide
analogs, such as Paxlovid™ (Nirmatrelvir and Ritonavir, Pfizer), Malnupirovir™ (Merck),
Favipiravir, Remdesivir, and corticosteroids (such as Dexamethasone), and cytokine in-
hibitors (baricitinib and anti-IL-antibodies 6, anakinra). In addition, the use of monoclonal
antibodies as an alternative to convalescent plasma is also spreading. Antivirals have been
developed to block viral replication by inhibiting the RNA-dependent RNA replicase. Con-
versely, corticosteroids are used to avoid severe forms of the disease [4,5]. However, these
drugs must be taken while under medical supervision or even in a clinical environment
and they can often show serious adverse side effects. Furthermore, they all have a very
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high cost, preventing their large-scale diffusion [4,6]. Thus, the discovery of new molecular
entities, showing low toxicity and high specificity, to block the entry or replication of
SARS-CoV-2 in host cells still represents a challenge regarding safer and more effective
therapeutic solutions [7].

The SARS-CoV-2 3-chymotrypsin-like cysteine protease (3CLpro), also named the main
protease (Mpro), which plays an important role in the virus’s life cycle, is considered an
attractive target for the discovery of promising antiviral agents [8]. Importantly, 3CLpro

is involved in the replication process due to its two N-terminal domains, containing
two β-barrel chymotrypsin-like folds ultimately responsible for the cleavage of the viral
polyproteins to yield 16 mature non-structural proteins [9,10].

Human rhinoviruses (HRV, belonging to the Picornaviridae family), etiological agents
of the common cold, also show a protease (HRV 3C protease or 3Cpro) involved in the
viral replication process. Briefly, 3Cpro and 3CLpro are cysteine proteases and share a
typical chymotrypsin-like folding, a nucleophilic cysteine residue in the active site, and
a preference for a glutamine or glutamic acid residue in the primary binding residue
(P1 site) of the substrate proteins. Picornaviral HRV 3C protease was studied in the
recent past for its degree of homology with coronaviral 3C-like proteases (3CLpro) within
the 3C coding region, including the strict conservation of the active-site residues, thus
providing an additional rationale for targeting drug discovery efforts [11,12]. Nevertheless,
subtle differences in the active-site structures of these proteases did not allow for the
identification of common inhibitors [13]. Only recently, a duplex assay based on self-
assembled monolayer desorption ionization (SAMDI)-MS analysis has been developed,
allowing the identification of equipotent peptides against 3CLpro and HRV 3Cpro [14].

Several studies have been carried out regarding the structural and functional charac-
terization of these proteins, to be employed for high-throughput screening for the discovery
of new effective inhibitors [15–17]. The search for 3CLpro inhibitors has been pursued
by exploiting FDA-approved drugs, screening the libraries of natural and chemical com-
pounds, and considering the de novo design of novel agents [18–20]. Based on these
strategies, a number of putative inhibitors, whose structures can be grouped as peptidic
and non-peptidic, have been identified and are awaiting further investigations before
approval [16,21–23]. Recently, the 3CLpro covalent inhibitor Nirmatrelvir (PF-07321332,
purchased in combination with Ritonavir) has been authorized for emergency use for
COVID-19 patients not requiring supplemental oxygen [24,25].

In order to increase the affinity and efficacy, 3CLpro inhibitor substrates have been
mainly modified by introducing some reactive chemical groups, such as Michael acceptors,
aldehydes, epoxy ketones, and so on [8]. However, these structural changes promote
the formation of covalent bonds with the catalytic cysteine responsible for the enzyme’s
irreversible inhibition and, thus, for potential toxicity [14,16].

