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Change detection based 
on unsupervised sparse 
representation for fundus image 
pair
Yinghua Fu1*, Xing Zhao1, Yong Liang2, Tiejun Zhao3, Chaoli Wang1 & Dawei Zhang1,4*

Detecting changes is an important issue for ophthalmology to compare longitudinal fundus images at 
different stages and obtain change regions. Illumination variations bring distractions on the change 
regions by the pixel-by-pixel comparison. In this paper, a new unsupervised change detection method 
based on sparse representation classification (SRC) is proposed for the fundus image pair. First, the 
local neighborhood patches are extracted from the reference image to build a dictionary of the local 
background. Then the current image patch is represented sparsely and its background is reconstructed 
by the obtained dictionary. Finally, change regions are given through background subtracting. The 
SRC method can correct automatically illumination variations through the representation coefficients 
and filter local contrast and global intensity effectively. In experiments of this paper, the AUC and mAP 
values of SRC method are 0.9858 and 0.8647 respectively for the image pair with small lesions; the 
AUC and mAP values of the fusion method of IRHSF and SRC are 0.9892 and 0.9692 separately for the 
image pair with the big change region. Experiments show that the proposed method in this paper is 
more robust than RPCA for the illumination variations and can detect change regions more effectively 
than pixel-wised image differencing.

Detecting and predicating changes is one of the most commonly encountered low-level tasks in computer vision 
and video processing, the purpose of which is to identify the change regions between the two images of the same 
scene but taking at different  times1. The goal is to identify the set of pixels significantly different between the 
current image and the previous reference image. Generally, the change regions should not contain unimportant 
changes such as differences caused camera motion, illumination variation and nonuniform attenuation. On one 
hand, as the change is of diversity, it is hard to know what kind of change will happen, hence the supervised learn-
ing techniques are often incapable in change detection. On the other hand, since the important and unimportant 
changes vary in different applications, it sometimes makes the algorithms predicate the changes  difficultly2,3.

Given a pair of fundus images named reference image and current image separately, traditional unsupervised 
change detection methods consist of three steps: preprocessing, predicating a difference image and analyzing 
the difference  image4,5. For the preprocessing step, the reference and current images are registered and adjusted 
in the intensity to each other. Then the image pair is compared pixel-pair-wisely to generate a difference image 
and the change regions are segmented from the difference image at last. Many techniques are used to analyze 
the difference image such as thresholding, classification or clustering. The change region heavily relies on the 
quality of the difference  image6.

The preprocessing aims to filter unimportant changes and emphasize important changes of interest, which 
provides a sufficient preparation for producing a clear difference image. Important changes of interests mainly 
include the appearance or disappearance of objects, motion of objects relative to the background or shape 
changes of objects, changes of anatomic tissue structure in medical  images7,8. Many preprocessing techniques 
are designed to reduce or remove unimportant changes such as registration and intensity normalization. 
Accumulated error and different imaging conditions make these technique  challenging9. Choosing the proper 
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preprocessing algorithms to stress important changes and depress unimportant changes is a significant step for 
image pair change detection.

The prediction of change regions mainly relies on pixel-by-pixel comparison such as image difference and 
image quotient in most  applications1,5,10. Image difference is prevalent in most  applications1,5. Image quotient 
is used in remote sensing field to reduce the speckle  noise10. The pixel-by-pixel comparison is usually sensitive 
to illumination variations in the image and strongly dependent on the normalization of illumination. Back-
ground learning and modelling has attracted much  attention4,11–13, which is widely used to detect video sequence 
anomalies from the beginning. The change regions are modelled as the foreground objects and obtained through 
subtracting the learned background from the current  frames14,15. Principal component analysis (PCA) extracts 
the most of similar content linearly from a set of  images12,16 or a  serial7,17 as the background model and filters 
the noise or disturbance.

Robust PCA (RPCA) provides a good estimation for the background model which is robust to the global 
illumination  variations4,18. After sufficiently sampling the learning frames, the illumination variations between 
two continuous frames become very small and are absorbed into the background model. RPCA-based change 
detection method for the fundus image pair extends the reference image into a background serial and then learn 
a robust background model from the extended  frames4. Change regions are obtained by subtracting the current 
frame from the background model. The RPCA method combines the internal illumination correction with the 
illumination normalization between images to reduce the influence of illumination, expands the image pair into 
an image serial with the low-rank component, and then performs low-rank decomposition to obtain the change 
 region4. This method is robust to global illumination, but sensitive to local illumination.

