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Abstract

Biomembranes adopt varying morphologies that are vital to cellular functions. Many studies 

use computational modeling to understand how various mechanochemical factors contribute 

to membrane shape transformations. Compared with approximation-based methods (e.g., finite 

element method [FEM]), the class of discrete mesh models offers greater flexibility to simulate 

complex physics and shapes in three dimensions; its formulation produces an efficient algorithm 

while maintaining coordinate-free geometric descriptions. However, ambiguities in geometric 

definitions in the discrete context have led to a lack of consensus on which discrete mesh model 

is theoretically and numerically optimal; a bijective relationship between the terms contributing 

to both the energy and forces from the discrete and smooth geometric theories remains to be 

established. We address this and present an extensible framework, Mem3DG, for modeling 3D 

mechanochemical dynamics of membranes based on discrete differential geometry (DDG) on 

triangulated meshes. The formalism of DDG resolves the inconsistency and provides a unifying 

perspective on how to relate the smooth and discrete energy and forces. To demonstrate, Mem3DG 

is used to model a sequence of examples with increasing mechanochemical complexity: recovering 

classical shape transformations such as 1) biconcave disk, dumbbell, and unduloid; and 2) 

spherical bud on spherical, flat-patch membrane; investigating how the coupling of membrane 

mechanics with protein mobility jointly affects phase and shape transformation. As high-resolution 

3D imaging of membrane ultrastructure becomes more readily available, we envision Mem3DG 

to be applied as an end-to-end tool to simulate realistic cell geometry under user-specified 

mechanochemical conditions.
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INTRODUCTION

Computational modeling of lipid bilayer mechanics has long been accepted as a way 

to probe the biophysical aspects of membrane curvature generation. The ability of lipid 

bilayers and cellular membranes to bend in response to various applied forces has been 

studied extensively from the mathematical modeling perspective. However, the nonlinear 

system of equations that result from such modeling often leads to a computational bottleneck 

to generate predictions from simulations that can be tested against experimentally observed 

shapes. In this study, we develop a mesh-based model using discrete differential geometry 

(DDG) to reduce this bottleneck. To justify why our method is necessary and is a 

computational advance, we first describe the importance of membrane curvature generation 

in biology, the current state of the art in membrane mechanics modeling, and finally 

explicitly state the goals of our approach.

As one of the most essential and conserved structures of cells, cellular membranes perform 

many functions. First, they form compartments to separate chemical environments. Beyond 

the passive role of partitioning space, lipids in the membranes interact with proteins and 

other cellular components influencing cell signaling (e.g., by localizing molecules and 

acting as an entropic barrier) (1,2). Membrane morphology and topology changes are critical 

for trafficking cargo in and out of cells and are very carefully regulated (3–8). Central 

to these roles is the ability of the membrane to curve and adopt varying morphological 

configurations from spheres to highly-curved and variegated structures.

Advances in experimental studies of membrane-protein interactions (9–20), ultrastructural 

imaging (21–30), and image analysis (9–11,31–37) have revealed much about the molecular 

interactions that regulate membrane curvature. To investigate the mechanics behind these 

interactions, many theoretical and computational models in terms of membrane energetics 

and thermodynamics have been developed (7,38–52). These models, owing to the ease of in 

silico experimentation, have become an important tool for generating and testing hypotheses 

(53,54). These mechanics models and associated simulations have been used to provide 

intuition on the mechanical requirements for forming and maintaining complex cellular 

membrane shapes (55–63).

While the utility of this approach has been established and many models have been 

developed (38), many models are limited by critical assumptions or other technical 

challenges. For example, the ability to use geometries from membrane ultrastructural 

imaging experiments as a starting condition would improve model realism (64). With 

respect to computational complexity, the solver should be able to model deformations and 

topological changes in three dimensions and be compatible with both energy minimization 

and time integration for comparing with static and time-series experiments respectively. This 

is in contrast to the current assumptions of the existence of an axis of symmetry that is quite 

commonly made for purposes of ease of simulation (65). An additional feature for these 

solvers should be that their implementation is modular such that the addition of new physics 

or increasing model complexity should be straightforward. This includes the potential for 

coupling the membrane model with agent-based and other simulations to propagate other 

cellular components such as the cytoskeleton (66). Thus, new computational tools which are 
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general, easy to use, and without restrictive assumptions are needed to bring modeling closer 

to experimental observations of membrane shapes in cells.

To emphasize the motivations behind our choice of extending and developing a new 

mesh-based membrane model, we provide a summary of the legacy literature in modeling 

membrane mechanics. The most common theoretical model of membrane bending is the 

Helfrich-Canham-Evans Hamiltonian (The Helfrich energy is related to the Willmore energy 

in the mathematics literature (67)), which describes the lipid bilayer as a 2D fluid-like 

structure that exhibits resistance to bending in the out-of-plane direction (39,40,68–70). It 

is a continuum model that describes the bending energy of the membrane as a function 

of its mean and Gaussian curvatures. The assumptions for the continuum are satisfied as 

long as the deformations are much larger in length scale compared with the individual lipid 

components.

Given the necessary material properties and boundary conditions, by minimizing the 

Helfrich energy, we can obtain the equilibrium shape of the membrane (39,70–72). While 

straightforward in concept, energy minimization requires the determination of the forces on 

the membrane, which is a challenging task (65). The forces on the membrane are given 

by the variation of the energy with respect to the embedded coordinate (i.e., shape) of the 

membrane (we call this variation the shape derivative, which is distinct from the chemical 

derivative that will be introduced later in the context of mechanochemical coupling). Taking 

the shape derivatives of the Helfrich energy produces the “shape equation,” so termed 

because solutions of this partial differential equation (PDE), with the prescribed boundary 

conditions, produce configurations at equilibrium (i.e., force balance).

Solving the shape equation is non-trivial since it is a PDE with fourth-order nonlinear terms. 

As a result, analytical solutions of the shape equation are known only for a few cases 

constrained to specific geometries and boundary conditions (42). For most systems, we must 

resort to the use of numerical methods. The simplest numerical schemes can be formulated 

by making restrictive assumptions such as considering only small deformations from a plane 

(e.g., Monge parametrization) or assuming that there exists an axis of symmetry such that 

the resulting boundary value system can be integrated (38). While these methods are suitable 

for idealized shapes, these assumptions are not consistent with the membrane shapes found 

in biology are and thus not general enough for advancing the field.

Solvers of membrane shape in 3D have also been developed and can be categorized into 

three groups: 1) phase field or level set methods (73–77), 2) finite element method (FEM) 

(78–85), and 3) discrete surface mesh models (60,86–99). These methods and others, 

reviewed in detail by Guckenberger et al. (100), differ in the strategy used to discretize the 

membrane domain and compute the relevant derivatives. We compare the aforementioned 

general, 3D models with our established model criteria in Table 1 and elaborate below.

Phase field and level set methods solve the shape equation by propagating a density field 

on an ambient volumetric mesh. The membrane shape is implicit in these models and 

can be found by drawing an isosurface or level set of the model. While this is ideal 

for modeling membrane topological changes, the implicit representation of the membrane 
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adds complexity for interfacing with data generated using modern methods of visualizing 

membrane ultrastructure. The meshes output from ultrastructural studies must be converted 

into a density or phase field prior to input to the model. While this conversion is 

possible, representing the dynamic and variegated shapes of cellular membranes would 

require a dense volume mesh, which reduces computational tractability. The implicit surface 

representation also complicates the addition of new in-plane physics for end users.

FEM and discrete mesh models use an explicit surface parametrization (i.e., a mesh). Thus 

the meshes output from ultrastructural imaging datasets can be used in these frameworks 

with minor modifications (32,101). FEM relies on elementwise interpolation functions and 

is commonly derived from the weak formulation of boundary value problems. Comparing 

FEM methods with our specifications we identify a few key challenges. First, the numerical 

evaluation of smooth geometric measurements on arbitrary manifolds in an FEM framework 

requires non-intuitive tensor algebra to translate the shape equation in coordinate where it 

is ready to be solved. After this formulation, solving the shape equation can require the 

use of high-order function basis such as the C1 conforming FEM based on subdivision 

scheme (78,79) or isogeometric analysis (IGA) (81–83,85), which adds code complexity 

and run-time cost. Extending an FEM framework to incorporate new physics, topological 

changes, or interfaces with other models requires advanced mathematical and coding skills. 

This can restrict the usage to the computational math community and prevent broad usage by 

the biophysics community.

Finally, evaluating discrete mesh-based methods, which define the system energy and/or 

forces using geometric primitives from a mesh, we find that they satisfy many of the 

requirements in Table 1. Due to the ease of use and implementation, discrete mesh models 

have gained in popularity and many different schemes can be found in the literature (60,86–

99,102,103). These schemes differ in their approach to defining and computing geometric 

measurements necessary for defining the energy and forces on a discrete object. Discrete 

geometries have discontinuities and limited information that leads to degenerate definitions 

for geometric values. For example, there is no canonical definition for the normal of a vertex 

of a mesh as opposed to the normal of a smooth geometry (89,104,105). One challenge 

for selecting the suitable formulation to use is the lack of approximation error metric for 

which the discrete definition best matches the smooth theory. Another confounding factor is 

the step at which the problem is discretized. Some implementations discretize the energy of 

the system by constructing standalone discrete energy, which captures the behavior of the 

Helfrich energy (65). From this discrete energy, they take the shape derivatives to obtain an 

expression for the discrete force. Without careful consideration, the discrete forces derived 

in this manner are unstructured and there is little resemblance to expressions of force 

from smooth theory. A second option is to discretize the smooth force expression directly 

(65,100). While this preserves the geometric connection for the forces, there is no longer 

well-defined discrete energy. Several discrete mesh methods were benchmarked by Bian et 

al. (89) and Guckenberger et al. (100) who found differences in the accuracy, robustness, and 

ease of implementation (89,100).

In this work, we outline a discrete mesh framework for modeling membrane mechanics with 

the following goals in mind: 1) we do not make a priori assumptions about axes of symmetry 
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or restrict the coordinates in any way; 2) we resolve the ambiguity in the definition of 

geometric measurements on the mesh and permit a direct comparison for both the energy 

and force expressions in smooth and discrete contexts; and 3) this framework allows for use 

of meshes generated from ultrastructural imaging. We begin by defining discrete energy that 

is analogous to the Helfrich energy. Then, using concepts from DDG, we derive discrete 

shape derivatives analytically and group terms to produce a discrete shape equation. We will 

show that our discrete shape equation has a clear correspondence between the terms of the 

smooth shape equations (57,67,70,71). Beyond establishing this important connection, we 

will show that the elegant analytical expressions for discrete variational terms from the DDG 

also yield improved geometric intuition and numerical accuracy (104,105).

Benchmarking of our expressions was performed with our accompanying software 

implementation called Membrane Dynamics in 3D using Discrete Differential Geometry 

(Mem3DG). Mem3DG is written in C++, released under the Mozilla Public License version 

2, and comes with accompanying documentation and tutorials which can be accessed 

on GitHub (https://github.com/RangamaniLabUCSD/Mem3DG). Beyond the computation 

of discrete energies and forces on a mesh of interest, we also include functionality for 

performing energy minimization and time integration. Using Mem3DG, we validate the 

exactness of the analytical expressions of force terms by numerically examining the 

convergence of the force terms as a function of system energy perturbation. To illustrate 

compliance with our tool specifications, we apply Mem3DG to a sequence of examples with 

increasing complexity. Finally, we outline the steps to incorporate additional physics such as 

membrane-protein interactions and surface diffusion into Mem3DG.

THEORY

The lipid bilayer is modeled as a thin elastic shell using the Helfrich-Canham-Evans 

Hamiltonian or spontaneous curvature model (39,69,106). The bending energy, Eb, of a 

smooth surface or 2-manifold, ℳ, can be expressed in terms of the mean H, Gaussian K, 

and spontaneous curvature H with material parameters κ the bending and κG the saddlesplay 

moduli. Additional energy terms Es and Ep account for the tension area (λ–A) and pressure-

volume (ΔP–V) relationships. The total energy of the bilayer is therefore

E = ∫
ℳ

κ(H − H)2 + κGK dA

Eb

+ ∫
A

A
λdA

Es

− ∫
V

V
ΔPdV

Ep

.
(1)

The preferred surface area and volume, A and V , combined with the spontaneous curvature, 

H, characterize the zero-energy state for the system energy. In a nutshell, given the material 

properties, the system energy is fully determined by its geometric measurements such as 

volume, area, and curvatures.