Besides synthetic compounds, other studies on promising antiviral agents are focusing
on the identification of bioactive molecules from natural sources [26–28]. Among others,
health-promoting - represent an attractive option. It has been reported that the role of
food ingredients and active components (i.e., bioactive peptides, polysaccharides, bioactive
lipids, and natural polyphenols) in supporting immune function in the prevention and treat-
ment of COVID-19 disease is important [29,30]. Noteworthy, several peptides from milk
proteins showed their ability to inhibit the main SARS-CoV-2 proteases [30,31]. Natural
peptides show lower toxicity and fewer side effects: their application in adjuvant therapies
is also favored by their satisfactory biological activity profiles, in which antioxidant, antimi-
crobial, immunomodulatory, anti-inflammatory, and/or angiotensin-converting enzyme
(ACE) inhibitory activities can coexist [26,32,33]. Interestingly, peptides taken from milk
proteins and endowed with ACE inhibitory activity have also been investigated recently,
via in silico studies, for their ability to prevent interaction among the COVID-19 spike gly-
coproteins and the host cell dipeptidyl peptidase-4 (DPP-4, [34]); however, these promising
results are still lacking validation by in vitro or in vivo studies.
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Recently, we investigated ACE inhibitory activity by peptide sequences, derived from
the enzymatic hydrolysis of whey proteins and predicted by molecular docking and related
prioritization studies. This approach allowed us to obtain three peptides—MHI, IAEK, and
IPAVF—with ACE inhibitory IC50 values equal to or lower than 25 µM [35]. Importantly,
IPAVF and the related one-residue-longer sequence IPAVFK also exhibited DPP-4 inhibitory
activity and antimicrobial activity against Gram-positive bacteria [33,34].

Building on these observations, we explored the potential of our recently studied ACE
inhibitory peptides (i.e., MHI, IAEK, and IPAVF) in interfering with SARS-CoV2 3CLpro

functioning. With this in mind, we carried out an integrated theoretical and experimental
investigation, involving first, molecular docking studies to rationally evaluate the putative
chance of binding and then, in vitro testing for validation. Due to the occurrence of coin-
fection with a common virus (influenza viruses, human metapneumovirus, and seasonal
coronaviruses) in SARS-CoV-2 positive specimens [36,37], peptides were also assayed for
their ability to inhibit human rhinovirus 3C protease (EC: 3.4.22.28) in order to evaluate the
peptides’ exploitation as broad-spectrum antiviral agents.

2. Materials and Methods
2.1. Molecular Docking

SARS-CoV-2’s main protease crystal structure was fetched from the Protein Data Bank
by retrieving the entry 7L0D [38]. The protein was treated with the Protein Preparation
Tool [39,40] available from Schrödinger Suite (New York, NY, USA). Such a method allows
for optimizing the crystal structure by removing water molecules, adjusting the side-chain
conformation, and adding the missing hydrogen atoms. The peptides to be docked were
processed by employing the Ligprep Tool (Schrödinger, New York, NY, USA, for more
information, see [41]) to generate all possible tautomers, as well as the protonation states at
the physiological pH. The grid-box was generated so as to be suitable for standard precision
(SP) peptide-docking protocol and, thus, was centered on the center of mass of the cognate
ligand. Satisfactorily, Glide software (Schrödinger, New York, NY, USA) [42] could properly
replicate the original binding pose of the co-crystallized molecule, returning a root mean
square deviation (RMSD) value as small as 1.025 Å.

The induced-fit docking protocol [43,44] was employed, using Glide with an OPLS3e
force field [45] to analyze the binding mode of the selected ligands, together with confor-
mational changes within the receptor. Such changes are not allowed in standard docking
protocols. In detail, side-chain conformation predictions were performed on residues within
6 Å from the ligand poses, together with the Glide SP redocking of each protein–ligand
complex structure within 30.0 kcal/mol from the lowest energy.

The molecular mechanics/generalized born surface area (MM-GBSA, accessed on
January 2022 [46]) method was employed in the last stage of the study for the computation
of the binding free energies (∆G) between the proteins and ligands. The Prime package
(Schrödinger, LLC, New York, NY, USA) [47], available in the Schrödinger 2020-4 suite
(New York, NY, USA), was used for this purpose.

For completeness, -additional molecular docking analyses were carried out against
the HRV 3C protease by retrieving entry 2XYA [48] from the Protein Data Bank (https:
//www.rcsb.org, accessed on 10 January 2022) and are included in the Supplementary
Information.