The change detection of image pairs is widely studied in the field of remote  sensing19–21. A change detection 
method based on deep learning for synthetic aperture radar images is  proposed19, which overlooks generating 
the difference image and produces the change probability map. Such technique is robust to the registration error 
and illumination variation, but training the network architecture needs a lot of labelled image pairs which is a 
huge challenge for medical image  analysis22. Insufficient training samples hardly produce the accurate change 
regions. Further more the network architecture is retrained again when used in a different application domains.

In this paper, a change detection method based on unsupervised sparse representation classification (SRC) 
is proposed to produce a clear difference image. Generally, the original image pair without being preprocessed 
has complex illumination variations. The SRC technique models and reconstructs the background patches of the 
current image by sparse representation under a special dictionary composed of local neighborhood patches of the 
corresponding region in the reference imag, and the background of the current image is reconstructed under the 
given dictionary from the reference image. Change regions are obtained by background subtraction at the end.

The contributions of this paper can be summarized in following aspects. First, a change detection based on 
background modelling and subtraction is proposed where the background of the current image is reconstructed 
by the patch-based SRC and the local dictionary is learned from the corresponding region of the reference image. 
Second, the local illumination variations between two fundus images are decreased automatically during recon-
structing the local background through adjusting the representation coefficients in the given dictionary. Third, 
for the big change regions, SRC can provide a coarse location, and it can combine with the other techniques to 
locate the change region with a high accuracy.

Motivation
In most cases, it is difficult to collect a large amount of data from retinal fundus image pairs because some changes 
are rare and it is challenging to predict them. The change has never happened before, the supervised algorithm 
can not predict it accurately, and the unsupervised learning can be used to solve this kind of  problems23,24.

Nonuniform illumination is common in the image pair and has a critical impact on the unsupervised change 
detection  algorithms1,25. Illumination variations bring much distraction on predicating the  change26,27. Many 
researchers put great efforts on designing various models to deal with the illumination  variations28,29. The itera-
tive robust homomorphic surface fitting (IRHSF) is specially conceived to model the illumination for the fundus 
images by calculating the curvature of the retinal  surface5.

For the fundus image pair with the reference image I1 and current image I2 , RPCA-based change detection 
takes the main content of I1 as the background model of I24. The goal of change detection is to estimate the back-
ground of I2 from the reference image I1 , and make the illumination of the estimated background close to that of 
I2 , so as to reduce the interference of illumination variations and generate a clear difference image by subtracting 
the estimated background from I2 . Fu et al.4 combines the inter-image illumination with intensity normaliza-
tion and the intra-image intensity correction together to reduce the intensity distractions and obtain a robust 
background model, as Fig. 1 shows. The first row is the image pair by the intra-image correction technique and 
the second is the normalized image in the left side of Fig. 1 and the red circle marks the attached noise patch.

I1 and I2 are adjusted first to Ĩ1 and Ĩ2 by the intra-image correction technique, then their intensity is normal-
ized to each other according to the following formula:

and

where µi and σi are the mean and standard deviation of the intensity value of Ĩi(i = 1, 2 ) separately. So the image 
pair is adjusted into the pairs at two different intensity levels Î12 and Î21 as the second row of the left image in 

(1)Î12 =
σ2

σ1
{Ĩ1 − µ1} + µ2

(2)Î21 =
σ1

σ2
{Ĩ2 − µ2} + µ1
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Fig. 1 shows. The columns indicate the reference image and the current image separately. The linear interpolation 
in each column, e.g. Ĩ1 and Î12 as well as Ĩ2 and Î21 , is conducted to decrease the illumination variations further 
to obtain a robust background model.

Although RPCA-based change detection takes a great effort to deal with the illumination variations and 
obtain a robust background model between the image pairs, it can’t remove the local illumination distraction. 
In order to get rid of the local illumination, the local background of I2 is modelled by SRC in this paper. The 
background of the current fundus image is estimated and reconstructed patch-by-patch by the dictionary and 
sparse representation with a sliding window as Fig. 2 shows.

