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Abstract: The aim of this work is to use IIoT technology and advanced data processing to promote
integration strategies between these elements to achieve a better understanding of the processing
of information and thus increase the integrability of the human-machine binomial, enabling ap-
propriate management strategies. Therefore, the major objective of this paper is to evaluate how
human-machine integration helps to explain the variability associated with value creation processes.
It will be carried out through an action research methodology in two different case studies covering
different sectors and having different complexity levels. By covering cases from different sectors
and involving different value stream architectures, with different levels of human influence and
organisational requirements, it will be possible to assess the transparency increases reached as well
as the benefits of analysing processes with higher level of integration between them.
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1. Introduction

Value chains associated with Industry 4.0 (14.0) are formed by complex cyber-physical
networks in which humans and machines process information efficiently to supply a
customer with the desired product [1-3]. 14.0 and industrial internet of things (IloT)
describe new paradigms for integrated human-machine interaction [4,5]. Both concepts
are based on intelligent, interconnected cyber-physical production systems that are capable
of controlling the process flow of industrial production. Since machines autonomously
make many decisions and interact with production planning and manufacturing systems,
the integration of human users requires new paradigms [6].

IIoT technology is significantly contributing to enlarge the data available for many
manufacturing processes. In an 14.0 context, such as the IloT [7,8], these data are produced
by decentralized sources such as thousands of sensors in factories [9], i.e., the data are
distributed over networks [10]. With the classical already collected dataset related to
sensors located at the processing machines, now it becomes possible considering additional
data coming from wearables of human operators [11]. The number of edge devices that
are currently developed to support fitness and health monitoring is enormous [12]. Many
of them aim at measuring body parameters to offer care related services [13]. At the
same time, a lot of smart health applications are developed, often making decisions or
offering feedback based on sensor data processing. Application developers often struggle
to integrate and plug in novel sensor technologies, becoming available on the market at a
fast pace [14]. These technologies enable describing processes in a more integrated way;,
including many more potential sources of variability [8]. Although the advantages are
rather evident, still there are significant challenges to be better identified and faced when
new useful solutions regarding knowledge and management are foreseen.
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In the manufacturing IloT 14.0 domain, the 14.0 vision has promoted smart manufactur-
ing and smart factory concepts by augmenting all assets with sensor-based connectivity [15].
These intelligent sensors generate a large volume of industrial data helping to create digital
twins (defined as a digital replication of both living and inanimate entities that enable
seamless data transfer between the physical and virtual worlds) as support for a live mirror
of physical processes [16,17]. Within this approach, the ambition is to capture the process
variability, being able to process all relevant information by big data analysis on cloud
computing so that manufacturers are able to find manufacturing processes’ bottlenecks,
identify the causes and impacts of problems in such a way that effective implementation
of measures becomes useful either for product design or for manufacturing engineering
including maintenance, repair and overhaul [18].

A critical aspect to be considered when the previous interest is addressed is the human
influence on the processes. There is a gap between the information collected by the IIoT
devices and their capability to capture the causes influencing process variations. This human-
machine symbiosis presents great potential advantages, since on the one hand the human has
a great cognitive flexibility that the machine lacks, while on the other hand the machine has
a great computational capacity superior to the human [19]. However, there are also voices
warning of the potential dangers of the bionization of human tasks [20,21]. Fundamental
requirements for the future design of human—machine interactions in productive assembly
systems are now being identified [22]. Expectations generated by Operator 4.0 (O4.0) in this
context have implications for empowerment and management models [23]. The technical
implications of realising a human-machine symbiosis have to enable the use of trustworthy
and ethical artificial intelligence (ethical AI) [24].

The aim of this work is to use IloT technology and advanced data processing to
promote integration strategies between these elements to achieve a better understanding of
the processing of information and thus increase the integrability of the human-machine
binomial, providing appropriate management strategies for these configurations [25-27].
Thus, the major objective of this paper is to evaluate how human-machine integration helps
to explain the variability associated with value creation processes. Therefore, the research
question being addressed in this paper can be formulated as RQ1: The I4.0 technology allows
to increase the transparency to understand process variability when it is used to integrate different
sources of uncertainty.