2.2. In Vitro Screening of the Antiviral Activity

Synthetic peptides were purchased (purity > 95%; GenScript, Leiden, The Netherlands)
and resuspended in MQ water, then assayed at the concentrations of 2, 1, 1, 0.6 0.2 and
0.02 mg/mL (corresponding to 500 to 5 µM for MHI, from 420 to 4.2 µM for IPAVF, and
from 366 to 3.6 µM for IAEK). In the case of peptides with a value of relative inhibition
(RI) percentage that was higher than 40–50% at the lowest assayed concentration, further
dilutions were made.

https://www.rcsb.org
https://www.rcsb.org


Biomedicines 2022, 10, 1067 4 of 11

2.2.1. SARS-CoV-2 3CL Protease Assay

The in vitro screening of enzyme inhibition activities was evaluated by using 3CL
Protease, untagged (SARS-CoV-2 Assay Kit, Catalog #: 78042-1, BPS Bioscience, Inc.,
Allentown, PA, USA). According to the manufacturer’s protocol, a fluorescent substrate,
SARS-CoV-2 3CL Protease (GenBank Accession No. YP_009725301, amino acids 1-306
(full-length), expressed in an Escherichia coli expression system, MW = 34 kDa) and a
buffer composed of 20 mM Tris, 100 mM NaCl, 1 mM EDTA, and 1 mM DTT, pH 7.3,
was used for the inhibition assay. The protease inhibitor, GC376 MW 507.5 Da, with an
IC50 value of 0.017 µM was used as the positive control. Initially, 30 µL of diluted SARS-
CoV-2 3CL protease, at the final concentration of 15 ng, was pipetted into a 96-well plate
containing pre-pipetted 10 µL quantities of each test compound (final concentrations of
each peptide ranged from 2 to 0.0002 mg/mL in the wells). The mixture was incubated at
room temperature for 30 min with slow shaking. Afterward, the reaction was started by
adding the substrate (10 µL), dissolved in the reaction buffer to 50 µL final volume, at a
concentration of 40 µM, then the plates were incubated for 4 h at room temperature with
slow shaking. The plates were sealed. Fluorescence intensity (Fi) was measured with the
Varioskan microtiter plate-reader (Varioskan Flash, Thermo Fisher, Milan, Italy), exciting
at a wavelength of 360 nm and detecting at a wavelength of 460 nm. Each sample was
assayed in triplicate.

The percentage of relative inhibitions (RI %) was calculated as follows:

% Relative Inhibition
(

%
RI

)
=

(
FiC − FiT

FiC

)
× 100

where C is the control and T is the test peptide or inhibitor.

2.2.2. HRV 3C Protease Determination Assay

The inhibition activity of synthetic peptides was assayed against human rhinovirus
3C protease (HRV 3Cpro; EC:3.4.22.28), a cysteine protease that recognizes the cleavage
site of Leu-Glu-Val-Leu-Phe-Gln*Gly-Pro. Protease activity in the presence or absence of
peptide inhibitors was determined colorimetrically, as reported, with an HRV 3C Protease
Inhibitor Screening Kit (Catalog #: ab211089, Abcam, Cambridge, UK) according to the
manufacturer’s instructions. The kit also included a protease inhibitor as a positive control.

Briefly, the screening sample compound wells contained 10 µL of the test compounds
at each concentration (final concentration/well from 1 to 0.05 mg/mL) or 10 µL of inhibitor,
or 10 µL of assay buffer in the case of enzyme control, and 50 µL of enzyme solution. After
the incubation of the plate at room temperature for 15 min, 40 µL of the substrate solution
was added to each reaction, and absorbance (OD = 405 nm) was measured in a kinetic
mode for 1–2 h at 37 ◦C on the Varioskan Flash microplate reader. Each sample was assayed
in triplicate.

The percentage of relative inhibitions (RI) was calculated as follows:

% Relative Inhibition (%RI) =
(

slopeC − slopeT
slopeC

)
× 100

where C is the control and T is the test peptide or inhibitor.

2.3. Statistical Analyses

Results related to the 3CL protease inhibition percentage were subjected to a square
root arcsin transformation in order to meet the homogeneity-of-variance assumptions,
following Levene’s test. The univariate general linear model (GLM) procedure, carrying out
a two-way analysis of variance (ANOVA, p < 0.05) using the IBM SPSS Statistics release 20
(IBM, Armonk, NY, USA) to evaluate the main and interaction effects of concentration levels
and the assayed peptide types on the inhibition percentage of viral protease. Whenever
required, the simple main effects of peptides and the assay control inhibitor on viral
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protease inhibition percentage were also examined, applying a one-way ANOVA (p < 0.05).
Multiple comparisons among individual means for each assayed peptide and concentration
level were performed using honestly significant difference (HSD)Tukey’s test (p < 0.05).
A multiple regression test was run to predict the inhibition percentage of 3CL protease
activity from different peptide concentrations.