The background of the local region patch in I2 is estimated by the neighborhood patches in I1 . Aside from the 
content of the patch, illumination variations between the reference patch and current patch can be corrected by 
the representation coefficients under the neighborhood dictionary in I1 . The main information in I1 is encoded 
and transferred through dictionary mapping, as well as the intensity of the image is automatically adjusted by 
sparse representation coefficient. By doing this, it avoids effectively the distraction of the complex illumination 
on the change regions.

In addition, sparse representation can automatically denoise and is robust to the interference caused by the 
small camera movement and registration error. The SRC-based change detection method takes into account 
the local neighborhood information more effectively than the comparison on point pairs and the global RPCA. 
Hence it detects the change region more effectively and generates cleaner and clearer change regions.

Results
The SRC-based change detection algorithm proposed in this paper is verified by clinical data of retinal fun-
dus images. The retinal image pair is registered by the partial intensity invariant feature descriptor (PIIFD) 
 algorithm30. As shown in Fig. 3, the local dictionary is composed of 25 neighborhood patches of size 25× 25 , 
which are distributed in a square region with a side length of 50 pixels and the center is located on the pixel P′ 
in the reference image, which corresponds to the pixel P of the current image. In this paper, let � = 1

m , where m 
is the total number of pixels of the image.

Figure 1.  Serial expansion by linear interpolation.

Figure 2.  The local reconstruction and dictionary sparse representation of current image patch.
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Clinical data. This paper verifies the proposed algorithm from three pairs of clinical data: a pair of images 
containing small lesions, a pair of images containing complex lesions and a pair of images containing large 
lesions.

The first pair of raw images shown in Fig. 4a,b are from the  literature31, and the resolution of the image is 
338× 276 . Figure 4a is a normal retinal fundus image, and Fig. 4b contains several small lesions. Figure 4c,d are 
the grayscale images of Fig. 4a,b separately. Figure 4f gives the result of background subtraction of Fig. 4d,e,g 
shows the detected change region by a absolute difference image. As Fig. 4f,g shows, the bright dots indicates 
the small lesions not existing in the reference image but significantly different from noise. Figure 4h illustrates 
the groundtruth of the change regions. This experiment shows SRC change detection method has a good per-
formance on detecting small lesions.

The second pair including complex illumination variations shown in Fig. 5a,b comes from the  literature5, 
and the experimental results are shown in Fig. 5e–g. Figure 5a has the dark global intensity and uneven local 
illumination variations in the right side and Fig. 5b has the bright global intensity. The gray images of Fig. 5a,b 
are shown in Fig. 5c,d. The reconstructed background of Fig. 5d and the absolute difference image are presents 
in Fig. 5e,g separately. Figure 5h illustrates the groundtruth of the change regions. Although there are great 
illuminations between this image pair, the reconstructed background has great similarity with Fig. 5d and there 
is less distraction of illumination on the difference image.

The third pair was collected from the ophthalmology clinic of Shanghai Xinhua Hospital, as shown in 
Fig. 6a,b. The current image Fig. 6b contains a large lesion region, and the red circle in Fig. 6a marks the ran-
domly illumination. Figure 6c,d are the grayscale image of Fig. 6a,b separately. Figure 6e is the reconstructed 
background image, and random illumination in the reference image is not used as a background expression. 
Figure 6f gives the difference image of Fig. 6d,e. Figure 6g shows the detected change region through absolute 

Figure 3.  The construction of local dictionary.

Figure 4.  The result of image pair with small lesions. (a) Reference image; (b) current image; (c) grayscale 
image of (a); (d) grayscale image of (b); (e) the reconstructed background of (d) based on the proposed method; 
(f) the difference image of (d) and (e); (g) the absolute difference image of (d) and (e); (h) the ground-truth.
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difference operation, and Fig. 6h presents the groundtruth of the big change region. The detection result shows 
that patch-based SRC method adaptively corrects local and global intensity and locate highlight large lesions 
and is robust to illumination distraction.

Combination of SRC and IRHSF. The above experiments show that the SRC change detection method 
has a good detection effect for images with small change regions, but the detection results are not ideal for the 
cases involving the large change regions. When the lesions of the current image are large, the background recon-

Figure 5.  The result of image pair with complex lesions. (a) Reference image; (b) current image; (c) grayscale 
image of (a); (d) grayscale image of (b); (e) the reconstructed background of (d) based on the proposed method; 
(f) the difference image of (d) and (e); (g) the absolute difference image of (d) and (e); (h) the ground-truth.