Machinery to express these measurements have been a topic of extensive study in 

classical differential geometry (107,108). However, finding the minima of the governing 

energy, solving the stationary solution to the geometric PDE, can be mathematically and 

Zhu et al. Page 5

Biophys Rep (N Y). Author manuscript; available in PMC 2022 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/RangamaniLabUCSD/Mem3DG


numerically difficult. While differential geometry provides succinct expressions to describe 

the measurements in a coordinate-free fashion, computational methods often require the 

introduction of a coordinate basis and subsequent manipulation of expressions using tensor 

algebra, which can obscure the underlying geometric intuition.

As an alternative, forgoing the need for a smooth geometry, one can treat a discrete 

geometry (such as a geometric mesh) as the input. This perspective where the discrete 

geometry is the actual geometry is that of DDG (109). By eliminating the burdens of treating 

the input mesh as an approximation of a smooth object, DDG capitalizes upon the piecewise 

nature of meshes to produce efficient and parallelizable finite difference-like formulae which 

are amenable to algorithmic implementation while maintaining clear geometric meaning. 

In the following sections, we use concepts from DDG to formulate a discrete analog to 

the smooth membrane shape problem. Following the derivation of the discrete theory, we 

describe the development of an accompanying software implementation called Mem3DG.

Notation and preliminaries

We assume the following notation conventions and provide a table of important symbols 

(Table 2). To aid the reader on how the elements of the mesh are used in the derivation, 

several fundamental geometric primitives (i.e., values on a mesh which are easily 

measurable; listed in Table 2A) are illustrated in Fig. 1 A–C.

We note that, in discrete contexts, the notation, ∫ a, should be considered the discrete 

(integrated) counterpart of a pointwise measurement a in a smooth setting. The rationale and 

significance behind the usage of an integrated quantity in discrete contexts are elaborated in 

Appendix B and the DDG literature (104,105). Using this notation, discrete surface integrals 

are expressed as sums of integrated values over the discrete mesh components listed in 

Table 2B (e.g., ∑vi∫ ai is the discrete analog to ∫ℳa). It is possible to interchange between 

integrated, ∫ ai, and pointwise, ai, quantities by using the dual area (Ai),

ai = ∫ ai/Ai . (2)

For simplicity, we will not use separate notations for operators applying in smooth and 

discrete settings. The context can be inferred from the objects to which the operators are 

applied. Where it serves to improve our geometric or other intuition, smooth objects will be 

presented alongside discrete objects for comparison.

Obtaining a discrete energy defined by mesh primitives

Following the perspective of DDG, we restrict our input to the family of triangulated 

manifold meshes, ℳ(i.e., discrete 2-manifolds embedded in ℝ3) (We will use ℳ for both the 

smooth and discrete surfaces).

Paralleling the smooth Helfrich Hamiltonian (Eq. 1), a functional of geometric 

measurements of a surface, the discrete Helfrich Hamiltonian is composed of discrete analog 

of those measurements,
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E( r ) = ∑
vi

κi∫ Hi − Hi
2 + κG∫ Ki

Eb

+∫
A

A
λ(A; r )dA

Es

− ∫
V

V
ΔP(V ; r )dV

Ep

.
(3)

In comparison with Eq. 1, Hi and Ki are pointwise mean and Gaussian curvature 

measurements on vertices, ∫ Hi − Hi
2 is the integrated Willmore measure, and the smooth 

surface integral is replaced by its discrete analog (i.e. finite summation), ∑vi(Table 2B).

The geometric properties of a given membrane configuration can be connected to the 

system’s energy through constitutive relations. In this work, we assume that the surface 

tension follows a linear stress-strain model (110),

λ(A; r ) = KA
A( r ) − A

A , (4)

where A is the preferred surface area of the membrane, and KA is the stretching modulus of 

the membrane. The osmotic pressure can be defined based on the van’t Hoff formula as

ΔP(V ; r ) = P in − Pout = iRT n
V − c , (5)

where i, R, T, c, and n are the van’t Hoff index, ideal gas constant, temperature, 

ambient molar concentration, and molar amount of the enclosed solute. Substituting these 

constitutive relations (Eqs. 4 and 5) into the energy (Eq. 3), we get explicit expressions for 

Es and Ep,

E( r ) = Eb( r ) + 1
2KA

[A( r ) − A]2

A
Es

+iRTn[rc( r ) − lnrc( r ) − 1]
Ep

,
(6)

where rc = c/(n/V ) is the ratio of the concentrations of the ambient and enclosed solutions. 

Note that the preferred volume, V , which is needed to evaluate the integral in Eq. 3, is 

related to to the parameters in Eq. 5 by V = n/c. If the system is around the isosmotic 

condition (e.g.,V V ), the leading order of the energy is given as,

Ep ≈ 1
2KV

(V − V )2

V 2 , (7)
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where KV ≡ iRTn groups the phenomenological parameters. Mathematically, Eqs. 4 and 7 

effectively prescribe a penalty-based method for area and volume control. An alternative 

approach is the use of Lagrange multipliers, which have been extensively adopted in the 

literature (40,57,72).

To compute the energy of a system, we must obtain values for several geometric 

measurements that appear in the discrete energy function (e.g., H, K, A, V). For 

measurements such as the volume and area, there are clear approaches for their evaluation 

on a triangulated mesh: summing the areas of the triangular faces and summing over 

the signed volume of tetrahedra (Fig. 1 E, osmotic pressure and surface tension). For 

other measurements such as the discrete mean and Gaussian curvatures, additional care 

must be taken. While in smooth contexts these curvatures have unique definitions, in 

discrete contexts there are multiple approaches for their calculation. For example, the 

mean curvature can be computed via the application of the cotangent Laplacian, the 

kernel of the heat equation, or fitting polynomials to a local patch (65). As mentioned 

earlier, there are challenges with these approaches that can limit their numerical accuracy 

and obscure the connection to smooth theory. Here using discrete exterior calculus and 

identification of geometric invariants, we produce theoretically and numerically consistent 

discrete expressions.

Similar to the polygonal curve introduced in Appendix B, a triangulated mesh has zero 

curvature on facets and ill-defined curvature on edges and vertices. Using the Steiner view, 

the sharp corners formed by vertices and edges are made smooth with portions of spherical 

and cylindrical shells, which have well-defined mean curvature (Fig. 1 D). Taking the limit 

as the radii of the cylinders and spheres decrease, the leading order contribution of total 

mean curvature is given by the Steiner formula on an edge,

∫ Hij = lijφij
2 , (8)

referred to as the edge mean curvature, where lij is the length of edge eij, and φij is the 

dihedral angle on eij (i.e., the angle formed by the face normals of the neighboring triangles 

incident to eij) (illustrated in Fig. 1 B) (104,105). While not necessary, a triangulated mesh is 

often realized in ℝ3 via vertex positions; thus it is conventional to prescribe data on vertices 

instead of edges. Summation of edgewise quantities over the “fan” neighborhood (Fig. 1 A) 

provides the recipe of converting an edgewise to a vertexwise quantity,

( ⋅ )i = 1
2 ∑

eij ∈ N vi
( ⋅ )ij, (9)

where the prefactor, 1/2, accounts for fact that each edge is shared by two vertices.

While we have an integrated mean curvature, the discrete Helfrich Hamiltonian contains a 

pointwise mean curvature squared term. To define a pointwise mean curvature, the size of 

the domain occupied by the integrated mean curvature needs to be specified (cf., Appendix 

B for rationale). The area, Ai, referred to as the dual area of the vertex vi, can be defined 
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as one-third of the areal sum of the incident triangles (fan illustrated in Fig. 1 A) (104,105). 

Applying Eqs. 2 and 9 to Eq. 3, the pointwise mean curvature is thus,

Hi = ∫ Hi
Ai

= ∑
eij ∈ N vi

lijφij
4Ai

. (10)

Substituting Eq. 10 into the integrated Willmore measure term of Eq. 3, the integrated 

Willmore measure can be expressed as a function of the integrated mean and spontaneous 

curvature,

∫ Hi − Hi
2 = 1

Ai ∫ Hi − ∫ Hi
2

. (11)

Discrete Gaussian curvature is given by the angle defect formula,

∫ Ki = 2π − ∑
fijk ∈ N vi

∠kij, (12)

which is a well-known quantity that preserves many properties parallel to the smooth theory 

(e.g., Gauss-Bonnet, turning number, among other invariants). One way to derive the angle 

defect formula is to compute the area of a spherical n-gon contained by a local Gauss map of 

the neighboring n faces around a vertex (104,105).

Eq. 12 provides the general geometric definition to obtain the energetic contributions from 

the Gaussian curvature terms. In this study, we consider only systems with uniform saddle-

splay modulus which do not undergo topological changes. For these systems, the energy can 

be simplified based on the discrete Gauss-Bonnet theorem, which states that

∑
vi

∫ Ki = 2πχ(ℳ) − ∑
vj ∈ ∂ℳ

∫ κj
g, (13)

where χ(ℳ) = |V | − |E | + |F |, is the Euler characteristic of ℳ a topological invariant where 

|V|, |E| and |F| represent the number of vertices, edges and faces of the mesh respectively, 

and ∫∂ℳκi
g = π − ∑eij ∈ N vi ∠kij is the discrete geodesic curvature, which measures the 

deviation of the boundary curve from a straight line when the surface is locally flattened. 

In summary, for this work, the Gaussian curvature term is non-constant only when ℳ is not 

closed, and the energy solely involves the boundary elements.

A numerical comparison of the discrete scalar measurements with their smooth counterparts 

is shown in Fig. E.1. We note that for all geometric measurements (i.e., volume, area, 

and curvatures), unlike in smooth differential geometry where their numerical evaluation 

requires the introduction of coordinates, DDG measurements are functions of mesh 

primitives. By substituting these discrete geometric measurements from DDG into Eq. 6 

and 3, we get a numerical recipe for computing the total system energy.
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Force from discrete shape derivative of energy

We can obtain the force by taking the negative shape derivative of the energy. In continuous 

settings, the differentiation is an infinite-dimensional problem that requires the use of the 

calculus of variations and differential geometry to find analytical expressions (39,43,70,71) 

(Fig. 1 E, smooth). Deriving the forces from the discrete energy (Eq. 3) is a much simpler 

task.

Discrete forces can be obtained by taking partial derivatives of mesh primitives with 

respect to the vertex embedded coordinates, r (Fig. 1 E, discrete). Regarding notation, 

despite the computational differences, the differential operations in both the discrete and 

smooth contexts are called (discrete) shape derivatives and denoted as ∇ r ( ⋅ ) due to the 

common geometric meaning. We note that the computation of discrete shape derivatives 

for membrane modeling has been described previously in the literature (87,89). Also 

that there are many overlapping definitions for discrete curvature, energy, and variations 

thereof in the graphics literature (111–113). Our work extends upon the prior art that 

evaluates derivatives algebraically, by introducing simplifications based upon the grouping 

of terms and identification of geometric objects. These simplifications have important 

implications for improving the geometric understanding as well as the run-time and 

numerical performance of an implementation.

At the high level, our goal is to express the forces on each vertex, given a set of physics, 

using geometric primitives and properties defined on specific mesh elements. By grouping 

terms, we find that the vertexwise forces arising from the different physics can be expressed 

as weights that are functions of the input parameters and system configuration, multiplied 

by basic geometric vectors. We will show that these terms have an exact correspondence to 

terms in the smooth shape equation (Fig. 1 E). We remark that, in some sense, the force 

expressions are reminiscent of finite-difference equations, which approximate differentials 

as a linear combination of values at discrete points. This may have implications for the 

suitability of modeling smooth biological surfaces with discrete meshes.