The half-maximal inhibitory concentration (IC50) of peptides on SARS-CoV-2 3CL
protease was calculated by using the software package SigmaPlot12 (Systat Software, Inc.
SigmaPlot for Windows, San Jose, CA, USA) and referred to the micromolar range.

3. Results and Discussion

The chance of targeting SARS-CoV-2 main protease was rationally assessed by em-
ploying numerous structure-based approaches [49]. These studies were aimed at predicting
the potential of the three small peptides (i.e., IAEK, IPAVF, and MHI) to act as antiviral in-
hibitors of SARS-CoV-2 main protease, as well as understanding the molecular interactions
governing the recognition and the engagement of the binding site [50].

These sequences, endowed with high ACE inhibitor activity, were designed by the
molecular pruning of longer β-lactoglobulin-derived peptides (e.g., IIAEKTKIPAVF, and
MHIRL); these latter were, in turn, purified and identified after the enzymatic hydrolysis of
whey, for its transformation from a by-product of cheese manufacture to a high added-value
compound [33]. The assumption that IAEK, IPAVF, and MHI could be good candidates
for SARS-CoV-2 3CLpro inhibition was suggested by their sequences, which contain hy-
drophobic and aromatic amino acids that are able to interact with the hydrophobic regions
of the 3CLpro active site, such as the S2 pocket [51]. In addition, bioactive peptides, such
as ACE inhibitor ones, usually exhibit multifunctional properties that, once proved, make
them excellent candidates for the development of multi-target drugs [33,34]. Similarly, this
latter evidence has pushed other authors into investigating their activity as inhibitors of
the SARS-CoV-2 main protease [52].

We preferred to use the induced fit docking protocol instead of the standard methods,
the former being suited to exploring with higher accuracy and reliability the nature and the
type of molecular interactions by considering both the ligand and binding site flexibility.
In this respect, the effect of the induced fit on the key binding site residues (i.e., H41,
N142, C145, H161, E166, and Q189) is assessed by computing the deviations from the
crystallographic pose for each protein-oligopeptide complex; the following RMSD values,
equal to 1.51 Å, 1.39 Å and 1.24 Å, are measured for IPAVF, IAEK, and MHI, respectively.
Interestingly, we observed that Q189 and N142 are more sensitive to the induced fit, as
these two residues experienced significant conformational changes, promoting a better
fit and the easier accommodation of the three small peptides through the formation of
cooperative hydrogen bonds. The N142 χ1 and Q189 χ1 and χ2 torsional angle shifts, due to
the induced fit, were reported in Table S1 of the Supplementary Information. Furthermore,
the chance of interaction with the catalytic residue H41 and, in addition, with the key
residue E166 is supposed to be crucial for the effective inhibition of the target [53,54]. As
shown in Figure 1, the three peptides can form a network of hydrogen bonds within the
binding pocket. Specifically, IPAVF can interact with the side chains of N142, H41, and
Q189, and with the backbone of E166. Furthermore, its protonated nitrogen head can
trigger an electrostatic interaction with the negatively charged side-chain of E166. As far
as IAEK is concerned, hydrogen bonds with H41, N142, Q189, H163, and E166 were also
detected, and the protonated arm of its terminal lysine residue can engage in electrostatic
interaction with the side-chain of E166. Regarding MHI, the same hydrogen bonds with
E166, N142, and Q189 were observed, and, notably, π−π interactions with H41 through the
imidazole ring of its histidine residue were also detected.
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Figure 1. Panels (a–c) report the best pose returned from docking simulations for IPAVF (cyan sticks),
IAEK (green sticks), and MHI (magenta sticks) peptides, respectively. Red arrows and green and
blue lines depict hydrogen bonds, π-π, and electrostatic interactions, respectively. Black wireframes
show the original side-chain conformation of the 7L0D crystal structures. Yellow arrows highlight
the shifting of the side chains from their original positions, due to the induced fit.

From an energetic point of view, we employed the OPLS3e force field to quantify the
docking scores, and the MM-GBSA method to account for the binding of free energies.
Interestingly, the values of the docking scores as well as of the binding free energies
calculated for the three peptides were much better than those calculated for the reference
X-ray-solved cognate ligand, ML188. For the sake of comparison, all the values are reported
in Table 1.

Table 1. Values of the docking score and of MM-GBSA free energy of the best poses obtained through
induced-fit docking.