Figure 6.  The result of image pair with large lesions. (a) Reference image; (b) current image; (c) grayscale image 
of (a); (d) grayscale image of (b); (e) the reconstructed background of (d) based on the proposed method; (f) the 
difference image of (d) and (e); (g) the absolute difference image of (d) and (e); (h) the ground-truth.
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structed by SRC method still involves much lesion information, it is difficult to detect large, connected change 
regions, as the large bright lesion region shown in Fig. 6g. Since the interior zone of the large lesion can be repre-
sented by subordinate component in the dictionary as a normal structure, the background can’t be reconstructed 
right which leads to the change region in Fig. 6e blurry. However SRC is robust to illumination and can be used 
as a coarse location of the big change regions, and it combines with IRHSF illumination correction together to 
improve the change detection results for the retinal fundus image pair.

IRHSF is a normalized model proposed by Narasimha-Iyer special designed for illumination correction of 
digital retinal fundus  images5. This method has a good effect on correcting the intra-image intensity in the fundus 
image. However it needs to locate and segment the anatomical structure accurately first before calculating of the 
illumination model, which is a great load for modelling. The differential operation based on IRHSF illumination 
correction is one of the main methods for detecting changes in retinal  images5. Combining SRC and IRHSF can 
remove the random illumination distraction and detect more change regions, as Fig. 7 illustrates.

The SRC detection result in Fig. 6g is binarized and morphologically operated to generate a change region 
mask as shows in Fig. 7d, and then superimposed on the IRHSF difference image to filter out the illumination. 
Figure 7a is the global difference detection result after the registration, Fig. 7b is the difference image based on 
IRHSF correction, and Fig. 7c is the result of the RPCA change  detection32. As the above-mentioned analysis, the 
results of all the three techniques are distracted by the random illumination marked by the red circle. Figure 7e 
gives the change region detected by the combination of SRC and IRHSF correction. The detection results fusing 
SRC and IRHSF are cleaner and remove the local illumination.

In order to further evaluate the binary change map (CM) based on the fusion method of IRHSF and SRC for 
the image pair with large lesions, five methods are used for comparison: IRHSF, RPCA,  NRELM33, IRG-McS34 
and  NPSG20. Among them, IRHSF, RPCA, NPSG and the fusion method of IRHSF and SRC generate difference 
images, we adopt the thresholding method to generate binary CMs, the threshold is uniformly set to 0.15. For 
the NRELM and IRG-McS, they directly generate binary CMs. It should be noted that NRELM, IRG-McS and 
NPSG use the codes provided in their papers, and the parameter settings are consistent with the papers. Figure 8 
shows binary CMs generated by these six methods respectively, and the ground-truth is shown in Fig. 7f.

Discussion
The prevalent change detection method for the image pair is image differencing, and the difference image is 
usually generated by subtraction or ratio  operator1,5. Image differencing based on intensity subtraction is sensi-
tive to illumination variations and calibration  errors5,10. Image ratioing compares the image pair pixel-to-pixel 

Figure 7.  The result of the pair of images with large lesions in Fig. 6. (a) Result of global difference method; (b) 
difference image with IRHSF correction; (c) result of RPCA method; (d) change area mask of interest; (e) result 
fusing IRHSF and SRC; (f) the ground-truth.
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on  ratio35–37, which is designed to deal with the speckle noise for the synthetic aperture radar (SAR) images. It 
is robust to noise but fails on detecting small lesions.

Gong et al.35 combine a mean-ratio operation with a log-ratio operation to generate the difference image. Such 
a fusion method takes the dominant advantage in big lesions but the small lesions are filtered as noises. The SRC 
change detection method is more robust than the traditional differential method to the uneven illumination of 
the image, and achieves a good performance in the detection of small lesion changes. For large lesion changes, 
the SRC method is combined with other change detection methods to coarsely locate the change region, making 
the detected change region cleaner and clearer.

This section gives the ROC curve and PR curve of the experimental quantitative analysis of the aforemen-
tioned change detection methods. AUC (the area under ROC curve) designed to evaluate the comprehensive 
performance of the classifier is calculated through ROC curve where TPR and FPR denote the vertical and hori-
zaontal coordinates separately. MAP (the area below PR curve) is used to calculate the average accuracy value 
through PR curve where Precision and Recall denote the vertical and horizaontal coordinates respectively. The 
four indexes are given by the following formulas:

where TP, FP, TN and FN indicate true positive, false positive, true negative and false negative, respectively. The 
four indexes are calculated through statistical analysis of each pixel in the image. Among them, true positive 
means detecting the correct positive sample, false positive means the false detection is true negative sample, 
and so on.