Force from osmotic pressure

For the smooth geometry, the shape derivative of the enclosed volume yields the outward-

pointing surface normal with its size equal to the local area element (114). For a discrete 

mesh, the shape derivative of the volume is given by the face normal on triangular faces 

with its local area element equaling to the face area, which is referred to as the integrated 

face normal, ∫ n (ijk)(Fig. 1 E, osmotic pressure) (89,99,104,105), where (ijk) denotes the 

symmetry under index permutation (e.g., ai(jk) means aijk = aikj). Similar to edge values, the 

force normal can be converted to vertex normal,

∫ n i = ∇ r iV = 1
3 ∑

fijk ∈ N vi
∫ n (ijk) = 1

3 ∑
fjjk ∈ N vi

Aijk n (ijk), (14)
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where analogous to Eq. 9, the prefactor 1/3 accounts for fact that each face is shared by three 

vertices. The discrete vertex forces from the derivative of the pressure-volume work, ∫ f i
p
, is 

then given by scaling it with the uniform osmotic pressure,

∫ f i
p

= ΔP∫ n i . (15)

Forces from surface tension

Next, considering the shape derivative of the surface energy, Es, in smooth contexts, the 

derivative of the total surface area also points at the surface normal, with its magnitude 

measuring the size (dA) and the curvature (2H) of the local patch (Fig. 1 E, surface tension) 

(114). In a discrete case, we can directly compute the derivative of total area on each vertex 

by summing the area gradient of incident triangles with respect to the vertex position; the 

sum is therefore referred to as (twice of) the integrated mean curvature vector on vertices,

∫ 2H i = ∇ r iA = ∑
fjjk ∈ N vi

∇ r iAijk = ∑
fjjk ∈ N vi

∫ 2H i(jk), (16)

where we define ∫ 2H i(jk) ≡ ∇ r iAijk, and ∫ H i(jk) is the mean curvature vector on a triangle 

face corner. The capillary forces from surface tension, ∫ f i
s
, are given by scaling the 

integrated mean curvature vector by the surface tension,

∫ f i
s

= − λ∫ 2H i . (17)

Evaluating the algebraic sum of area gradients reveals the “cotangent formula” applied to 

the vertex positions (Fig. 1 E, surface tension). From independent derivations with unrelated 

frameworks (e.g., discrete exterior calculus and FEM), discretizing the smooth Laplace-

Beltrami operator on a triangulated mesh produces the cotangent formula, which is called 

the discrete Laplace-Beltrami operator, ∫ Δs (104,105,111). Inspecting the expressions in 

Fig. 1 E, surface tension, we see that our discrete expression parallels smooth theory, where 

the mean curvature is related to the coordinates through the application of the smooth 

Laplace-Beltrami operator,

∑
eij ∈ N vi

∫ 2H ij = ∫ Δs r i Δs r = 2H n . (18)

Forces from bending

To evaluate the shape derivative of the discrete bending energy, we consider the terms 

from the Gaussian and mean curvature separately. Since we do not consider nonuniform 

saddle-splay modulus and topological changes in this work, the total Gaussian curvature 

only varies if the surface has boundaries, ∂ℳ(cf., discrete Gauss-Bonnet theorem in section 
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“Obtaining a discrete energy defined by mesh primitives”). The shape derivative of the 

bending energy requires more algebra and the introduction of halfedges, eij (cf., Appendix 

C.1). Here we will focus on the key results and refer the reader to the full derivations for 

each term in Appendix C.2.

There are four fundamental geometric vectors on halfedges that comprise the bending force 

at non-boundary vertices: the mean curvature vector (see Fig. 1 B for indices),

∫ 2H ij = 1
2 ∫ 2H i(jk) + ∫ 2H i(il) ; (19)

the Gaussian curvature vector,

∫ K ij = 1
2φij∇ r ilij; (20)

and the two Schlafli vectors,

∫ S ij, 1 = 1
2lij∇ ri φij,

∫ S ij, 2 = 1
2 ljk∇ r iφjk + ljl∇ r iφjl + lji∇ r iφji ,

(21)

which act to smooth the profile of local dihedral angles. Note that the shape derivatives 

are taken with respect to different vertices (i.e., ∇ r i or ∇ r j), such that the mean curvature 

∫ H ij, Gaussian curvature ∫ K ij, and Schlafli vectors ∫ S ij are asymmetric under index 

permutation. To account for the orientation, we refer to them as halfedge vector quantities 

on eij (Appendix C.1). A numerical comparison of the discrete geometric vector with their 

smooth counterparts is shown in Fig. E.1 and Fig. E.2.

The bending force ∫ f i
b
 (Fig. 1 E, bending) can be expressed as weights, which are functions 

of input parameters multiplied by basic geometric measurements in scalar and vector form,

∫ f i
b

= ∑
eij ∈ N vi

− κi Hi − Hi + κj Hj − Hj ∫ K ij

+ 1
3κi Hi − Hi Hi + Hi + 2

3κj Hj − Hj Hj + Hj ∫ 2H ij

− κi Hi − Hi ∫ S ij, 1 + κj Hj − Hj ∫ S ij, 2 ,

(22)

which parallels the shape derivative of the smooth bending energy,

∇ r
⊥ Eb = ∇ r

⊥ ∫
ℳ

κ(H − H)2dA

= κ 2(H − H) H2 − K + HH + Δs(H − H) dA,
(23)
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where ∇ r
⊥ = ∇ r ⋅ n  is the shape derivative in the surface normal direction.

Comparing the smooth-discrete expressions, we make a few observations:

• The Schlafli vector terms, S , is the discrete analog of the smooth biharmonic 

term, Δs(H − H), the high-order local smoothing force. The numerical 

comparison of these two terms, as well as results directly obtained using 

cotangent formula applied on pointwise scalar mean curvature, are covered in 

Fig. E.2 and Fig. E.1.

• Eq. 23 is the normal component of the shape derivative of the bending energy; an 

additional tangential component is required if surface heterogeneity exists (e.g., 

κ is not spatially uniform) (40,65). In contrast, the discrete shape derivative (Eq. 

22) is the total derivative in ℝ3, which includes both the tangential and normal 

components (in the smooth sense since there is no well-defined vertex normal 

direction in discrete geometry). Depending on the extent and symmetry of the 

heterogeneity, the discrete force can point in any direction in ℝ3.

• The coefficients in Eq. 22 show an intriguing pattern combining contributions 

from both vi and vj. From a finite-difference approximation standpoint, this 

results in an approximation scheme for which a rigorous error analysis has not 

yet been conducted.

Net force and the benefit of DDG

By summing the force terms from each physics, we obtain the net force. Through section 

“Obtaining a discrete energy defined by mesh primitives” and section “Force from discrete 

shape derivative of energy,” we identify and show a scheme where both 1) the force is 

analytically derived from the discrete energy, and 2) both the discrete energy and force 

mirror the smooth theory. The entire process of defining energy and conduction shape 

derivative do not involve the introduction of coordinate and the use of tensor algebra. 

Owing to the discontinuities and limited information contained by a discrete geometry, there 

are ambiguities in geometric definitions that behave otherwise in the smooth context (cf., 

various discrete curvature definitions for plane curve discussed in Crane and Wardetzky 

(115)). Intentional choices of certain definitions of basic discrete geometric measurements 

can reveal the connection between various definitions, preserve useful geometric invariants, 

and most naturally reflect the underlying physics. Here many scalar and vector definitions 

of geometric measurement are connected through the chain of shape derivatives (cf., Fig. 

A.2) (105), which justifies their role in representing either energy or forces. For example, 

the discrete bending energy is also commonly constructed using the mean curvature vector, 

∫ℳH ⋅ H dA in literature (90,99). As shown in section “Forces from surface tension,” the 

definition of the mean curvature vector is tightly correlated with the surface tension, where 

directionality is embedded. The inner product used in such discrete energy definition strips 

away the directional information. Instead, here we construct energy using the scalar mean 

curvature, ∫ H, because 1) the energy is inherently scalar, and 2) the discrete curvature 

exists on the edges. After taking the shape derivative of the energy, the mean curvature 
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vector appears as the effective tension component and the directional information of the 

vector is used for representing the force. Using the directional information, an arbitrary 

definition of a vertex normal is avoided. When weighted homogeneously around a vertex, 

each fundamental geometric vector that composes the discrete force, ∫ n , ∫ H , ∫ K , ∫ S , can 

be used to obtain a meaningful definition of the vertex normal. The heterogeneous weighting 

of these vectors around the vertex represents the incorporation of functional variation in 

the tangential direction, which can be used to model heterogeneities in material and other 

properties across the membrane (40,65). Practically, the additional structure provided by the 

discrete force and energy expressions allows the user to inspect term-wise contributions, 

which can lead to additional insights and analysis. Since the terms of the discrete energy 

and forces are defined locally by mesh primitives at vertex neighborhoods, the algorithms 

are efficient and straightforward to parallelize. The numerical accuracy of these expressions 

is benchmarked for several scalar and vector measurements on smooth and discrete surfaces 

shown in Fig. E.1, Fig. E.2, and later discussed in section “Practical considerations for 

applying Mem3DG to biological problems.”

Defining metrics for simulation and error quantification

For monitoring simulation progress, exactness of force calculations with respect to the 

discrete energy, and convergence studies of computed quantities upon mesh refinement, we 

introduce the following norms.

L2 norm

From a PDE perspective, the vertex forces are also called the residual of the shape equation, 

whose solution represents the equilibrium solution. The simulation is terminated when the 

residual is smaller than a user-specified threshold. The rationale for using the L2 norm is 

justified by perturbing the system configuration and conducting an expansion on the system 

energy,

E( r + ϵ∇E( r )) = E( r ) + ϵ〈∇E( r ), ∇E( r )〉 + O ϵ2

= E( r ) + ϵ ∫ f
L2

2
+ O ϵ2 ,

(24)

where we refer the inner product of the force matrix as the L2 norm of the forces. 

Computationally, this is equivalent to the standard Frobenius matrix L2 norm,

∫ f
L2

= trace ∫ f
⊤∫ f . (25)

Using the L2 norm and Eq. 24, we can perform a numerical validation of the exactness 

of the discrete force calculation with respect to the discrete energy. We expect the force 

to approximate the energy up to second order with respect to the size of a perturbation. 

This validation will be further elaborated in section “Membrane dynamics with full 

mechanochemical feedback.”

Zhu et al. Page 14

Biophys Rep (N Y). Author manuscript; available in PMC 2022 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



L1 norm

A scale-invariant L1 norm is well suited to quantify the magnitude of the error on varying 

domain size and mesh resolution. Given a vertexwise local scalar measurement, ∫ a, or a 

vector measurement, ∫ a , and their reference values, ∫ a, and ∫ a 1,

∫ a
L1

=
∑vi ∫ ai − ∫ ai

A

∫ a
L1

=
∑vi ∫ a i − ∫ a i L2

A ,

(26)

where the normalizing factor, the total surface area A, is used to obtain a pointwise estimate 

of the error. The L1 norm is applied in the local comparison of discrete and smooth 

measurements, which we further elaborate in section “Practical considerations for applying 

Mem3DG to biological problems.”

SOFTWARE IMPLEMENTATION: Mem3DG

Along with the theoretical developments, we have developed an accompanying software 

implementation written in C++ called Mem3DG. Our goal in developing this software is 

to enable the easy use and application of the corresponding theory developed above to 

biological problems of interest.

Mem3DG is a library that contains several components to support this goal. Fig. 2 provides a 

synopsis of Mem3DG. The input to Mem3DG includes a triangulated mesh with its coordinate 

r  embedded in ℝ3. Users can choose to use Mem3DG to construct idealized meshes (e.g., 

icosphere, cylinder, or flat hexagonal patch) as an input or to read in meshes from several 

common mesh formats. Meshes are stored and manipulated in Mem3DG using the halfedge 

data structure provided by Geometry Central (116). The supported input file formats are 

those which are readable by hapPLY and Geometry Central (116,117). Once a mesh and 

parameters are loaded, Mem3DG can evaluate the discrete energy and forces of the system. 

Mem3DG adopts a modular design that facilitates the use of different energy and force 

components and has utilities which help the user to specify the physics and governing 

parameters. Mem3DG also supports local system simulations where the input mesh has 

boundaries. Additional details about the supported boundary conditions are given in section 

“Prescribing boundary conditions with force masking.”

To perform energy minimization and time integration of the system, various schemes 

have been implemented. These schemes are described in section “Time integration and 

energy minimization.” As discussed further in section “Practical considerations for applying 

Mem3DG to biological problems,” when a user wishes to use Mem3DG to represent complex 

biological membrane geometries, additional care regarding the quality of the mesh is 

necessary. Mem3DG includes algorithms for basic mesh regularization and remeshing, which 

can be toggled by the user to support their applications. The simulation terminates when 

it reaches the time limit or the system reaches equilibrium, whose criteria is determined 

using the energy L2 norm introduced in section “Defining metrics for simulation and error 
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quantification.” A user can choose between several formats to output a trajectory over time 

or the configuration of the local minima from Mem3DG. In addition to the mesh outputs 

supported by Geometry Central, we have also developed a scheme for outputting mesh 

trajectories in NetCDF format (118). Mem3DG can read and visualize the output trajectories 

and mesh configurations using Geometry Central and Polyscope (116,119).