In particular, we are interested in the case of natural intereffects between human
workers and operating machinery. The approach selected is to implement an action
research methodology through two different case studies covering different sectors and
having different complexity levels, and the presentation is structured into four further
major sections. First, in Section 2, we outline the main lines of research that deal with the
human-machine integration in an 14.0 environment. Second, in Section 3 we present the
results of two case studies that illustrate the usage of IloT technology when integrating the
human-machine binomial. Third, in Section 4 we discuss the possible implications for the
management of creating processes. Finally, in Section 5 we present the conclusions, further
steps, and possible limitations of this work.

2. State of the Art

Strategic organizational design is a scientific field [28,29] that studies the relationship
between organizational entities and how its structure and functionality affects its perfor-
mance [30]. Under the organizational network paradigm, modern organizations can be
understood as a symbiotic socio—technical ecosystem of social networks [31] that interact
with ever increasingly complex networked cyber-physical distributed interconnected sen-
sors [32], whose readings are modelled as time-dependent signals on the vertices, human
or cyber—physical, respectively.

Under this evolutionary information flow perspective [33], organisations can be ad-
equately modelled [34]. One of these models is the Human-Cyber—Physical Systems
(H-CPS) model, that integrates the operators into flexible and multi-purpose manufactur-
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ing processes. The primary enabling factor of the resultant O4.0 paradigm is the integration
of advanced sensor and actuator technologies and communications solutions. Although
process automation reduces costs and improves productivity, human operators are still
essential elements of manufacturing systems [35]. As discussed in [36], the degree of
automation does not directly imply an enhanced operator performance, because handling
human factors requires more complex dimensions related to human-to-machine interac-
tions, including robotics. The integration of workers into an 14.0 system consisting of
different skills, educational levels, and cultural backgrounds is a significant challenge. The
new concept of O4.0 was created for the integrated analysis of these challenges [19].

The concept of O4.0 is based on the so-called H-CPSs designed to facilitate cooperation
between humans and machines [36]. Although specific contributions regarding different
dimensions have been proposed by different authors [23,37] still there is a significant
room for improvement when an integrated perspective is required, because the available
wearable devices lack of enough level of integration. In current industrial practice, most
applications are developed in isolated circumstances aimed at addressing specific problems.
Therefore, there is a gap in creating human-centred systems able to promote an operator
learning context not only relying on single parameters but also providing a meaningful
articulated set of relevant parameters both in the short and long term [37].

14.0 envisions a future of networked production where interconnected machines and
business processes running in the cloud will communicate with one another to optimise
production and enable more efficient and sustainable individualised /mass manufacturing.
Inside such a vision, there are different requirements to be considered, including cloud
computing, data pseudo-anonymisation, as well as data micro-services. The shop-floor in
virtual space is the reconstruction and digital mapping of the physical devices at shop-floor
level. They exchange data/information/knowledge through by using a big data storage
and management platform.

These shop-floor-management platforms construct a virtual shop-floor system that
monitors the working progress and working status of assembly stations, products, and
manufacturing resources in the physical shop-floor so that it can be dynamically, realisti-
cally, and accurately mapped in the virtual space through cloud services [38]. The main
challenge to developing shop-floor in virtual spaces is addressed is the complexity of the
IIoT solutions, as they suffer from poor scalability, extensibility, and maintainability [39,40].
In response to those challenges, microservice architecture has been introduced in the field
of IIoT application, due to its flexibility [41], lightweight [42] and loose coupling [43].

The evolution of the human-machine integration that allows benefiting from the
different information processing capabilities of both parties has been investigated in this
context in a comprehensive manner [5]. Extensive and intensive research has shown
that on the one hand, humans in shop-floor management environments in 14.0, have a
holistic problem-solving capability where several brain areas are activated for problem
solving [44—46], however humans have a limit to the cognitive load they can compute
that affects their performance [47,48]. On the other hand, with the advent of artificial
intelligence, machines are increasingly capable of performing a massive processing of
information that can make up for human deficiencies: one approach is to use the machine,
having greater computational capacity to reduce the cognitive load of humans [49-51],
another approach has been to create a semantic framework that allows for machine recom-
mendations for human problem-solving related to manufacturing tasks [52,53], while other
scholars have proposed an open source web-based protocol to enhance inter-operability
between human and machine assets [54]. The problem with all these proposals can be summa-
rized in the fact that they try to adapt either the machine to man or vice versa, and as a natural
consequence, they obviate a symbiosis between both forms of information computation.