(3)TPR =
TP

TP + FN

(4)FPR =
FP

TN + FP

(5)Precision =
TP

TP + FP

(6)Recall =
TP

TP + FN

Figure 8.  Binary CMs of the pair of images with large lesions in Fig. 6. (a) Binary CM of IRHSF; (b) binary CM 
of RPCA; (c) binary CM of NRELM; (d) binary CM of IRG-McS; (e) binary CM of NPSG; (f) binary CM of the 
fusion method of IRHSF and SRC.
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Figure 9 shows the IRHSF, RPCA and SRC detection results of small lesion image pairs. The reference image 
Fig. 9a from a normal image of DRIVE dataset, and the current image Fig. 9b is pasted small noise spots, and its 
local brightness is adjusted. However before the RPCA and SRC methods, there is no any illumination correction 
except graying the color image pair of Fig. 9a,b.

The detection results of RPCA showed obvious bright spot distraction and the detected small lesions were not 
clear in brightness. The results displayed by SRC were less distracted by the light spots than the RPCA method, 
and the change regions of the small lesions were clear and cleaner. This experiment shows that the SRC method 
is more robust to local illumination variations than RPCA. The complexity of IRHSF is at least M2  order5. 
However the complexity of RPCA and SRC is M order. Therefore, IRHSF illumination correction is usually 
time-consuming and the algorithm is not as efficient as RPCA and SRC.

Six methods: IRHSF, RPCA,  NRELM33, IRG-McS34,  NPSG20 and SRC are used to evaluate binary CMs for 
the image pair with small lesions in Fig. 9. For the difference images generated by IRHSF, RPCA, NPSG and 
SRC, a threshold value of 0.3 is uniformly set to generate binary CMs. NRELM and IRG-McS directly generate 
binary CMs. Figure 10 shows binary CMs generated by these six methods respectively, and the ground-truth is 
shown in Fig. 9e.

The ROC curves and PR curves of the IRHSF, RPCA and SRC are shown in Fig. 11. The AUC and mAP values 
of the SRC method with small lesions are 0.9858 and 0.8647, respectively. Figure 12 shows the ROC and PR curves 
of the IRHSF, RPCA and the fusion method of IRHSF and SRC for the image pair with big change region shown 
in Fig. 6a,b. The blue line indicates the IRHSF method, the green line indicates the RPCA method, and the red 
line is for the result of the combination of the SRC and IRHSF methods. The AUC of these three methods are 
very close, which are 0.99129, 0.96817 and 0.98925 respectively; their mAPs are 0.91955, 0.87026 and 0.96926 
separately. The fusion method of SRC and IRHSF was superior to the the other two methods, and the change 
region generated by the fusion method was more accurate and cleaner than that of the other two methods.

Table 1 shows Intersection over Union (IOU) of binary CMs for the image pair with small lesions shown in 
Fig. 9a,b and big change region shown in Fig. 6a,b. Table 1 shows SRC obtains the highest IOU with small lesions, 
which is 0.7227. After combining with IRHSF, SRC gets the highest IOU with 0.855, which improves the original 
value of IRHSF 0.6179 over 0.235. Star means the fusion result of SRC and IRHSF in Table 1. These results show 
that the binary CM generated by the proposed method are better than those CMs generated by other methods.

Conclusion
This paper presents a change detection method based on SRC for the fundus image pairs. The change detection 
method proposed in this paper considers the more local neighborhood information compared with the methods 
based on point-by-point pairs and global RPCA. It can effectively reduce the distractions of illumination and 
is robust to the interference caused by small camera movement and registration error. The main advantages of 
this method are as follows: firstly, the SRC change detection method can reconstruct the background of the cur-
rent image based on the local region information of the reference image, and then obtain the change region by 
background subtraction; secondly, the SRC method is robust to the distraction of illumination, and the local and 
global illumination variations between image pairs are automatically adjusted by sparse representation, hence 
the change mask is less affected by illumination; Finally, SRC is combined with the traditional change detection 
methods such as IRHSF to detect the change region more effectively.