For rapid prototyping and enumeration of simulation conditions, we have also developed 

a Python API called PyMem3DG. The functionality in C++ is exposed in Python using 

bindings from pybind11 (120). Illustrative examples of using both Mem3DG and PyMem3DG 

are provided in the online tutorials. For the experiments discussed in this work, all of 

the simulations were performed using PyMem3DG and the accompanying code and initial 

configurations are on GitHub: https://github.com/RangamaniLabUCSD/Mem3DG.

Defining properties of a membrane reservoir for systems with open boundaries

To facilitate correspondence with wet experiments and to support the reduction of 

computational cost, it is possible to construct systems using meshes with open boundaries 

in Mem3DG. For example, when modeling the formation of a small endocytic bud from a 

large cell, the deformation is small compared with the broader system. If we assume that 

the bulk of the cell is invariant with respect to bud formation, the computational burden can 

be reduced by modeling only the local deformation; we can assume that the modeled patch 

is attached to an implicit membrane reservoir. To define this coupled system, the constant 

area (Ar) and volume (Vr) of the reservoir must also be provided. The total area and volume 

of the broader system is given by A = Apatch + Ar, and V = Vpatch + Vr, where Apatch and 

Vpatch are area and “enclosed volume” of the mesh patch respectively. In our models, we 

enforce that all elements of a boundary loop are on the same plane; this way Vpatch can 

be unambiguously defined as the enclosed volume when each boundary loop is closed by a 

planar sheet. The capability to model systems attached to a reservoir reduces the modeled 

degrees of freedom while enabling intuitive physics to simplify the process of mimicking 

experimental conditions using Mem3DG.

Prescribing boundary conditions with force masking

Mem3DG supports modeling membranes with and without boundaries: a sphere (with no 

boundaries), a disk (with one boundary), and an open cylinder (with two boundaries). 

For systems without boundaries, the discrete forces conserve angular and translational 

momentum of system (as was also noted by Bian et al. (89)). Because the (discrete) potential 

energy is invariant under rigid body motions (i.e., the energy of the membrane is given 

only by the geometry), and the discrete forces are analytically derived from the energy, the 

discrete forces will not contribute to any rigid body motions since these components do not 

change system energy. In other words, the forces that lead to rigid body motion are, by 

construction, orthogonal to the shape derivative of the potential energy. To study systems 

with boundaries, Mem3DG currently supports three types of boundary conditions:

• Roller, where the movement of boundary vertices is restricted along a given 

direction or plane.
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• Pinned, where the position of boundary vertices are pinned while the curvature is 

allowed to vary.

• Fixed, where both the position and the boundary curvature are fixed for vertices 

on the boundary.

The different boundary conditions are achieved by masking the elements of the force matrix 

corresponding to the boundary vertices and their neighborhood. For example, to apply roller 

boundary conditions, we mask the Z-component of the force on the boundary vertices, 

therefore constraining their movement to the X-Y plane; pinned boundary conditions 

mask all force components for the boundary vertices to fix their position; fixed boundary 

conditions mask all force components for the outermost three layers to fix both their position 

and curvature.

Time integration and energy minimization

In this work, we use the forward Euler algorithm to integrate the system dynamics and the 

nonlinear conjugate gradient method to solve for equilibrium conditions. Both solvers are 

complemented by a backtracking line search algorithm, which satisfies Wolfe conditions to 

support adaptive time-stepping and robust minimization (121).

The forward Euler scheme was chosen as the simplest dynamical propagator; physically it 

represents over-damped conditions where the environment of the membrane is too viscous 

for the system to carry any inertia. Mathematically, the physics is described by,

ṙ = 1
ξ∫ f = 1

ξ∫ f
b

+ f
s

+ f
p

, (27)

where ξ is the drag coefficient. From an optimization perspective, forward Euler is 

equivalent to the gradient descent method for minimizing an objective function, which is 

the discrete energy in our case.

A second propagator is the nonlinear conjugate gradient method for locally minimizing 

the discrete energy to yield the equilibrium shape of the membrane. Since the system 

is nonlinear, we periodically perform forward Euler (gradient descent) steps after several 

conjugate gradient steps. This approach of iterating between conjugate gradient and gradient 

descent steps is commonplace in the literature for solving nonlinear systems (121).

We note that other time integrators and energy minimizers are also compatible with Mem3DG. 

Included in the software are reference implementations of velocity Verlet integration 

(for symplectic time integration), and limited-memory Broyden-Fletcher-Goldfarb-Shanno 

algorithm (L-BFGS, a quasi-Newton method to the equilibrium shape for large-scale 

problems where fast computation is needed). We do not discuss these additional solvers 

in this work.

Practical considerations for applying Mem3DG to biological problems

As we have noted above, in the DDG perspective, the mesh is the geometry and thus 

the formulation of the discrete forces and energies is exact. There are therefore very few 
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restrictions on the resolution and quality of the input mesh. However, in biophysics, we 

often consider biological membranes as smooth systems. We expect that many users of 

Mem3DG may wish to approximate a smooth system using our discrete model. In doing so, 

they make an implicit assumption that such an approximation is reasonable. Although the 

relationships between geometric objects and their shapes are preserved between the smooth 

and discrete contexts, our ability to approximate a smooth problem with a discrete mesh is 

not guaranteed. Similar to finite differences and FEM, additional constraints on mesh quality 

and resolution must be imposed. To verify and understand the limitations of the assumption 

that the discrete mesh is the geometry and includes all of the geometric information, we 

numerically test the convergence of the discrete quantities under variation of resolution on 

an oblate spheroid mesh. The additional details regarding these numerical experiments are 

presented in Appendix D.

Setting the characteristic length scale of the finest mesh to be h = 1, as the mesh coarsens 

(i.e., mesh size increases) h increases. Fig. 3 shows the scaling relationship of the deviation 

in magnitude between the smooth and discrete quantities. Fig. 3 A shows the convergence 

property of global measurements that determines the energy (Eqs. 1 and 3), including 

the total area, A, enclosed volume, V, and total Gaussian curvature and mean curvature 

(squared), ∫ℳKdA, ∫ℳHdA and ∫ℳH2dA, respectively. Except for the total Gaussian 

curvature being an exact topological invariant, all integrated quantities exhibit approximately 

second-order convergence rate.

We acknowledge that convergence of global measurements does not imply that local 

measurements will also converge. To validate the convergence of local measurements, which 

determines the convergence of local forces on the membrane (e.g., Eqs. 15, 17, and 22), we 

utilize the L1 norm (Eq. 26) to evaluate the deviation of local quantities from their smooth 

counterparts. Fig. 3 B shows the local convergence plot. Similar to their global counterparts, 

local scalar mean and Gaussian curvature, ∫ H, and ∫ K, converge at O ℎ2 . Fig. 3 B also 

shows the convergence of vector quantities, which not only contribute to the magnitude of 

the force but also set the direction of the force. The test shows that most vector quantities 

converge slightly slower than their scalar counterparts. Two terms exhibit poor convergence, 

the Schlafli vector term in Eq. 22, H ∫ S, and a scalar counterpart, ∫ ΔsH. The latter term 

corresponds to the direct application of the cotangent Laplacian (Eq. 17) to the pointwise 

scalar mean curvature field; this approach is not used in our framework but is common 

in the literature (65). Both non-convergent expressions are discrete representations of the 

biharmonic term, ΔsH, which have been noted to be sensitive to noises of vertex coordinates 

in the prior literature (100). Recall that the biharmonic term is the fourth-order derivative 

of the embedded coordinates. Although the traditional approximation theories suggest that 

higher-order derivatives often exhibit slower rates of convergence (122), to the best of our 

knowledge, there is not yet a rigorous study that connects DDG with an approximation 

theory. Nevertheless, we anticipate that similar principles hold. Two spatial plots comparing 

local measurements between smooth and discrete contexts are provided in the appendix 

(Fig. E.1 and Fig. E.2); each test is conducted using the finest mesh size (h = 1). Based 

on this numerical validation, we conclude that the computation of energy converges with a 
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second-order rate (Fig. 3 A). While most components of the forces converge, the biharmonic 

term remains a limiting factor.

One other practical consideration for our models is that the Helfrich Hamiltonian, matching 

the in-plane fluidity of biological membranes, has no resistance to shearing. Without 

additional constraints, the mesh is susceptible to shearing motions, which can deteriorate 

mesh quality in some conditions (83). This can degrade the implicit assumption that 

the discrete mesh represents a smooth geometry. To ensure that such an approximation 

can remain valid throughout a trajectory, we have incorporated algorithmic solutions to 

adaptively maintain an isotropically well-resolved discrete geometry. This is achieved by 

two operations: 1) mesh regularization using local force constraints, which are common in 

FEM (78,82,83,85) (Appendix E.2); and 2) mesh mutations such as decimating, flipping, 

and collapsing edges. Beyond regularization, these local force constraints can also be used 

to model underlying physics of a problem of interest. For example, similar restoring forces 

between vertices (Eq. E.1) have been adopted to model actin-spectrin cortex in red blood cell 

(95). Mesh mutations are also a common practice to cope with deterioration and a means to 

perturb system configuration in other mesh simulations that use a Monte Carlo integration 

(60,89–95). The algorithms for mesh regularization and mutation are further described in 

Appendix E.

RESULTS AND DISCUSSION

To further validate the method and to provide a sense of how Mem3DG can be used and 

extended to solve more complex physics, we apply Mem3DG to a sequence of examples with 

increasing complexity. First, we model well-studied systems with homogeneous membrane 

conditions. We show that Mem3DG is capable of reproducing the classical solutions without 

imposing the axisymmetric constraint commonly adopted by other solvers. The later 

examples set a blueprint for extending and modifying Mem3DG for particular systems of 

interest. We introduce new energy and corresponding force terms to expand the formulation 

for complex systems of interest. We emphasize that the goal of these examples is to illustrate 

the generality of the theory and software and to outline specific steps for future extensions; 

we do not perform rigorous experimental comparisons, nor do we extract scientific insights. 

Additional care must be taken to mimic specific biological experiments for model validity, 

which is left for future work.

Each of the following sections considers a different class of membrane biophysics problem 

of increasing complexity in the coupling of the in-plane protein density parameter, ϕ 
∈ [0, 1]. To mimic the various influences protein-lipid interactions can have on the 

bilayer, the protein density can be set to influence membrane properties such as the 

spontaneous curvature, H(ϕ), and bending rigidity, κ(ϕ). More complex phenomena such 

as the production of in-plane interfacial forces from membrane-protein phase separation 

(55,59,123) can also be modeled. In our final proof of concept, we extend Mem3DG to 

support full mechanochemical dynamics, where proteins can mobilize in and out of plane 

through adsorption and lateral diffusion, based on its coupling with membrane material 

properties and shape transformation. These scenarios highlight the relative ease of extending 

Mem3DG with additional physics and the potential utility to simulate realistic experimental 
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scenarios. Note that, for all of the examples, unless otherwise specified, the bending 

rigidity of membrane, κ, is assumed to be the rigidity of a bare membrane, κb = 8.22 

× 10−5 μm · nN. Despite the superior performance of the nonlinear conjugate gradient 

method in finding an energy minimizing configuration, to maintain both static and dynamic 

interpretability, we perform all simulations using a forward Euler integrator unless otherwise 

noted. All simulations presented in this work were conducted on a standard workstation with 

Intel Xeon processors. Although the numerical algorithms are amenable to parallelization, 

Mem3DG is currently a single-threaded program. Using a single core, the simulations here 

complete in minutes and up to 2 hours.

Modeling spherical and cylindrical membranes with homogeneous physical properties

We begin our examples by using Mem3DG to find the equilibrium shapes of membranes 

with homogeneous protein density, ϕ. We ask, given an initial membrane configuration with 

uniform bending modulus and spontaneous curvature, what are the minimizers of the system 

energy? The answers are the classical equilibrium solutions to the shape equation obtained 

analytically (42), and numerically using many methods with different assumptions (39,124). 

We will show solutions obtained using Mem3DG with topologies of sphere and tube (Fig. 4). 

These geometries were selected not only because of their potential for comparison with the 

legacy literature but also because they are reminiscent of biological membranous structures 

such as red blood cell (97,98,125,126), cell-cell tunneling and tethering (127–129), and 

neuron beading (130,131), among other biological processes.