Although previous research studies have addressed aspects related to human-machine
integration, they were performed mainly from a dominant perspective, including process
development design [55], but also analysing the relationship between management prac-
tices and Industry 4.0 as in [56]. However, a low number of contributions were focused on
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how a more integrated view provided with the help of 14.0 allows to better understand
causes of process variability, and this paper aims to contribute to reduce this gap.

3. Case Studies

As a first step to evaluate the effect of human-machine integration in I4.0 environments,
two case studies are used. As argued by Byrd and Turner [57], a single case study can be seen
as the only possible building block in the process of developing the validity and reliability
of the proposed hypothesis. Following the recommendations of Eisenhardt [58], a clear case
study road-mabp is followed for each one of them. This road-map has several phases:

Scope establishment;

Specification of population and sampling;
Data collection;

Standardisation procedure;

Data analysis.

ARl

3.1. Case Study 1. Reverse Logistics Process. Near Field Communication

In this case study, we focus on studying the variability experienced by a reverse
logistics collection process of steel scrap, in which a human driver in a truck covers
different routes and time periods. In particular, we concentrate on merging relevant and
difficult to evaluate aspects such as the state of the drivers, their operational working
conditions, and other health-related parameters with data related to the machine elements
used to perform the logistics tasks.

3.1.1. Scope Establishment

The ambition in this case is to merge technologies covering different aspects as a way to
better define the influence of different factors. We placed these devices on the human worker
and we considered that they do not affect their work, which can be performed normally.

Integration of data flows is relevant to produce process-related information, making it
possible to extract behavioural rules.

3.1.2. Specification of Population and Sampling

In this case study, we analysed the data of 5 users sharing 3 trucks, performing
daily routes in 3 shifts. We monitored the data are monitored on a per second basis, but
aggregated them by day to ensure a more consistent analysis.

3.1.3. Data Collection

The initial goal is to assess the technologies themselves in a real case implementation,
which include, as shown in Figure 1:

¢  Health-related parameters are gathered through non-invasive Bluetooth Low Energy
(BLE) devices. In this study, we consider as irrelevant the effect that the fact that their
health is being measured could have on human behaviour.

¢ Trucks’ condition monitoring is gathered through solid state based devices.

*  Near-field communication (NFC) Technologies.

Specific Android based applications have been developed to enable data collection
and sensor fusion [59], as well as the integration of the NFC tags with the process logic in a
consistent way [60] through a mobile phone.

Specifically, from MongoDB [61], we have created a platform for storing vehicle driver
wristband data. They are organized by date (day) and MAC identification of the wristband.
We have also created a read user in the MariaDB manager cluster system, a community-
developed fork of the MySQL relational database management system [62], which stores
lower frequency data from different sensors and web services. Every few minutes they
run processes that load data into their databases which can be accessed with a certain user
and password.
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Figure 1. Some devices implemented in the case study 1. Smartbands to collect stress levels on top
subfigure and Single Board Computers with appropriate plugin sensors on bottom subfigure.

3.1.4. Standardization Procedure

The key performance indicators (KPIs) measured are standardized over the whole
management system to ensure a comparable framework in which several processes can be
benchmarked against each other. A list of the measured KPIs and its meaning is depicted
in Table 1.

Table 1. Monitored KPIs Case Study 1.

Name Meaning
date date for the record.
shift Number of shift. 1: 06:00-14:00; 2: 14:00-22:00; 3: 22:00-06:00+1
plate Truck plate ID.
user Anonymous user ID (pseudo-anonymity for the truck driver).
idcycle Number of cycle in the working day.
kpi_unload Duration in minutes to unload the truck at the headquarters.
kpi_tripl Duration in minutes from headquarters to customer facilities for collecting the scrap.
kpi_customer Duration in minutes inside the customer facilities.
kpi_input From customer entrance to loading point.
kpi_output From loading point to the exit.
kpi_load Duration of scrap loading process.
kpi_trip2 Duration in minutes from customer facilities for collecting the scrap to headquarters.
kpi_total Duration of the whole cycle without headquarters movements.
kpi_tot_cycle Duration of the total cycle.
weight Scrap weight.
t2 Absolute time for starting the cycle.
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3.1.5. Data Analysis