Figure 9.  Simulated small lesion image pairs results. (a) Reference image; (b) current image; (c) the corrected 
reference image with IRHSF; (d) the corrected current image with IRHSF; (e) the ground-truth; (f) the 
illumination model of the reference image; (g) the illumination model of the current image; (h) detection result 
of IRHSF; (i) detection result of RPCA; (j) detection result of the proposed method in this paper.
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As the size of atoms and the dictionary is important to the change detection and the reconstruction of the 
background, how to choose appropriate atoms to learn a good dictionary which can detect change regions with 
any size is the next work of this paper.

Figure 10.  Binary CMs of the pair of images with small lesions in Fig. 9. (a) Binary CM of IRHSF; (b) binary 
CM of RPCA; (c) binary CM of NRELM; (d) binary CM of IRG-McS; (e) binary CM of NPSG; (f) binary CM of 
SRC.

Figure 11.  ROC and PR curves of three discussed methods based on the image pair with small lesions.
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Methodology
Sparse representation has achieved huge success and big breakthrough in many applications such as face 
 recognition32, action  recognition38, image  processing39 and video background  modelling8. For the image pair 
change detection, sparse representation can adaptively select the optimal image patches from the dictionary 
which is maximum linearly dependent with the reference image I1.

Sparse representation modelling. Given a dictionary D consisting of N p-dimensional atoms, D is a 
matrix with the size of p× N , and a signal x ∈ Rp is a p-dimensional vector. The procedure of sparse repre-
sentation is to adaptively select some atoms that can best linearly represent the input signal x in order to let the 
reconstruction error between the recovered signal and the input signal minimized, which can be formulated as 
follows:

where α∗ is called sparse representation coefficients or sparse encoding of signal x under the dictionary D. �·�1 
denotes the l1 norm, which is used to determine the sparsity of the representation coefficient α40,41. �·�2 denotes 
the l2 norm, and �x − Dα�22 is the square of the reconstructed error between the recovered signal x̂ = Dα and the 
original signal x. � is a hyper-parameter to trade off the equilibrium between the sparsity and the reconstructed 
error. In fact, the larger � is, the more sparse α is and the less the non-zero elements of α are.

For SRC-based change detection proposed in this paper, the patch in I2 is regarded as the vectorized input 
signal x ∈ Rp . The dictionary D is made of the corresponding neighborhood patches in I1 as Fig. 2 shows. Gener-
ally, the covered region of the dictionary D in I1 is larger than the current patch x. SRC-based change detection 
decompose the comparison of the whole scene to the two local neighborhoods in the fundus pair. When the 
change region is small, x has great similarity with the atoms in D. Hence the background of x excluding the 
change region can be represented by D, and the change region is regarded as the reconstruction error.

Current patch x is projected into the dictionary space D from the neighbor patches in I1 and the background 
of x is linearly reconstructed by the sparse encoding coefficient α as the red block shows in Fig. 2. When x slides 
throughout I2 , the background of I2 denoting B2 is padded by the recovered background patches from x, which 
are reconstructed by the sparse representation of D in I1.

For the i-th current patch xi , yi denotes the i-th referent patch and Xi = {xi1, xi2, . . . , xiq} denotes the q 
extracted neighborhood patches around yi in I1 and xij means the j-th patch for j = 1, · · · , q . Many dictionary 
learning methods are proposed in  literature42,43. One can learn the dictionary Di from extracted patches Xi by 
the following formula:

(7)α
∗ = argmin

α

�x − Dα�22 + ��α�1

Figure 12.  ROC and PR curves of three discussed methods based on the image pair with the big change region.

Table 1.  Intersection over Union (IOU) of binary CMs for the image pair.

Methods IRHSF RPCA NRELM IRG-McS NPSG SRC

Small lesions 0.1593 0.555 0.0035 0.1767 0 0.7227

Big change region 0.6179 0.3486 0.2702 0.4355 0.0783 0.855*
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where Di ∈ Rp×n is the learned dictionary, αij ∈ Rn is the representation coefficiences of xij under Di , and � is a 
hyper-parameter. Once the dictionary Di is known, the representation coefficient αi for the current patch xi can 
be obtained by solving the optimization problem of formula (7). The most common method for solving formula 
(7) is the LARS-lasso  algorithm44,45.