Starting with closed topological spheres, Fig. 4 A and B shows the typical equilibrium 

shapes under osmotic stress while the surface area is conserved. The preferred area of 

the vesicle, A = 4πμm2, represents a sphere of radius 1 μm. This constraint is achieved 

by prescribing a large stretching modulus, KA, such that the areal strain, (A − A)/A, is 

less than 1%. The strength constant of osmotic pressure, KV is set to be 0.1 μm · nN. 

Initializing the simulations from an oblate spheroid, as the osmolarity increases (e.g., the 

normalized ambient solution, c/n), we recover the well-known biconcave red blood cell 

shape (97,98,106,124) (Fig. 4 A). The vesicle adopts a more convex configuration as we 

increase the spontaneous curvature, indicating an overall increase in its mean curvature with 

the concomitant decrease of areas with negative mean curvature (the dimple regions). In 

contrast, starting from a prolate spheroid, as the spontaneous curvature increases, the vesicle 

adopts a dumbbell configuration as the energetically preferred state (Fig. 4 B). The size of 

the beads on the dumbbell is governed by the osmolarity, c/n. These trends with respect to 

the variations of the spontaneous curvature and osmolarity are consistent with the analytical 

and numerical results in the broader literature (42,89). Qualitatively the predicted geometries 

of closed vesicles with homogeneous spontaneous curvature match the predictions of a 

detailed benchmark of mesh-based methods performed by Bian et al. (89).

We also modeled the shapes of membranes starting from an open cylinder configuration 

under different osmotic and surface tension conditions (Fig. 4 C). This problem is related to 

a well-studied phenomenon called the Plateau-Rayleigh instability (132,133). The Plateau-

Rayleigh instability describes how surface tension breaks up a falling stream of fluid into 

liquid droplets. Compared with a liquid stream, a lipid membrane provides additional 
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resistance against instability due to its rigidity. Zhongcan and Helfrich (134) obtain stability 

regimes as a function of membrane bending rigidity and spontaneous curvature using the 

spectral stability analysis (134). Although osmotic pressure is often reported as an important 

cause of morphological instability (131,135–137), the effect of osmotic pressure is difficult 

to isolate in wet experiments because the change to osmolarity affects the surface tension, 

which is a key driver of the instability. In our simulations, the two effects are decoupled, 

making the investigation of individual contributions to the morphology possible. All shapes 

in Fig. 4 C evolve from the initial tubular mesh with radius of 1 μm and axial length of 19.9 

μm, under a constant spontaneous curvature of 1 μm−1. These simulations are set up as local 

models (cf., section “Defining properties of a membrane reservoir for systems with open 

boundaries”) where the explicit mesh is assumed to be coupled to a membrane reservoir. 

Additional geometric information defining the membrane reservoir and boundary conditions 

are required to initialize the local model. The tubular structure is considered to be a cylinder 

that connects two otherwise detached domains (e.g., membrane reservoirs), which combined 

have a total reservoir volume, Vr = 4.19 μm−3. The strength of osmotic pressure, KV, is 

set to be 0.01 μm · nN. To isolate the effect of osmotic pressure and surface tension on 

the morphology, we prescribe a specific surface tension that we assume to be invariant with 

respect to changes to the surface area. On the two boundary loops of the mesh, we apply 

roller boundary conditions, which restrict the movement of boundary vertices in the axial 

direction. The length of the tube is thus constrained to be 19.9 μm, while the radius of the 

tube including the boundaries is free to shrink or expand.

As the osmolarity increases from the reference condition (c/n = 0.022 μm−3) (Video S1), we 

obtain near constant-mean-curvature surfaces such as unduloid pearl structure at c/n = 0.030
μm−3 (Video S2), and cylindrical tube at c/n = 0.051 μm−3, which follow the trends from 

both analytical (42,138) and experimental observations (19,131,135). As we increase the 

surface tension from the reference condition (λ = 1 × 10−7 nN · μm−1) to a tension-

dominated regime (λ = 1 × 10−4 nN · μm−1), we obtain the beads-on-a-string structure that 

minimizes the surface-to-volume ratio (Video S3). The formation of beads-on-a-string is an 

interesting configuration that has been identified in biological membranes and other systems 

(130,131). Note that our simulations revealed a symmetric metastable state where two large 

beads form at either end (Appendix A), connected by a thin tube, prior to adopting the 

asymmetric conformation shown in Fig. 4 C. We believe that discretization artifacts such as 

mesh mutations act as a perturbation to break the symmetry of the metastable intermediate 

and transition the membrane to a single bead configuration (see Fig. A.1).

These examples with uniform spontaneous curvature profile prove the ability of Mem3DG to 

reproduce the expected classical solutions for spherical and tubular membrane geometries. 

Note that no axisymmetric constraint is imposed in these simulations. Mem3DG solves the 

system in full three dimensions and the symmetrical configurations are due to the problem 

physics. The ability to adapt to changing and complex curvatures of the membrane using 

discrete mesh is achieved using mesh mutation and other manipulations within solver steps. 

For example, the pinched neck regions of the tubes are automatically decimated with finer 

triangles than other regions of the mesh. For a global closed membrane simulation such 

as in Fig. 4 A, B, we do not remove any rigid body motions from the system; since the 
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forces from DDG are exact and we used the forward Euler integrator, no artificial rigid 

body motions are introduced throughout the simulation. These examples show that that the 

derivation of the discrete energy and forces along with the software implementation are 

accurate and proceed to test Mem3DG with more complex examples.

Modeling endocytic budding mechanisms

Our goal is to highlight the potential of Mem3DG and its associated framework for 

investigating mechanical phenomena relevant to cellular biology. Endocytosis is a 

cellular process in which cells uptake cargo from the extracellular environment; the 

transported material is engulfed by the cell membrane, which then buds off to form a 

vesicle (13). Endocytosis occurs through various mechanisms, including clathrin-mediated 

endocytosis (13,139). It has been shown that clathrin aggregates on the plasma membrane, 

helping to deform the membrane and form a spherical bud (9,13,59). However, the 

specific mechanisms of how membrane-clathrin interactions facilitate membrane curvature 

generation remain unresolved. While there is significant literature investigating the many 

proposed mechanisms, here we develop models to demonstrate the bud formation via 

spatially localized spontaneous curvature, combined with a line tension term arising from 

phase separations on the membrane (140).

We model endocytic budding on a circular patch with radius 1 μm (a disc with one boundary 

loop). We assume that the patch is a local system which is coupled to a large vesicle 

(section “Defining properties of a membrane reservoir for systems with open boundaries”). 

A heterogeneous protein density, ϕ ∈ [0, 1], is applied to mimic the distribution of clathrin 

and other scaffolding proteins. Shown in Fig. 5 A, the protein density is high (ϕ = 1) toward 

the center of a geodesic disk with radius 0.5 μm) and decreases toward the boundaries (ϕ 
= 0). During simulation, the geodesic distance to the center of the patch is periodically 

computed using the heat method (141). Vertexwise ϕ is assigned based on the stair-step 

profile smoothed by the hyperbolic tangent function applied to the geodesic distance. 

Each experiment is initialized as a flat patch and the displacement of boundary vertices 

is restricted using a fixed boundary condition. Since the patch is viewed as a small piece 

within a larger closed vesicle reservoir, we assume that the surface tension is constant.

A common model to account for the preferential bending owing to protein-membrane 

interactions is through the spontaneous curvature; we assume H(ϕ) = Hcϕ, where Hc = 6
μm−1 is the spontaneous curvature imposed by the membrane protein coat. Proteins such 

as clathrin are known to form stiff scaffolds on the membrane. Similar to the spontaneous 

curvature, we can assume a linear relationship between bending rigidity and protein density, 

κ(ϕ) = κb + κc ϕ, where constant κb is the rigidity of the bare membrane, and κc is 

additional rigidity of the protein scaffold.

Shown in Fig. 5 A–C and Video S4, is the control simulation where we set the contribution 

to the rigidity from protein to be the same as that of the raw membrane, κc = κb. Fig. 5 

A shows the initial flat configuration of the control experiment; the color bar shows the 

heterogeneous spontaneous curvature resulting from the prescribed protein density profile. 

In the control experiment, the bending force is resisted by the surface tension (Fig. 5 
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C) until, at the final frame in Fig. 5 B (t = 5), the membrane reaches the equilibrium 

configuration where the surface tension cancels with the bending force. In a second model, 

we assume that the scaffolding proteins are much more rigid than the bare membrane, κc 

= 3κb. Fig. 5 D–F and Video S5 show the bud formation due to this increased protein 

scaffolding effect. The greater rigidity results in an increase of initial bending energy, which 

outcompetes the resistance from the surface tension (Fig. 5 F). Fig. 5 E shows the shape 

evolution from a flat patch to a successful bud with a pinched neck. Fig. 5 D shows 

the signed projection of the bending force onto the vertex normal, ∫ fi
b = ∫ f i

b
⋅ n i, at T 

= 15. (Outward-pointing angle-weighted normal; the same applies to the interfacial line 

tension.) We can see an “effective line tension” driven by the heterogeneous spontaneous 

curvature that constricts the neck. This phenomenon is theoretically explored in detail by 

Alimohamadi et al. (58).

For our third model, based on the prior observations that protein phase separation on 

surfaces can lead to a line tension (140), we incorporate a Ginzburg-Landau interfacial 

energy into the system,

Ed = 1
2 ∑

fijk
η∫ ∇θ ϕ ijk

2 1
2∫ℳ

η ∇θ ϕ 2dA (28)

where η, referred to as the Dirichlet energy constant, governs the strength of the energy 

penalty, and ∇θ ϕ is the discrete surface gradient of the protein density profile. The term is 

similar to previous modeling efforts by Elliott and Stinner (80) and Ma and Klug (79) using 

FEM; because we use the protein phase separation as a prior, we exclude the double-well 

term, which models the thermodynamics of phase separation, and incorporate only the 

Dirichlet energy component that penalizes the heterogeneity of membrane composition.

Defined as the slope of the linearly interpolation of ϕ on faces of the mesh, fijk, the discrete 

surface gradient of the protein density is,

∇θ ϕi = 1
2Aijk

∑
ei ∈ N fijk

ϕi e i
⊥, (29)

where following illustration in Fig. 1 C, e i is the vector aligned with the halfedge ei, with 

its length of li, and (·)⊥ represents a 90° counterclockwise rotation in the plane of fijk. The 

resulting line tension force ∫ f
d
 is then the shape derivative of the Dirichlet energy, ∇ r Ed, 

which acts to minimize the region with sharp heterogeneity. The detailed derivation of the 

shape derivative is elaborated in Appendix C.3, where we follow the formulaic approach 

by taking geometric derivatives of basic mesh primitives shown in Eq. C.13. Note that 

despite bearing the same name, this line tension force differs from from those resulting from 

line energy, which prescribes the line tension energy based on the interfacial edge length 

(55,142). The line tension force from Dirichlet energy is used to model the out-of-plane 

component resulting from either entropic or enthalpic repulsion at the interface between 

heterogeneous membrane protein aggregates. The Dirichlet energy is based on a 2D field 

variable and the line tension is only effective when phase separation of the field variable 
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occurs, where the interfacial line, or, more precisely, thin areal band, between phases exists. 

With the introduction of protein evolution later in sections “Protein aggregation on the 

realistic mesh of a dendritic spine” and “Membrane dynamics with full mechanochemical 

feedback,” thickness depends on the competition between the Dirichlet energy and other 

competing aggregational potential.

Fig. 5 G–I and Video S6 show the trajectory where we used control bending rigidity, κc 

= κb, and the additional interfacial line tension, η = 5 × 10−4 μm · nN. We find that the 

interfacial line tension, jointly with the bending force, lowers the system energy and helps 

the formation of a spherical bud (Fig. 5 I and H). Fig. 5 G shows the snapshot (t = 7) with 

the color map representing the signed normal projection of the interfacial line tension that 

acts to constrict the neck. These examples of endocytic bud formation help to illustrate the 

utility of Mem3DG and the accompanying theoretical framework. Since physical parameters 

are assigned on a per-vertex basis, it is straightforward to incorporate heterogeneity such 

as the nonuniform bending rigidity and spontaneous curvature. In smooth theory and its 

derived discrete mesh models, when the membrane is heterogeneous, it is required to 

decompose the force separately in normal and tangential direction (40,65). In contrast, the 

general derivation of the discrete bending force following the formalism of DDG permits 

modeling membrane with heterogeneous material properties without any modification to its 

formulation (section “Forces from bending”). The introduction of Dirichlet energy and line 

tension force serves to highlight the relative ease to extend the modeled physics.