To perform the analysis of the KPIs, a preliminary analysis of the coefficients of
variation (CV), as the ratio between the standard deviation and the mean of the KPI.
It becomes interesting to see how the CV is much more sensitive to the rather distant
multimodal structure. To avoid such effects, the coefficient interquartile of dispersion
(CQD) was introduced. Figure 2 shows that some KPIs have the largest CQD and these
KPIs are good advisors for the variability of processes. Therefore, attention will be given
to the reasons for such variability and to do this a paired view of the KPIs is presented in
Figure 3.

175 mm CV
B CQD
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Figure 2. CV and CQD per variable in case study 1. Units for CQD are same that for original variables
(see Table 1).

To assess the variability in more detail, it was decided to analyse records obtained
because of the daily activity, by assigning to each variable its quartile class (see Table 2),
additionally class-oriented variables such as Shift, TruckPlate and DriverID were included
to represent all relevant elements potentially linked to process variability (see Table 3). In
this way, we transform the records of KPIs related to the same operation cycle in terms of an
orchestrated list of KPIs quartiles that can be then extended to all operations, creating a sort
of item list. The goal is to apply data mining (DM) to obtain potentially useful, previously
unknown, and ultimately understandable knowledge from the data. Association rule
mining is one of the important portions of data mining and is used to find interesting
associations or correlation relationships between item sets in mass data (item list) [63].

To apply the DM association rule technology, the selected algorithm was FP-Growth
(frequent-pattern growth), which is an improved algorithm of the Apriori algorithm put
forward by [64]. It compresses data sets to a FP-tree, scans the database twice, does
not produce the candidate item sets in mining process, and greatly improves the mining
efficiency [65].
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Figure 3. Correlation between KPIs in case study 1. Units for original variables were defined at Table 1.

Table 2. Quartile ranges for the interesting KPIs.

KPI (Unit) Min Q1-Init Q2-Init Q3-Init Max StDev
ideycle (h) 1.000000 1.000000 1.000000 2.000000 5.00000 0.945672
kpi_customer (h) —0.801667 0.730278 1.187360 1.821110 5.44750 0.961633
kpi_input (h) —0.905833 0.574653 1.036945 1.656458 5.29806 0.940865
kpi_load (h) —1.217780 0.050208 0.063750 0.079792 1.97444 0.151037
kpi_tot_cycle (h) 0.000000 1.283052 1.745555 2.393260 5.34778 1.047631
kpi_total (h) 0.000000 0.534722 0.571111 0.626667 3.23611 0.228157
kpi_trip1 (h) 0.000000 0.259653 0.281805 0.313402 1.94278 0.123308
kpi_trip2 (h) 0.000000 0.267500 0.284722 0.304791 2.88056 0.177552
weight (Kg) 0.000000 5830.000000 6960.000000 8245.000000 28,780.00000 5271.877027
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Table 3. Itemlist from the process records to be used for rule construction.

ItemListID ItemList
1 (Plate_01, U_1, Shift_Q1, idcycle_QO, kpi_customer_QO, kpi_input_QO0, kpi_load_QO0,
kpi_tot_cycle_QO, kpi_total_QO, kpi_tripl_Q1, kpi_trip2_Q0, weight_Q0)
2 (Plate_02, U_4, Shift_Q1, idcycle_QO, kpi_customer_QO, kpi_input_QO, kpi_load_QO,
kpi_tot_cycle_QO, kpi_total_Q3, kpi_tripl_Q3, kpi_trip2_Q3, weight_Q3)

After creating the item list, mining for rules having limited support but high confi-
dence can start. Rules do not extract an individual’s preference, rather find relationships
between the set of elements of every distinct transaction. This is what makes them different
from collaborative filtering. Normally, rules exhibiting a high level of support are the
so-called “well-known rules’ the people involved in such activities are familiar with, but
those having low support, although their confidence becomes even higher, are harder to
learn and it is where DM can help to unveil those unknown behaviours.

In our application case, the threshold for support was established at 15% and the
confidence threshold was established at over 95%. As a significant variability in CQD
appeared regarding kpi_tot_cycle, which actually reflects all operations, it could be interest-
ing to look for explanations with its highest range (kpi_tot_cycle_Q3) and the lowest one
(kpi_tot_Cycle_QO0).