Suppose α∗
i  is the optimum solution of formula (7), the background xiB of the current patch xi is estimated 

by Diα
∗
i  the linear combination with the nonzero elements of α∗

i  and the corresponding atoms in Di . When xiB 
is reconstructed under Di coming from Xi through adaptively choosing the atoms, the local illumination vari-
ations between xi and yi is adaptively corrected by adjusting the representation coefficient of the dictionary at 
the same time.

The change regions appearing in the current patch xi don’t show in the reference patch yi and its neighbor-
hood Xi . Hence the changes aren’t encoded in the dictionary Di . These variation features are not projected into 
the subspace formed by Xi but assigned to the error component portion of xi and xiB.

Figure 13 illustrates the proposed algorithms in this paper. The reference image Fig. 13a comes from a normal 
image from the DRIVE database. The current image Fig. 13b is obtained by affixing a small patch marked with red 
circle size of 41× 41 in Fig. 13a. The small patch are attached and interpolated linearly with the background by 
a coefficient of 0.5. Hence Fig. 13a,b constitute a simulated image pair. Figure 13d is the background of Fig. 13c 
reconstructed by the method proposed in this paper, and Fig. 13e is the result of background subtraction between 
Fig. 13c,d,f is the detected change region. SRC change detection method proposed in this paper can reconstruct 
clearly the background of the current image and detect the clean change region.

Algorithm. The proposed method is roughly divided into three section: preprocessing, estimating the back-
ground of the current image and generating change regions. For the given image pair, in the preprocessing step, 
the images are registered and their illuminations are corrected and normalized to an as possible as uniform 
intensity level, and the image pairs are grayed out. At the background model estimation step, the background of 
the current image is reconstructed through a sliding window and sparse representation based on the patch, and 
the local dictionary is extracted from the neighborhood of the corresponding reference patches. By this mean, 
the background of the current patch is estimated by sparse representation in the dictionary. Finally, the differ-
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Figure 13.  The result of simulated image pair. (a) The normal retinal fundus image from DRIVE; (b) the image 
attached with marked by the red circle; (c) grayscale image of (b); (d) the reconstructed background of (c) based 
on the proposed method; (e) the difference image of (c) and (d); (f) the absolute difference image of (c) and (d).
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ence image is produced by subtracting the current image from the reconstructed background, and the change 
region is generated. The detailed procedure is presented in Table 2.

In order to detect the change regions more efficiently, we give up the dictionary learning processing and take 
the extracted patches as the atoms of the dictionary instead.

Locating big change regions. The patch-based SRC method reconstructs the background well when the 
change region is small in the current patch with small lesions for most part of the region is consistent with the 
reference patch and its neighborhood patches, which can be represented by main atoms of the learned dictionary 
from the reference patch and its neighborhood patches. However, for the big change region, the change covers 
the most part of the current patch, and the little part left has the similarity with the reference patch and its neigh-
borhood patches. The principle atoms in the learned dictionary can’t be used to represent the current patch, 
otherwise it will bring big reconstruction error. Hence the subordinate atoms obviously different in feature from 
the principle atoms are taken to reconstruct the current patch. Such kind of subordinate atoms consist of the 
subtle information. All the chosen subtle information are combined linearly to represent the current patch which 
will greatly reduce the reconstruction error. Hence the current patch can’t be reconstructed from the principal 
components indicating the background in the dictionary.

For the big change region, the current patch is only represented by the less important components in the 
dictionary, which means that the change region is projected to the subspace consisting with the reconstruction 
error. The current patch is reconstructed by the less important atoms, and the subtraction between the current 
patch and the reconstructed patch still shows small value. In this case, background subtraction doesn’t indicate 
the change region correctly.

However, the SRC-based method provides an approximate estimation about the border of the big change 
regions. In general, the current patch including the boundary of change region shows the big similarity to the 
primary atoms in the dictionary. The background of the current patch is reconstructed correctly by sparse rep-
resentation, and the change is obtained from the reconstruction error. Hence the patch-based SRC method can 
detect the outline of the big change region as a coarse segmentation for the change region. The SRC method is 
robust to the local illumination, thus it is combined with the other change detection method to obtain a better 
performance. IRHSF is specially designed for the fundus images, and the image difference with IRHSF provides 
a good estimation for change regions. SRC combined with the IRHSF-based image difference improves the 
detection results and removes the distraction of the local intensity.
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