Protein aggregation on the realistic mesh of a dendritic spine

While the prior examples have focused on the mechanical response of the membrane given 

a bound protein distribution, we can also model the inverse problem. Given the membrane 

shape, how do curvature-sensing proteins diffuse in the plane of the membrane and distribute 

over the domain? And how does the resultant protein distribution influence the stresses of 

the system? To model the protein dynamics, we use three terms corresponding to protein 

binding, curvature sensitivity, and lateral diffusion.

To model the binding of proteins to the membrane, we assume that the energy of adsorption, 

ε, is constant and uniform across the surface such that the discrete adsorption energy is,

Ea = ε∑
i
∫ ϕi, (30)

where ϕi is an order parameter representing the area density of protein at each vertex. Taking 

the derivative with respect to ϕ, referred to as the chemical derivative,

μia = − ∇ϕEa = − ∫ ε, (31)

we obtain the adsorption component of the chemical potential. To account for protein 

curvature sensitivity, we find the chemical potential of the bending energy,
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μib = − ∇ϕEb

= ∫ 2κi Hi − Hi ∇ϕHi − Hi − Hi
2∇ϕκi ,

(32)

where we assume that ∇ϕκi = κc, and ∇ϕHi = Hc where κc and Hc are constant parameters 

defined in Section “Modeling endocytic budding mechanisms.” The first term of Eq. 

32 endows the protein with curvature-sensitive binding. The second term of Eq. 32 is 

the shape mismatch penalty; considering the binding of a rigid protein that induces a 

significant spontaneous curvature change, if the curvature of membrane is far from this new 

spontaneous curvature, then the shape mismatch between the membrane and proteins will 

prevent binding. Alternatively, if the protein is more flexible, a shape mismatch results in a 

small energetic penalty.

The in-plane diffusion of the protein is accounted for by the chemical derivative of the 

smoothing Dirichlet energy, Ed,

μid = − ∇ϕEd = − ∫ ηΔsϕi, (33)

where η is the same Dirichlet energy constant introduced in Eq. 28 that governs the strength 

of interfacial line tension,∫ f
d
. The total chemical potential captures the bending, adsorption 

and diffusion components. A mobility rate constant, B, determines the time scale of the 

chemical response,

ϕ̇ = Bμ = B μb + μa + μd . (34)

We investigate the influence of curvature-dependent binding to a realistic dendritic spine 

geometry, which was reconstructed from electron micrographs and curated using GAMer 

2 (Fig. 6 A) (32). A summary of the parameters used in the simulation is shown in Table 

3. The mean curvature of the spine geometry is shown Fig. 6 C. We isolate the effect of 

curvature-dependent binding by assuming that the shape of the spine is fixed and impose 

Dirichlet boundary conditions at the base on the spine to fix the protein concentration, ϕ = 

0.1 (Fig. 6 A).

Starting from a homogeneous protein distribution, ϕ0 = 0.1, Fig. 6 B and Video S7 show 

the evolution of the protein distribution and a trajectory of the system energy. Note that, 

for simplicity, we have turned off the adsorption energy term since it only shifts the basal 

protein-membrane interactions, which will also be set by the Dirichlet boundary condition. 

Mem3DG constrains the range of ϕ ∈ (0, 1) using the interior point method (121). Due to 

the curvature sensitivity of the protein, illustrated by the snapshots (Fig. 6 B, T = 350) 

representing the final protein distribution, the protein aggregates toward regions of high 

curvature (e.g., on the spine head).

Although the proteins can reduce the bending energy by modulating the local bending 

modulus and spontaneous curvature, the protein distribution at equilibrium does not cancel 
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out the bending energy. We expect that the Dirichlet energy term, which limits ϕ to be 

smooth across the geometry, restricts the protein from further aggregating to the extent 

required to cancel out the bending energy. The components of forces on the initial and final 

configurations of the spine are compared in Fig. 6 D–F. The initial homogeneous protein 

distribution has no line tension forces and a bending force shown in Fig. 6 D. After the 

protein distribution reaches the steady state, line tension appears in response to membrane 

heterogeneity Fig. 6 E. We hypothesize that, similar to section “Modeling endocytic budding 

mechanisms,” the line tension constricts the neck of the spine and helps to support the cup-

like structures in the spine head. While, in most regions, the distribution of proteins reduces 

the force, several regions experience increased stress Fig. 6 F. Note that the magnitude 

of the forces generated by proteins in this model is orders of magnitude smaller than the 

initial bending force. Thus, this example demonstrates that Mem3DG can be used on meshes 

imported from realistic geometries of cellular substructures.

Membrane dynamics with full mechanochemical feedback

In this section, we will demonstrate the use of Mem3DG to model the complete 

mechanochemical feedback of a protein-membrane system. For the following simulations, 

not only can proteins bind in a curvature-dependent manner but the membrane can also 

deform, leading to a feedback loop. We have introduced all of the force terms in previous 

sections except the shape derivative of the adsorption energy,

∫ f i
a

= − ∇ r Ea

= − ∑
eij ∈ N vi

ε ϕi
3 + 2ϕj

3 ∫ 2H i,
(35)

which accounts for the change in the area of protein coverage (i.e., expanded coverage if ε < 

0).

Revisiting the claim that all discrete forcing is exact with respect to the discrete energy, 

we validate by examining the convergence of the forcing terms with respect to the size of 

perturbation to the system configuration, ϵ (Fig. 7 A). This is based on the leading order 

expansion done in Eq. 24, which concludes that the forcing terms are exact if their rate 

of convergence is at least second order. Shown in Fig. 7 A, this is true for all forcing 

terms; note that, since the adsorption energy, Ea, is a linear function with respect to ϕ, μa 

can be determined to the machine precision for all perturbation sizes. A meaningful discrete-

smooth comparison of all terms in the energy and forcing similar to section “Practical 

considerations for applying Mem3DG to biological problems” requires the analytical solutions 

of the bending force and interfacial line tension arising from the spatially heterogeneous 

membrane properties, which, to the best of our knowledge, are not available. In section 

“Modeling endocytic budding mechanisms,” we introduced a heterogeneous membrane 

composition as a static property. By prescribing the protein density profile, we can get hints 

about how to form membrane buds from a patch. Here we lift this assumption and simulate 

the dynamics of osmotic pressure-driven budding from a vesicle. The dynamics couples 

the proteinmembrane mechanochemical feedback and includes protein binding and diffusion 
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introduced in section “Protein aggregation on the realistic mesh of a dendritic spine.” The 

expressions of discrete free energy and forcings do not change but we allow the membrane 

configuration and protein density to interact and evolve simultaneously.

We start each simulation from a sphere with a uniform protein concentration, ϕ = ϕ0 = 

0.1. We consider the evolution of the system in different osmotic conditions: hyper-, iso-, 

and hypotonic, V = 2.91, 3.95 and 4.99 μm3, respectively. Additional parameters for these 

simulations are given in Table 4. Fig. 7 B shows plots of the mechanical, f L2
2

, and 

chemical response, μ L2
2 , along with the protein density, (ϕmax + ϕmin)/2, over the trajectory 

for each osmotic condition. Note that under hypo- and isotonic conditions, the system 

reaches the (quasi) steady state where both the shape and protein distribution stabilize, 

while, in a hypertonic solution, the system continues to experience strong mechanical 

force and protein mobility, which we expect to drive further morphological changes of 

the membrane beyond our simulation stopping point. Fig. 7 C shows the final snapshot of 

each simulation across the osmotic conditions with the protein density represented by the 

color map. In hypertonic conditions, the osmotic pressure provides sufficient perturbations 

to membrane morphology, which initializes the positive feedback loop between membrane 

curvature generation and protein aggregation. This mechanochemical feedback jointly 

promotes the outward bending of the membrane and results in bud formation (Fig. 

7 C, hypertonic; Video S8). Under isotonic and hypotonic conditions, the osmolarity 

does not permit the large change in the volume required to form spherical buds with 

a thin neck. In hypotonic condition, the pressure-tension balance provides substantial 

stability to the initial spherical configuration. In comparison, in the isotonic condition, the 

comparable competition between the chemical and mechanical response leads to a patterned 

protein distribution and an undulating morphology (Fig. 7 C, hypotonic; Video S9). This 

example illustrates the possibility to utilize Mem3DG to model a full mechanochemical 

feedback between membrane and protein. Although we do not intend to replicate the exact 

experimental conditions and assumptions, the geometries obtained from these simulations 

resemble the shapes obtained by Saleem et al. (59) who investigated budding from spherical 

vesicles under differing osmotic conditions (Fig. 7 D) (59).

SUMMARY

In this work, we introduce a new perspective for constructing a 3D membrane mechanics 

model on discrete meshes. The goal of our approach is to close the gap between existing 

discrete mesh-based models (60,86–96,99,102,103) and the smooth theory. Specifically, 

we seek to advance the discussion behind the choice of algorithmic approaches for 

computing geometric values required for the discrete energy and force (65,89,99,100). 

We start by writing a discrete energy, Eq. 3, mirroring the spontaneous curvature model. 

Then using the perspective of DDG, we show that there is a formulaic approach for 

deriving the corresponding discrete force terms based on fundamental geometric vectors. 

By identifying geometric invariants and grouping terms, the resulting discrete forces have 

exact correspondence to the traditional smooth theory. This helps us to facilitate the 

comparison between smooth and discrete contexts enabling new geometric perspectives 
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and understanding of numerical accuracy. Moreover, the discrete force terms are functions 

of readily accessible geometric primitives, and the formulation is amenable for efficient 

implementation and extension.

We have produced a reference software implementation called Mem3DG. Using Mem3DG, we 

validate our theory by reproducing the solutions to the classical shape transformations of 

a spherical and tubular vesicle. We further demonstrate the derivation and incorporation 

of additional physics terms to model protein-membrane interactions. Following our 

formulaic approach using DDG, we derived the discrete analog of various physics, 

such as the interfacial line tension, surface-bulk adsorption, protein lateral diffusion, and 

curvature-dependent protein aggregation. To exemplify all the introduced physics, the full 

mechanochemical coupling between the membrane shape and protein density evolution 

results in protein localization, pattern formation, and budding. These examples serve to 

highlight the extensibility of the framework, which does not require the introduction of 

coordinates and advanced tensor calculus commonly needed to solve problems on arbitrary 

manifolds. The software implementation Mem3DG was designed to facilitate coordination 

between theoretical modeling and wet experiments; we hope to support the modeling of 

scenes with well-resolved protein-membrane interactions such as in the electron tomograms 

(143). We expect that as the advances in biophysical modeling and membrane ultrastructure 

imaging progresses, Mem3DG will emerge as a useful tool to test new hypotheses and 

understand cellular mechanobiology.
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Refer to Web version on PubMed Central for supplementary material.
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APPENDICES

A.: Supplemental figures

FIGURE A.1. 
A symmetric metastable state with two beads instead of a single larger bead is observed, 

prior to collapsing to the solution shown in Fig. 4 C, high tension.
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FIGURE A.2. 
Steiner’s formula in continuous and discrete geometry: chain of smooth and discrete shape 

derivatives of integrated geometric measurements (144).

B.: Rationale for integrated measurements in discrete contexts

The rationale for why an integrated measurement in discrete contexts is the natural 

counterpart to pointwise measurements in smooth contexts can be demonstrated by 

considering the curvature of a discrete polygonal curve. If we attempt to define the 

curvature, C, of the discrete polygonal curve in a naïve pointwise manner, following the 

procedure in smooth settings, we will find zero curvature along edges and infinite curvature 

(owing to the discontinuity) on vertices. Thus the traditional view of curvature from smooth 

manifolds reveals no useful information about the geometry of the discrete curve. We must 

find another geometric relationship that can translate between smooth and discrete contexts 

to maintain the geometric connection.