The relevant factors and combinations can be better understood, and filtering the right
hand side (RHS) to contain kpi_tot_cycle_Q3 it is possible to find what Table 4 presents.
Similarly, lower values for the same KPI have been analysed with the same technology;,
where the findings are presented in Table 5.

Table 4. Rules explaining the Q3 for the kpi_tot_cycle, where “means logical and.
Antecedent_STR Consequent_STR Confidence
9 kpi_customer_Q3"kpi_total_Q3 kpi_tot_cycle_Q3 1.000000
10 kpi_input_Q3/kpi_total_Q3 kpi_tot_cycle_Q3 1.000000
15 kpi_input_Q3"kpi_total_Q2 idcycle_QO0"kpi_customer_Q3"kpi_tot_cycle_Q3 0.967742
16 kpi_customer_Q3”kpi_input_Q3/kpi_total_Q2 idcycle_Q0”kpi_tot_cycle_Q3 1.000000
18 idcycle_QO07kpi_input_Q3/kpi_total_Q2 kpi_customer_Q3”kpi_tot_cycle_Q3 0.967742
22 kpi_customer_Q3"kpi_total_Q2 idcycle_QO0"kpi_tot_cycle_Q3 1.000000
24 idcycle_Q0"kpi_customer_Q3/kpi_total_Q2 kpi_tot_cycle_Q3 1.000000
58 kpi_customer_Q3/kpi_input_Q3/kpi_trip2_Q3 kpi_tot_cycle_Q3 1.000000
60 idcycle_QO0"kpi_customer_Q3"kpi_trip2_Q3 kpi_tot_cycle_Q3 1.000000
62 idcycle_Q07kpi_input_Q3"kpi_trip2_Q3 kpi_tot_cycle_Q3 0.975000
Table 5. Rules explaining the lower quartile values for the kpi_tot_cycle.

Antecedent_STR Consequent_STR Confidence

1 idcycle_Q1/kpi_customer_QO0 kpi_tot_cycle_QO0 0.972973

2 idcycle_Q1/kpi_input_QO kpi_customer_QO0”kpi_tot_cycle_QO0 0.972222

3 idcycle_Q1/kpi_customer_Q0”kpi_input_QO0 kpi_tot_cycle_QO0 0.972222

Based on the more than four hundred items in the item list, more than 250000 rules
have been distilled when the minimum support is chosen to one percent. Analysis of the
selected RHS rules presented in Tables 4 and 5 show several interesting aspects, such as
that there are rules discovered that sometimes are meaningless from the practical business
point of view, as in the case of Table 5, because the second rule assumes that the time spent
by the customer during the collection of materials is a consequence, and it is part of the
process as an antecedent and never a consequence. It also happens in Table 4 with rules 15,
16, 18, and 22.
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Another relevant aspect is that the discovered rules establish a relationship between
the total cycle KPI and the input time KPI as well as with the time used to collect materials
at the customer’’s site. This is interesting because those two KPIs were the most sensitive to
CQPD in Figure 2.

3.2. Case Study 2. Integration between Robotics and Human Oriented Processes

In this case study, there are three different processes involved, each of them with dif-
ferent levels of automation and human operator engagement. In Figure 4, the sub-process
design is presented, where the manual forming of different components are manufactured
and assembled in six different configurations (Rework station). After assembling, robotic
laser-based quality control stations (SCAN units) verify the geometric tolerances of each
part and when they do not pass the quality checks, they are routed back for manual repair-
ing, getting integrated again for checking afterwards. After successful robotic inspection, a
set of three pairs of manual inspection stations are configured to finally assess the parts
(CHECK units) and attach the individual report before packaging and delivering products
to customers (Final Gate Storage).

N T

Rework

EOL GP 12 I

operators

1 Operators 4 Operators 3 FG —

Shifts/week: | 14

Shifts [Shifts/week: | 14 Shifts [Shifts/week: | 14  Shifts
Shift Time: 12 _h [Shift Time: 12 _h [Shift Time: 12 _h
C/O: FIFO C/O: C/O:
OEE:! OEE:! OEE:!
CT: 120 s CT: 55 s CT: 120 s

PT: 120 s PT: 300 s PT. 120 s

Yes [Shared: Yes [Shared: Yes

Stations:

8 [Stations: 3

Figure 4. Value Stream Design (VSD).