Docking Score (kcal/mol) MM-GBSA (kcal/mol)

IPAVF −10.967 −83.43
IAEK −10.318 −76.24
MHI −9.338 −78.80

ML188 cognate ligand −5.283 −68.03

In addition, a more detailed analysis of the terms of the binding free energy function
indicated that the Coulomb and van der Waal energy contributions were determinants for
IPAVF, with values equal to −43.15 kcal/mol and −70.55 kcal/mol, respectively. On the
other hand, the strongest hydrogen bonding contribution with a value of −6.13 kcal/mol
was for IAEK, due to the presence of two charged side chains within its sequence.

Taken together, all the above-described results concerning the in silico investiga-
tions made us confident of the potential antiviral action of these natural small peptides
in contrasting SARS-CoV-2 main protease, and this encouraged us to run experimental
validations.

Recently, Behzadipour et al. [31] screened several di- and tri-peptides in silico, re-
sulting from the simulated digestion of bovine milk proteins, for their SARS-CoV-2 Mpro

inhibitory activity using molecular docking. Twenty peptides (with at least one aromatic-
hydrophobic amino acid residue at the C-terminal side) showed the best binding energy
but this was less than those obtained in the present work. In particular, three among
these peptides, originating from the in silico proteolysis of β-caseins, β-lactoglobulin,
and αs2-casein, were able to form at least two hydrogen bonds and achieve π-alkyl hy-
drophobic interactions with the catalytic residues, C145 and H41, of SARS-CoV-2 Mpro,
respectively. Other authors [32,34,55] have reported food-derived peptides with virtual
3CLpro inhibitory activities, showing several potential advantages in terms of high binding
affinity, bioavailability, and cost-effective synthesis.

In the past, a representative group of tripeptide aldehydes (CBZ-Leu-Phe-Gln-CHO)
was prepared and analyzed to demonstrate poor inhibitory activity against 3Cpro. However,
peptides that were modified with a primary amide (Gln-γ-CONH2) were more active,
revealing carbonyl oxygen–hydrogen bonds with the H161 and Oγ of T142 [56]. Our three
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small peptides were also subjected to docking simulations within the binding site of 3Cpro

and similar interactions were experienced, although these yielded more disappointing
scoring values. Additional details are available in the Supplementary Information.

Based on the theoretical analyses, the inhibitory activity of the three investigated
peptides was experimentally evaluated against SARS-CoV-2 3CLpro and HRV 3Cpro, both
employing the catalytic dyad (His-Cys) for their functionality.

Satisfactory experimental results were observed, following the in vitro inhibition
screening of the assayed peptides regarding SARS-CoV-2 3CLpro activity.

The half-maximal inhibitory concentrations (IC50) of the three assayed peptides against
SARS-CoV-2 3CLpro were measured and are shown in Table 2, confirming IPAVF and IAEK
as being more active than MHI; in particular, the IC50 value of IPAVF was the best and
was comparable with those obtained for the ACE inhibitor peptides against SARS-CoV-2
3CLpro, after in silico analyses [52]. The experimental data used to determine IC50 are
reported in Table S3 in the Supplementary Information.

Table 2. Experimental IC50 values for the inhibition of SARS-CoV-2 3CLpro.

IC50 (µM) 95% Confidence Interval

MHI 2700.62 1186.17 6145.84
IPAVF 1.21 0.02 9.53
IAEK 154.40 137.18 291.60

GC376 (inhibitor) 0.017 0.05 0.042

Similar inhibitory activities toward SARS-CoV2 in the µM range have been identified
for synthetic tetrapeptides, pentapeptides, and octapeptides, as recently reviewed by Hey-
dari et al. [57]. Moreover, the in silico hydrolysis of marine fish proteins by gastrointestinal
enzymes released oligopeptides containing 1–3 aliphatic amino acids (A, L, V, I) with a
high affinity toward SARS-CoV-2 3CLpro; some of these peptides were also predicted to
play a role as dual binders toward SARS-CoV-2 3CLpro and monoamine oxidase A [58].

It is noteworthy that no appreciable activity was observed when testing the three small
peptides against HRV 3C protease, the RI percentage being lower than a value of ca. 5%
at a concentration of 1 mg/mL. A synoptic view is shown in Table 3. This finding is in
agreement with our predictive docking studies. Interested readers can look at Figure S1
and Table S2 of the Supplementary Information for more details.