One relationship from smooth differential geometry is the equivalence of the integrated 

curvature and the turning angle ψ (i.e., the total angle by which the tangent vector of the 

curve turns over some domain l). Returning to the discrete context, we can seek to preserve 

this relationship between the integrated curvature and turning angle by finding a compatible 

definition. Since the discrete turning angle, ψi, between two connected edges of the discrete 

polygonal curve is well defined, we can set the discrete curvature, ∫ C, of a vertex, vi, to be

∫ C
i

≡ ψi . (B.1)

We note that the notation for the discrete curvature, (∫ C)i is used only in this illustrative 

example; in the remainder of the text, we will omit the parenthesis and use the simplified 

notation, ∫ Ci. To make sense of the integral over a discrete object, additional care must 
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be taken to represent the curvature from a distributional sense (104). This is related to 

traditional approximation methods, such as the point allocation method, which bridges a 

smooth and discrete problem by convoluting the smooth problem with impulse functions 

(e.g., the Dirac delta function) at a finite number of locations (122).

As we have shown, integrated geometric measurements enable us to preserve geometric 

relationships (from smooth contexts) for discrete objects, and are thus preferred over 

pointwise definitions. Nevertheless, we often require a pointwise discrete measurement 

for use in algorithms and visualization. An integrated measurement can be converted to a 

meaningful pointwise discrete measurement by normalizing the value over a domain. For 

the discrete polygonal curve, the domain can be the dual vertex length, li (i.e., the discrete 

analog of l). li is given by half of the sum lengths of the two incident edges. A pointwise 

curvature on the vertex vi is then given by,

Ci = ∫ Ci/li = ψi/li . (B.2)

Another rationale for using an integrated value for a discrete geometric measurement is that 

we can arrive at the same definition from multiple perspectives. Returning to the definition 

of the curvature of a polygonal curve, without introducing the turning angle, we can arrive 

at the same result by adopting the Steiner view (104,145) (we use the Steiner view to define 

the discrete curvature of a surface in section “Obtaining a discrete energy defined by mesh 

primitives”). In the Steiner view, we replace the sharp vertices with a smooth circular arc 

with radius ϵ such that the discrete geometry is made smooth such that the curvature is well 

defined everywhere. As the only curved section, every circular arc has a discrete (integrated) 

curvature,

∫ C = ∫
arc

C ds = Carclarc = 1
ϵ (ϵψ) = ψ, (B.3)

where Carc = 1/ϵ is the curvature of the circular arc, and larc = ϵψ is the arc length. We 

see that, in the Steiner view, the integrated curvature is still equivalent to the turning angle. 

Following similar logic, other discrete definitions are described in section “Obtaining a 

discrete energy defined by mesh primitives” and the DDG literature (104,105).
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C.: Discrete shape and chemical derivatives of discrete energy

C.1. Halfedge on a triangulated mesh

FIGURE C.1. 
Schematics for halfedges on a triangulated mesh.

A scalar quantity on an edge is symmetric with respect to index permutation. For example, 

the scalar mean curvature (Eq. 8),

∫ Hij = ∫ Hji = lijφij
2 . (C.1)

However, as we will show in detail in the following sections, this symmetry does not apply 

to vector quantities, which compose the discrete shape derivative of the energy, force. For 

example, the corresponding mean curvature vector,

∫ H ij ≠ ∫ H ji . (C.2)

To highlight the directionality of vector quantities and disambiguate the notation, here we 

review the concept of a halfedge on a triangulated mesh. Given any non-boundary edge, 

eij, on a manifold mesh, there exits two associated halfedges, eij and eji (Fig. C.1). This 

convention leads to an oriented (counterclockwise) halfedge loop on each triangle face and 

subsequently a well-defined 1) 90° counterclockwise rotation of the halfedge in the plane of 

the face (e.g.,elj elj
⊥), and 2) face normal (outward) based on the right hand rule (Fig. C.1). 

Beside being used to differentiate vector/scalar quantities, the concept of halfedge is widely 

adopted data structure for managing connected graphs, or meshes, for which we refer the 

reader to the broader literature (116,146).
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C.2. Deriving the bending force as the shape derivative of bending energy

The geometric derivatives of mesh primitives, including edge length, l, dihedral angle, φ, and 

vertex dual area, A, are given as

∇ r ilij = e ji
lij

(C.3a)

∇ r iφij = 1
lij

cot∠ijk n ijk + cot∠ijl n ijj , (C.3b)

∇ r iφjk = − 1
ljk

cot∠ijk + cot∠ikj n ijk

= − ljk
2Aijk

n ijk,
(C.3c)

∇ r iAi = 1
3 ∑

fijk ∈ N vi
∇ r iAijk

= 1
6 ∑eij ∈ N vi cot∠ikj + cot∠ilj e ji,

(C.3d)

∇ r iAj = 1
3 ∑

fijk ∈ N eij
∇ r iAijk = 1

6 e jk
⊥ + e lj

⊥ , (C.3e)

where n ijk is the unit normal vector of the face fijk, and e ji is the vector aligned with the 

halfedge, eji, with its length of lij (147). The indices and nomenclature in Eqs. C.3b, C.3c 

and C.3e are illustrated in the diamond neighborhood (Fig. C.1) and those of Eq. C.3d are 

illustrated in the fan neighborhood (Fig. 1 A).

To simplify the expression and provide more structure for the subsequent discrete variation, 

it is convenient to define some fundamental curvature vectors,

∫ 2H ij = 1
2 ∇ r iAijk + ∇ r iAijl = 1

4 e jk
⊥ + e lj

⊥
(C.4a)

∫ K ij = 1
2φij∇ r ilij (C.4b)

∫ S ij, 1 = 1
2lij∇ r iφij = 1

2 cot∠ijk n ijk + cot∠ijj n ijj (C.4c)

Zhu et al. Page 32

Biophys Rep (N Y). Author manuscript; available in PMC 2022 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



∫ S ij, 2 = 1
2 ljk∇ r iφjk + ljl∇ r iφjl + lji∇ r iφji

= − 1
2 cot∠jki n ijk + cot∠ilj n ilj ,

(4d)

where the mean curvature vector, ∫ H , results from area gradient; Gaussian curvature vector, 

∫ K , and the Schlafli vector, ∫ S , consist of the two components of the variation of total 

mean curvature,1
2 ∑eij lijφij. The asymmetry of vector quantities in Eq. C.4 under index 

permutation (Eq. C.2) arises from the vertex we take the shape derivative with respect to 

(i.e., vi, or vj); because of the asymmetry, we can associate each Schlafli vector with a 

unique halfedge. Similar to the translation from edge values to vertex value (Eq. 9), we can 

also translate the halfedge value to vertex value by summing all halfedge values over the fan 

neighborhood,

∫ ( ⋅ )i = ∑
eij ∈ N vi

∫ ( ⋅ )ij . (C.5)

Note that, unlike translating edge values, there is no prefactor 1/2 for translating halfedge 

values because each halfedge is uniquely associated with one vertex. The translated 

curvature vectors on a vertex cane compared against vertexwise smooth analytical solutions 

as benchmarked in section “Practical considerations for applying Mem3DG to biological 

problems.” Now we have all of the elements needed to derive the derivatives of the discrete 

Willmore bending energy. Because the discrete energy is locally supported by the vertex, 

vi, and its 1-ring neighbors, vj ∈ N(vi), we can separate them into the “diagonal” term, and 

“off-diagonal” term,

∫ f i
b

= − ∇ r iEb = − ∇ r i ∑
i

κi Hi( r ) − Hi
2Ai( r )

= − ∇ r i κi Hi − Hi
2Ai

diagonal

− ∑
vj ∈ N vi

∇ r i κj Hj − Hj
2Aj

off‐diagonal

. (C.6)

Using the derivatives of geometric primitives in Eq. C.3, we can assemble the derivatives of 

local pointwise mean curvature for both the diagonal term,

∇ r iHi = 1
4 ∑

eij ∈ N vi
∇ r i

lijφij
Ai

= 1
4Ai

∑
eij ∈ N vi

φij∇ r ilij + lij∇ r iφij − Hi
Ai

∇ r iAi

= 1
Ai

∑
ejj ∈ N vi

1
2 ∫ K ij + ∫ S ij, 1 − 2

3Hi∫ H ij,

(C.7)

and for the off-diagonal term,
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∇ r iHj = 1
4 ∑

ej ∈ N vj
∇ r i

ljkφjk
Aj

= 1
4Aj

ljk∇ r iφjk + ljl∇ ri φjl + φji∇ ri lji + lji∇ r iφji − Hj
Aj

∇ r iAj

= 1
2Aj ∫ K ij + ∫ S ij, 2 − 4

3Hj∫ H ij .

(C.8)

When written in the halfedge form, factoring out the fundamental curvature vectors 

introduced in Eq. C.4, we obtain the discrete bending force as

∫ f i
b

= ∑
eij ∈ N vi

− κi Hi − Hi + κj Hj − Hj ∫ K ij

+ 1
3κi Hi − Hi Hi + Hi + 2

3κj Hj − Hj Hj + Hj ∫ 2H ij

− κi Hi − Hi ∫ S ij, 1 + κj Hj − Hj ∫ S ij, 2 .

(C.9)

When the surface is not closed, boundary vertices, vi ∈ ∂ℳ, experience an additional force 

from the Gaussian curvature component,

∫ f i
b

= RHS of Eq . (C . 9)

+ ∑
fijk ∈ N vi

( − 1)p∇ r i∠fijk, vi ∈ ∂ℳ,
(C.10)

where p is the number of boundary vertices in face fijk, and

∠fijk =
∠ijk if vj, vk ∉ ∂ℳ,
∠ikj if vj ∈ ∂ℳ,
∠ijk if vk ∈ ∂ℳ .

(C.11)

C.3. Deriving the line tension and diffusion as the shape and chemical 

derivatives of the Dirichlet energy

Since the discrete Dirichlet energy is constructed on the triangular face and therefore 

does not involve any neighborhood, we simplify the notation by adopting the convention 

illustrated in Fig. 1 C. The gradient of protein density is given by the slope of the fitted plane 

over the vertexwise protein density, which is piecewise constant for each face,

∇θ ϕi = 1
2Aijk

∑
e k ∈ N fijk

ϕk e k
⊥, (C.12)
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where we adopt the counterclockwise convention (e.g., e k = e ji) and (·)⊥ represents a 90° 

counterclockwise rotation in plane of the face, fijk.

C.3.1. Line tension from the shape derivative of the Dirichlet energy.

Substituting the definition of the discrete gradient into the Dirichlet energy (Eq. 28), we 

expand the energy in terms of mesh primitives, whose geometric derivatives are given in 

Eq. C.3. Additional formulae are needed to compute the geometric derivatives of the outer 

angles of the triangle (Fig. 1 C)

∇ r i∠k = n × e j

e j
2 (C.13a)

∇ r i∠j = n × e k

e k
2 (C.13b)

∇ r i∠i = − ∇ r i∠k + ∇ r i∠j , (C.13c)

which arise from the calculation of the L2 norm of the gradients as the result of vector inner 

product. When combined, the geometric derivatives for the quadratic gradient term is

∇ r i ∑ϕk e k
⊥, ∑ϕk e k

⊥ =
+ ϕkϕk e k − 2ϕjϕj e j
+ 2ϕjϕi e i −e jcos∠k + e j ∇ r i cos∠k
+ 2ϕiϕk e i ekcos∠j + e k ∇ r i cos∠j
+ 2ϕjϕk −e j e k cos∠i + e j ekcos∠i + e j e k ∇ r i cos∠i

(C.14)

Then we can get the final shape derivative by combining the area gradient, or the mean 

curvature vector (Eq. C.4).

C.3.2. Surface diffusion from the chemical derivative of the Dirichlet energy.

In the case where we are evolving the protein distribution, we need the chemical derivative 

of the Dirichlet energy. Before we look into the discrete case, we can first tackle the problem 

in the smooth setting, which is a classic textbook example. Using the Green’s first identity, 

or integration by parts on a 2-manifold,

∫
ℳ

ψΔsφ + ∇θ ψ ⋅ ∇θ φ dA = ∮
∂ℳ

ψ ∇θ φ ⋅ n dS, (C.15)

and ignoring the boundary term at the right hand side, we arrive at an alternative expression 

for the Dirichlet energy,
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Ed = 1
2∫ℳ

η ∇σ ϕ 2dA = − 1
2∫ℳ

ηϕΔsϕdA . (C.16)

The same procedure can be followed in the discrete case. The discrete Dirichlet energy (Eq. 