Here there are different sources of variability as per part reference. First of all, since
part manufacturing involves a relevant amount of manual work and component integration,
including robotic welding stations, the number of goods per time unit has some uncertainty.
The second source of variability is because of the robotised inspection, as the quality criteria
are rather ambitious, because the success ratio is not constant and requires significant
reworking and reinspection activities. The last and most visible impact is for CHECK units,
where the shortage of parts after a geometrical check on SCAN units damages the whole
performance. Shortage of parts to be processed at CHECK stations hinders the productivity
of these workers, while a type of rigid planning is imposed because of labour regulations
and the required union assessment before adoption. Therefore, since it is not possible to
dynamically allocate workers to different working places, then the management reaction is
to protect the CHECK capacity increasing the intermediate buffer, which is against the lean
philosophy and it complicates the shop-floor layout.

3.2.1. Scope Establishment

To illustrate the significance of the issues captured by this study case Figure 5 presents
the variability, where neither the finally delivered number of parts nor deviations from
what it was initially planned are regular enough.

The strong variability found per day and shift looks interesting as there are robotic
operations involved (SCAN units) (see Figure 4 which should add regularity because the
more predictable cycle time values). Indeed, due to the labour regulations enforced in
the country where such a facility operates, such variability (uncertainty) forces to allocate
resources that sometimes are not able to perform as expected, which compromises the
business dimension of the activity as a whole, either because of insufficient production or
lack of productivity.
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Figure 5. Variability between planned and delivered parts per shift: Morning (MS) and Night Shifts (NS) during Febru-

ary 2021.

3.2.2. Specification of Population and Sampling

To carry out a meaningful analysis, different datasets were collected inside individual
processes daily based either on the automation system itself (SCAN units) or by slicing
the time in a range of 30 min for manual operation of CHECK units. After several months
of data, conclusions can be given in a clearer way. It was accepted that automation of
the laser measuring system (SCAN units) continuously ingests products without delay,
except those legal stops that are allowed for production, such as lunch time, which are
well established. Therefore, more than 90,000 part components have been analysed, as they
have been identified as the reference entity.

3.2.3. Data Collection

Two different data streams have been considered as an example for the process-
oriented analysis involving both automatic and manual operations, which require more
integration and better understanding from the managerial point of view.

The first data stream is related to robotised inspection workplaces, where based on the
previous hypothesis it is possible to estimate the most frequent time duration for inspecting
each reference successfully, and based on it, to estimate production losses at such stations,
making it clear that earlier or later, such production losses will impact the final manual
inspection units.

The second one is coming from manual processes and to perform a consistency
analysis, fixed time slots where defined and production per slot was measured. Time ranges
of 30 min where analysed, looking to identify where production losses occurred. Since
every inspection is around three minutes including handling and shipping, that means
nine items per every half hour. Therefore, such a ratio was considered the gold standard.

3.2.4. Standardisation Procedure

Standardisation plays an essential role here as it enables to define what the expecta-
tions for production are, and how big deviations appear.
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By observing the delivery time of the individual parts, measured from the previous
successful inspection, we can identify the performance losses occurring when the current
part lasts for longer than expected as the most frequent value found for that part reference.
This information is presented in Figure 6 just for a few references. Similar behaviour
was identified for all different references regularly produced, and based on the findings,
conclusions can be derived with implications at the managerial level.

Reference
3000 A REFO1
REF02
REF03
25001 REF04
(2]
m
O 2000 +
o
‘G
3 1500 -
€
=}
Z
1000 A
500 A
0 “4"-.\ —T T T T T
0 50 100 150 200 250 300

Number of Seconds

Figure 6. Standardisation for process duration at robotised inspection depending on the reference.

Indeed, when standardisation covers several processes at once, additional and not
previously detected sources of errors appear, mainly because the analyses were carried out
by individual process units, therefore, the derived impacts become hidden. It is related to
references not matching the naming rules because of spelling issues, or different labelling
rules for different working units. Such lack of integrity along the value chain does not
help to provide a comprehensive perspective of the whole process and this is because
standardisation is so relevant during the structured analysis.