Table 3. The relative inhibition percentage (RI %) of HRV 3C protease by the assayed small peptides.

Peptides Concentration for Well Relative Inhibition (RI %)

MHI 250 µM 4.92 ± 1.02
IPAVF 210 µM 5.30 ± 1.06
IAEK 183 µM 4.54 ± 0.56

During the COVID-19 pandemic, several variants of SARS-CoV-2 emerged that, nev-
ertheless, showed mutations in the binding domain of the spike protein receptor [59,60].
In all the variants of concern of the virus, no mutation in the Mpro gene was recorded [61].
This suggests that any Mpro inhibitor could also be effective against multiple variants of
the same virus.

As already demonstrated for Nirmatrelvir [62], it is expected that the inhibitors studied
in this work can block viral replication; therefore, they can also reduce infection. Neverthe-
less, unlike the currently authorized antivirals, the peptides studied could have very few
or mild side effects and potentially have broad-spectrum applications. In particular, the
peptides studied have been shown to have possible anti-hypertensive effects that would
ameliorate the clinical conditions of COVID-19 patients. Finally, biologically active pep-
tides would be cheaper and can be easily transformed into derivatives with improved
pharmacological properties.
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It is noteworthy that the three proposed peptides represent the minimum active
sequences with the desired biological properties toward the SARS-CoV-2 3CL protease.
This finding opens the way for the synthesis of peptides with improved activity. Their
conversion into therapeutic peptides is, indeed, a further challenging task aimed firstly
at tackling two intrinsic stumbling blocks: the low membrane permeability and the poor
in vivo stability [63]. Inspired by consolidated medicinal chemistry strategies, backbone
and side-chain modifications could be of great help. The former is normally pursued to
improve the proteolytic stability of the peptides and includes, for instance, the replacement
of L-amino acids with D-amino acids [64], the addition of methyl-amino acids [65], and
the inclusion of β-amino acids [66] and peptoids [67]. The latter, instead, aims at exploring
changes to improve the binding affinity and selectivity [68]. Together with these design
approaches, targeted delivery strategies could also be exploited to overcome the inherent
drawbacks of peptides [69]. These approaches could indeed be very valuable to obtain real
therapeutic peptides; peptides with protease inhibitory activity have already been studied
for various viruses, such as the Dengue virus, West Nile virus, and hepatitis C virus [57].

On the other hand, IAEK, IPAVF, and MHI are naturally included within whey pro-
teins [33,35]; although their purification requires time and cost with a putative low yield,
the fractionation of a mixture containing several inhibitory peptides may be an advanta-
geous experimental design step toward the development of nutraceutical supplements
with a more efficient manufacturing process and improved activity.

4. Conclusions

In this work, the inhibitory activity of the whey-derived bioactive small peptides MHI,
IAEK, and IPAVF against viral proteases was evaluated for the first time, indicating their
possible role in blocking the replication processes of SARS-CoV-2.

Molecular docking studies predicted the relevant interactions between the peptides
and key amino acid residues of the enzyme catalytic pocket of 3CLpro. These results were
validated by in vitro experiments that confirmed the highest antiviral activity for IPAVF
and IAEK against 3CLpro. These peptides of natural origin were previously obtained by
the enzymatic hydrolysis of whey proteins and also displayed ACE inhibitory activity. It is
noteworthy that their short sequences facilitate their synthesis as well as changes to their
structure to improve stability and enhance activity. The results herein open the door to new
opportunities for the development of dual-target small peptides that are endowed with
antiviral 3CLpro and inhibitory ACE activities.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines10051067/s1, Figure S1: Panels (a), (b), and (c) report
the best pose returned from docking simulations for IPAVF (cyan sticks), IAEK (green sticks) and
MHI (magenta sticks) peptides, respectively. Red arrows depict hydrogen bonds. Black wireframes
show the original side-chain conformation of the 2XYA crystal structures of rhinovirus 3C protease.
Table S1: Docking induced-fit variation of the torsional angles χ1 for N142 and of χ1 and χ2 for Q189
from the X-ray structure (PDB_ID: 7L0D) of SARS-CoV-2 3CLpro. Table S2: Comparative docking
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of SARS-CoV-2 3CLpro by the three small peptides assayed at different concentrations.
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