28) can be written in matrix form,

Ed = 1
2ηϕ⊤G⊤T Gϕ (C.17)

where G is the gradient tensor, which maps scalar value on vertices to vector values on 

faces, and T = diag Aface  is the |f| × |f| diagonal matrix with entries corresponding to the area 

of each mesh triangle face. Through integration by parts on discrete geometry, the discrete 

Dirichlet energy can be equivalently expressed as

Ed = 1
2ηϕ⊤Lϕ, (C.18)

which is a quadratic form with respect to the cotangent Laplacian matrix, L(104,105). The 

chemical derivative of the Dirichlet energy, or the diffusion potential, is

μd = − ∇ϕEd = − η∫ Δsϕ = − ηLϕ . (C.19)

In other words, the chemical gradient flow of the Dirichlet energy is the diffusion equation. 

Note that L = G⊤T G, G⊤ is referred to as the discrete divergence operator, which maps face 

vectors to scalars on vertices (146).

D.: Discrete-smooth comparison on spheroid

The smooth-discrete comparison is done on the spheroid with the parametrization,

(x, y, z) = (acosβcosθ, acosβsinθ, csinβ), (D.1)

where a = 1, b = 0.5, β is the parametric latitude and θ is the azimuth coordinate. All 

geometric measurements of the smooth geometry used for benchmarking were obtained 

using the symbolic algebra software Sympy. The corresponding discrete measurements 

are computed using Mem3DG, whose input spheroid mesh is mapped from a subdivided 

icosphere. The subsequent error norms for local measurements are computed based on 

definitions used in section “Defining metrics for simulation and error quantification.”

E.: Mesh regularization and mesh mutation

E.1. Mesh mutation

Mesh mutation and refinement in combination with vertex shifting are the default methods 

to ensure that the mesh remains well conditioned and well resolved during simulation. Mesh 
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mutations include edge flipping, collapsing, and splitting, which change the connectivity of 

the mesh. Vertex shifting moves the vertex to the barycenter of the fan neighborhood without 

changing the mesh topology (Fig. 1 A). Mem3DG has a suite of possible criteria to initiate 

mesh mutation. Here we list the most important ones: 1) flip the edge of the non-Delaunay 

diamond neighborhood (Fig. 1 B), 2) collapse the shortest edge in a skinny triangle face, and 

3) split the edge with high (geodesic) curvature. For additional details, please refer to the 

software documentation.

FIGURE E.1. 
Pointwise magnitude comparison of continuous and discrete measurements: (A) scalar mean 

curvature, (B) scalar Gaussian curvature, (C) (scalar) bi-Laplacian term ∇H based on the 

cotan formula, (D) vector mean curvature, (E) vector Gaussian curvature, and (F) (vector) 

bi-Laplacian term based on Schlafli vector. Note that the result of the cotangent Laplacian 

approach in (C) produces a scalar result while our approach using the Schlafli vector in (F) 

is a vector result, thus their direct comparison is not meaningful.

FIGURE E.2. 
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Pointwise directional comparison of continuous and discrete measurements: discrete vertex 

normal based on (A) volume gradient, ∇ r V , mean curvature vector, H , and Gaussian 

curvature vector, K , and (B) Schlafli vector,HS .

For practical use, although mesh mutation introduces additional complexity in data write-

out and computational costs associated with varying (usually growing) mesh size, it 

nevertheless provides a robust algorithm to ensure the good mesh quality needed for valid 

discrete-smooth comparisons (section “Practical considerations for applying Mem3DG to 

biological problems”) in static frames. For dynamical simulation, mesh mutations introduce 

an arbitrary interpolation of state variables, such as the position, velocity, and protein 

density. Rigorous study on how to interpolate these quantities to ensure the conservation 

of energy, momentum, and mass remains to be done. Similarly, the interpolation used in 

this study introduces discontinuities of curvature and can create jumps in forces; this is 

particularly severe for terms with higher-order derivatives such as the biharmonic term in 

bending force (Eq. 22).

E.2. Mesh regularization

Mesh regularization can be used when mesh mutations are not desired. The regularization 

force consists of three weakly enforced constraining forces: the edge (length), f
e
, face 

(area), f
f

, and conformality (angle), f
c
, regularization forces,

f i
e

= − Ke ∑
eij ∈ N vi

lij − l ij
l ij

∇ r ilij, (E.1a)

f i
f

= − Kf ∑
fijk ∈ N vi

Aijk − Aijk
Aijk

∇ r iAijk, (E.1b)

f i
c

= − Kc ∑
eij ∈ N vi

λij − λij
λij

∇ r iλij, (E.1c)

which are in the order of strongest to weakest. The length-cross-ratio, λij = lilljk/lkiljl is a 

metric of discrete conformality on triangulated mesh, where the indices is illustrated in Fig. 

1 A and B (148). Regularization forces require the input of a reference value for geometric 

measurements, l , A, and λ, which can be derived from a well-conditioned reference mesh 

(usually the initial input mesh for the simulation). The intensity of each regularization force 

is controlled with parameters Ke, Kf, and Kc.

For practical use, regularization constraints should be minimally imposed because of their 

impact on system dynamics. In the worst case, regularization constraints can prevent the 

optimizer from reaching an energy minima. Thus a good practice is to start a simulation 

with no: conformality, face area, and finally edge length regularization, and subsequently 

raise the intensity/type of constraints based on the mesh quality desired. We do not 
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recommend imposing constraints stronger than the face areal constraints,f
f
. In addition 

to being numerical regularizers for the triangulated mesh, they can serve as model for 

certain additional physics. For example, the edge length regularization has been adopted to 

model the additional local rigidity from actin-spectrin cortex in red blood cells (95). The 

areal regularization can be used to model local incompressibility of the membrane. The 

conformality regularization can be used to isolate shearing resistance.
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SIGNIFICANCE

Cellular membranes have shapes and shape changes that characterize cells/organelles, 

and support nutrient trafficking among other critical processes. Modeling membrane 

shape changes using mechanical principles can provide insight into how cells robustly 

bend membranes to support life. Mathematical and computational strategies to solve 

the equations describing membrane shape evolution can be complex and challenging 

without simplifying assumptions. Here, we present a new, general, numerical approach to 

model arbitrary 3D membrane shapes in response to interaction with curvature-sensing 

and generating membrane proteins. The accompanying implementation, Mem3DG, is a 

software tool to make computational membrane mechanics accessible to the general 

researcher.
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FIGURE 1. 
Overview of the DDG framework

For a Figure360 author presentation of this figure, see https://doi.org/10.1016/

j.bpr.2022.100062. (A–C) Illustrations of geometric primitives in the neighborhood of (A) 

fan around a vertex, (B) diamond around an edge, and C) triangle on a face. (D) Discrete 

definition of scalar edge mean curvature, ∫ Hij, scalar vertex Gaussian curvature, ∫ Ki, and 

Laplace-Beltrami operator, ∫ Δs( · ). (E) Comparative derivation of Helfrich shape equation 

in both smooth and discrete formulation.
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FIGURE 2. 
Overview of data flow within Mem3DG. The user provides Mem3DG with an initial condition 

in the form of a triangulated mesh and vertexwise state and kinematic variables (green 

box). The main loop (black loop) of Mem3DG evaluates the discrete energy and forces 

and propagates the trajectory, among other supporting steps. Modules in dashed lines are 

optional depending on whether the system mesh has boundaries and if external forces 

are specified. User-specified options and possible extensions of Mem3DG to accommodate 

various physics are highlighted in yellow boxes. Mem3DG automatically exits the simulation 

when the system converges or the maximum time step is reached.
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FIGURE 3. 
Comparison of discrete quantities with their smooth counterparts on spheroid shape. 

(A) Convergence plot of global quantities, including total area, volume, mean curvature 

(squared), and Gaussian curvature; and (B) Convergence plot of L1 norm of scalar 

and vector local quantities, including the mean curvature, Gaussian curvature, and the 

biharmonic term.
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FIGURE 4. 
Recover typical equilibrium shapes of membranes with homogeneous material properties. 

(A and B) Equilibrium solutions under different osmolarity (c) and spontaneous curvature 

(H) conditions, with initial condition of (A) Oblate spheroid and (B) Prolate spheroid. We 

vary the osmolarity by adjusting the concentration of the ambient solution, c, while holding 

the enclosed amount of solute, n, constant. (C) Equilibrium solutions of a tubular membrane 

structure under variations in osmolarity and surface tension.
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FIGURE 5. 
Budding dynamics by robust mechanisms of protein scaffolding and interfacial line tension 

constriction. (A–C) Control group, (D–F) bending-driven scaffolding mechanism, and (G–
I) Interfacial line tension assisted budding. (A) Spontaneous curvature distribution, H, on 

initially flat patch. (D) Normal projection of the bending force at T = 15. (G) Normal 

projection of the line tension force at T = 7. (B, E, H) Shape evolution through time-series 

snapshots of the Y-Z cross sections of the membrane, corresponding to the vertical dash 

lines in (C), (F), (I) trajectory plots of system energy and its competing components.
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FIGURE 6. 
Protein aggregation on a realistic dendritic spine geometry. (A) Mesh of the dendritic spine 

and its boundary elements. (B) Trajectory of protein evolution and components of system 

energy. (C) Mean curvature of the geometry. The normal component of (D) the bending 

force at t = 0, (E) the line tension force produced by the equilibrium protein distribution, 

and (F) the difference in the bending force profile produced by final protein distribution as 

opposed to the initial distribution.
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FIGURE 7. 
Modeling budding from a vesicle driven by the full mechanochemical feedback of 

membrane-protein interactions. (A) Validation of the exactness of the discrete forcing with 

respect to the discrete energy. The terms correspond to forces from bending fb, tension 

area fs, pressure-volume fp, Dirichlet fd, and protein binding fa. μd, μb, and μa are the 

chemical potential of diffusion, bending, and binding respectively. (B) The time trajectory of 

budding dynamics in hypertonic, isotonic, and hypotonic osmotic conditions. (C) The final 

snapshot of the system configuration under hypertonic, isotonic, and hypotonic conditions. 

(D) Similar geometries to those shown in (C) have been observed in experiments by Saleem 

et al. (59).
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TABLE 2

Glossary of commonly used symbols and conventions

A. Geometric primitives

ℳ smooth or discrete 2-manifold

r ∈ ℝ3 embedded coordinate of ℳ

l edge length

∠ corner angle

φ dihedral angle

A area of mesh cell,

e.g., face Aijk, edge Aij and vertex Ai

n surface normal

B. Surface integral

∫ a integrated quantity over mesh

cell; e.g., Aiai or Aijkaijk

∑vi sum over all vertices vi of the mesh

∑eij sum over all edges eij of the mesh

∑fijk sum over all faces fijk of the mesh

∑vj ∈ N(a) sum over the vertex vj in the neighborhood of a

∑eij ∈ N(a) sum over the edges eij in the neighborhood of a

∑fijk ∈ N(a) sum over the face fijk in the neighborhood of a

C. Tensors

x ∈ ℝ scalar quantity

xindex
type

sub- and super-script convention;e.g., ∫ f i
b

 is

the bending force for vertex vi

x ∈ ℝ3 vector quantity

x = {xi} (n×l) indexed scalar quantity

x = xi (n×3) indexed vector quantity

X matrix or tensor quantity

D. Derivatives

∇ r shape derivative

∇ϕ chemical derivative

∇θ surface gradient

ȧ time derivative
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Δs Laplace-Beltrami operator

E. Physical variables

E energy

f force density

μ chemical potential

H mean curvature

K Gaussian curvature

A surface area

V enclosed volume

. preferred state;e.g., H is the spontaneous curvature

ϕ ∈ [0,1] protein density parameter

λ membrane tension

ΔP osmotic pressure across the membrane

κ bending rigidity

κG Gaussian modulus

KA stretching modulus

KV osmotic strength constant

c molar ambient concentration

n molar quantity of enclosed solute

η Dirichlet energy constant

ε adsorption energy constant

ξ membrane drag constant

B protein mobility constant
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TABLE 3

Parameters used in section “Protein aggregation on the realistic mesh of a dendritic spine”

Parameters Values

ϕ 0 0.1

κc 0 nN · μm

Hc 10 μm−1

B 3 nN−1 · μm−1 · s−1

η 0.01 μm · nN
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TABLE 4

Parameters used in section “Membrane dynamics with full mechanochemical feedback” for models with full 

mechanochemical feedback

Parameters Values

ϕ 0 0.1

κc 8.22 × 10−5 μm · nN

Hc 10 μm−1

KV 0.5 nN · μm

KA 1 nN · μm−1

B 3 nN−1 · μm−1 · s−1

ξ 1 nN · s · μm−1

ε −1 × 10−3 nN · μm

η 0.1 μm · nN

V 2.91, 3.95, and 4.99 μm3
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