3.2.5. Data Analysis

Real evidences show a high impact in the performance of the whole set of processes,
where the nonproductive time in the last process exhibits significant variability depending
on the process but also depending on the shift, as depicted in Figure 7.

For the robotised inspection units, losses can be also estimated, as depicted in Figure 8

A relevant aspect evidencing that the shortage issues observed at CHECK units are
actually due to the previous production steps can be observed from Figure 6, and it can be
observed equally for any of the more than fifteen different part references manufactured at
the shop-floor. It is derived from the histogram used to identify the effective time required
for a reference to be successfully processed.

If the part reference REF01 is considered, it becomes clear that in most of the cases
successful processing of this reference at the SCAN units lasts for 33 s. However, it is
possible to realise that there are a relevant number of cases where it lasts for a shorter time,
and in some cases it takes for longer. The main reason for shorter times is because when
the robot decides the part fails, it does not continue to explore all positions and it rejects
such a part, expending a shorter time than when the part is correct. On the opposite side,
there are a significant number of parts lasting for 50 and 60 s, which means that after the
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last part successfully processed, there were several others with the same reference failing
in fulfilling the QC requirements, therefore, after a while another part was OK but it took
much longer than 33 s. From this situation, it becomes evident that SCAN units are testing
a very relevant number of parts requiring reworking and demanding inspection several
times. The direct effect of loosing efficiency is that the situation hinders process stability
for the next production unit.
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Figure 7. Production Losses at last inspection station per production line and Shift.
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Figure 8. Production Losses at SCAN inspection units per production line and Shift.

From the comparative analysis between SCAN and CHECK inspection units, it be-
comes clear how mitigation strategies such as enlarging part buffers between units have
kept the situation bounded but with a high level of variability, but the effectiveness of
SCAN continues to get degraded over time, mainly because managers are much more
focused on the more evident problem of part shortage.

It is also worth to mention the different behaviour for the two robotic inspection lines
presented in Figure 8, where SLO1 is more stable and SL02 shows that it is not under control
neither for the morning shift nor for the night one.

4. Discussion

When the first case study is considered, the integration of data from different sources,
including routes, position, indoor and outdoor climate, NFC data provides accountability
for different process steps. The integration was carried out because of the 14.0 principles
and it allows to collect evidences capable of explaining process variability with increased
confidence than ever before. Just to illustrate such reality, before deploying this project,
managers in the company were explaining the variability in process duration because
of weather conditions or because of driver attitudes, and in some cases because of route
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congestion. Clearly, they based their analyses mainly on beliefs or personal experiences,
but after the analysis carried out, it becomes obvious that the main sources of variability
are not because of those reasons but because of bottlenecks in the input weighting system
at the customer’s site. With lower frequency but yet importantly, the time spent inside
the customer site is also significant, but it was not the particular shift, the truck or the
driver involved.

The deployed technology and analysis capability can be easily repeated on a regular
basis, trying to inform managers about the effectiveness of the adopted measures, but also
allowing to look for different objectives (RHS filtering), or even to predict the duration of
specific process steps based on different parameters.

Regarding the second case study;, it is needed to recognise that the processing logic is
here rather complex because the components come from different manufacturers and at the
shop-floor there are different stations involved in the whole Value Stream Mapping (VSM)
producing different additional components, all of them welded and assembled at other
production units, where the final quality control (QC) is done, both on SCAN units and
then on CHECK ones. Because of such nonlinear circuit, since when the part is rejected due
to QC reasons, it is extracted, reworked accordingly, and resubmitted, as well as because
of the previously explained complex process with material flow through a large amount
of steps and the parts becoming mixed between stations and part variants, it is very hard
to track the different causes for failures. Therefore, the classical applications of Pareto
techniques to identify main sources of failures do not work.

Sources of failure can be generally related to different root causes including workers
in previous production stations, but also to the process and inspection systems, having
more than one hundred of those identified causes, non-regularly distributed over time or
part reference.

In this complex environment, only the 14.0 approach becomes effective, as the system
collects information from workers’ performance per working place, the period of time,
and references produced, while additional postprocessing is needed because sometimes
the number of nonconformity events per part is much larger than expected, for instance
additional bending of the part can negatively impact on different distances and angles
between points. It also collects information from the automatic scanning system and from
workers” wearable elements, helping to complement the process perspective.

The advantage of the adopted approach as described in this case is that it increases the
transparency of the processes as well as the effectiveness of the managerial decisions made.
Instead of relaying on impressions from different people which, although very skilled,
also have their own biases, the tools provide an agnostic perspective on the process and
their impact.

Just as a small example, it was found that as opposite to the initial thoughts suggested
by the internal experts, worker participation at CHECK units looked to moderate the
impacts of uncertainties and part shortages. This is because different strategies can be
promoted looking to minimise wasted extra capacity in specific periods, while automatic
systems are much more rigid and require technical interventions lasting for a longer period
of time. Therefore, human contribution provides significant flexibility to the processes,
although the lack of production is still there.

The interest of the company now is to better integrate previous production steps,
which in the beginning seemed rather independent, but new technologies are required to
get them much more integrated into the analysis, continuing increasing the transparency.

5. Conclusions

This paper tries to highlight the significant contribution of the 14.0 framework to
hybrid processes, where automated but also manual processes are required to cooperate
and where most of the management strategies based on the "split and win” approach fail to
provide consistent evidences to improve the business.
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Major contribution is related to increasing transparency from an agnostic perspective,
avoiding bias because of beliefs or other reasons. Another significant contribution is
the integrative perspective brought, as it enables rather easily to go through a very high
number of items, being processed in different ways and different places and in different
time periods, connecting all points much more consistently than even before. In addition,
a hidden benefit is connected with the incremental characteristic of the analyses because
of the different requests raised by the managerial aspects can be better addressed with
the additional information provided by means of the 14.0 and the integration of process-
oriented data streams. This is relevant because providing answers to a managerial question
takes the interest towards the next one, which connects with scalability of the research.

A relevant aspect highlighted by this research is that a consistent, deep, and transpar-
ent analysis can be carried out, still protecting workers’ identities by avoiding explicitly
placing the focus on them, as required by the ethical Al principles.

It is needed to recognise that this paper is not claiming that the application of ex-
tended 14.0 technology to process-oriented integrated data flows will get the same level of
benefits, because it will be case dependent (process and management). By exploring the
presented two cases, the evident limitation related to the scarcity of the sample appears
clearly. However, as they cover different business units from different sectors (logistics
and production), with different complexity levels, and they brought abstract properties
increasing the existing prior knowledge about the reasons for process variability, we believe
they can be applied in other cases as well, with a similar increase in the existing knowledge.
Based on these facts, this paper found enough support to positively answer the identified
research question.

In terms of future activities, since the interests of companies are business driven, but at
different speed. In the first case, they are interested in developing forecasting models and
learning about their robustness able to better schedule the logistics activities, while in the
second one they are just focused in increasing the understanding of the complex production
process they are managing. In this particular case, they are aligned with requirements from
the I4.0 paradigm, which is rather pervasive and to check influences from any source, looks
to ingest significant behaviours from all relevant shop-floor units. Indeed, to complete the
interaction requirements tracking, some wearable devices are under consideration, since
they can help to check process variability and related effort from workers.

Finally, a common request is to bring a convenient way to present relevant information
to managers in an automatic way and rule driven. To this end, the current implementation
uses light clients with plotly and trello tools but probably they will come up with additional
requirements in line with process evolution as well as the need for improvements based
on the decisions made. Therefore, integrating forecasting capabilities as well as a more
integrated way to describe the VSM are under further investigation. All of them look
to contribute to the health of the VSM, as an extension of the well-known concept of
assets” health.
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The following abbreviations are used in this manuscript:

Al Artificial Intelligence

BLE Bluetooth Low Energy

CQD Coefficient Interquartile of Dispersion
Ccv Coefficients of Variation

H-CPS Human-Cyber-Physical Systems

14.0 Industry 4.0

IIoT Industrial Internet of Things

KPI Key Performance Indicator

NEC Near-field communication

04.0 Operator 4.0

VSM Value Stream Mapping

ethical Al Ethical Artificial Intelligence

DM Data Mining

FP-Growth  Frequent-Pattern Growth

RHS. Right Hand Side of an Association Rule
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