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Abstract: Precise control of the selectivity in organic synthe-
sis is important to access the desired molecules. We demon-

strate a regiospecific annulation of unsymmetrically substi-

tuted 1,2-di(arylethynyl)benzene derivatives for a geometry-
controlled synthesis of linear bispentalenes, which is one of
the promising structures for material science. A gold-cata-
lyzed annulation of unsymmetrically substituted 1,2-di(aryl-

ethynyl)benzene could produce two isomeric pentalenes,
but both electronic and steric effects on the aromatics at

the terminal position of the alkyne prove to be crucial for

the selectivity; especially a regiospecific annulation was ach-
ieved with sterically blocked substituents; namely, 2,4,6-tri-

metyl benzene or 2,4-dimethyl benzene. This approach ena-

bles the geometrically controlled synthesis of linear bispen-
talenes from 1,2,4,5-tetraethynylbenzene or 2,3,6,7-tetraethy-

nylnaphthalene. Moreover, the annulation of a series of tet-
raynes with a different substitution pattern regioselectively

provided the bispentalene scaffolds. A computational study
revealed that this is the result of a kinetic control induced
by the bulky NHC ligands.

Introduction

Antiaromatic molecules have received much attention due to
unique optoelectronic properties. Pentalene as well as the

structurally similar indenofluorene[1] is one of the important
core structures for material science. Due to the low stability of

the pure pentalene core,[2] various syntheses of dibenzo[a,e]-

pentalenes, which are stabilized by the fused aromatic moiet-

ies, have been developed.[3] The properties of pentalene are of
high interest for organic semiconductors. Especially, p-extend-
ed pentalenes prove to act as p- or n-type organic transistors,

although tuning optoelectronic properties by the introduction
of functional groups are still desirable for higher per-

formance.[4] Therefore, the development of modular synthetic
methods to access polycyclic p-extended pentalenes is a
promising research topic.

Homogeneous gold catalysis has received much attention,

and due to the mild carbophilic p Lewis acidity of the gold cat-
alyst, the field majorly contributed to the intensive develop-
ment of nucleophilic addition reactions to unsaturated
carbon–carbon multiple bonds.[5] For instance, the gold-cata-
lyzed annulation of diyne compounds enabled the synthesis of

extended p-conjugated compounds, such as azahelicene, poly-
cyclic indole and benzothiophen derivatives.[6] Our recent work

also contributed to the gold-catalyzed synthesis of diben-
zo[a,e]pentalene and quinoxaline/phenazine-fused pentalene
derivatives from 1,5-diynes.[3n,t] Moreover, the gold catalyst led

to both U-shaped and S-shaped bispentalenes from the readily
available tetra(arylethynyl)benzenes and -naphthalenes, albeit

fortunately those mixtures could be separated (Scheme 1,
top).[4e] During that study, the naphthalene-based linear bis-
pentalene (S-shaped) was found to be a highly suitable scaf-

fold for transistor applications. In these symmetric tetraynes,
however, the chemoselectivity towards U-shaped and S-shaped

bispentalenes is not controlled. Unsymmetrically substituted
diynes or tetraynes as substrates could be a method to selec-
tively synthesize specific isomers, still it is unknown whether
the selectivity will be pronounced enough to deliver only one
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isomer (Scheme 1, bottom). From the synthetic point of view,

it would be interesting to see if the reaction of unsymmetrical-
ly substituted 1,5-diynes can be controlled by electronic or

steric effects, which would allow to control the precise regio-
chemistry and thus the geometry in the synthesis of pentalene

derivatives. Herein, we report a study of selectivity control in
the gold-catalyzed annulation of unsymmetrically substituted

1,5-diynes, and the use of these principles in the regiospecific

synthesis of S-shaped benzene- and naphthalene-based bis-
pentalenes by an “inside-out” bidirectional approach. In addi-

tion, we investigated an “outside-in” mode of cyclization, tet-
raynes with different substitution patterns successfully provid-

ed bispentalenes, which with respect to the overall synthetic
route represents a much more convergent and thus flexible

approach. The opto-electronic properties of the obtained bis-

pentalene derivatives are also reported.

Results and Discussion

During the annulation of a symmetric 1,5-diyne, one alkyne

acts as a nucleophile and the other alkyne as the electrophile.
If electron-rich and electron-deficient alkynes are arranged in

an unsymmetrical substrate, the annulation could proceed re-

giospecifically. We first prepared the unsymmetrically substitut-
ed diynes 1 with methoxy (1 a), fluoro (1 b), and trifluoromethyl

substituents (1 c), and attempted the gold-catalyzed reactions
with them (Table 1). The annulation of methoxy-substituted

diyne gave a mixture of isomers 2 a and 3 a in 40 % yield with
a ratio of 96:4 (entry 1). Fluoro-substituted diyne 1 b afforded

isomers 2 b and 3 b in 62 % yield in a ratio of 42:58 (entry 2).
When a trifluoromethyl group (1 c), which is a strong electron-

withdrawing group, was attached to the aromatic ring, the
ratio of 2 c and 3 c was 6:94 (entry 3). Overall, the results dem-

onstrated that the selectivity can be controlled by the elec-
tronic properties with the electron-rich alkyne acting as nucle-

ophile, while the electron-deficient alkyne serves as the elec-

trophile, even though the yield lower and the isomers are in-
separable.

To explore another mode of substituent control of the selec-
tivity, two o-positions of the aryl group on the alkyne were

blocked by methyl groups, which probably inhibits the ap-
proach of the gold catalysts to the sterically more hindered
alkyne, even though a cyclization of the vinyl cation and mesi-

tylene followed by a 1,2-methyl shift might still be possible.
The gold catalysts promoted the reaction of the diyne 1 d and
afforded the desired pentalene 2 d in 94 % yield (Table 2,

entry 1). Methoxy- or trifluoromethyl-substituted diynes 1 e
and 1 f were also converted to pentalenes 2 e and 2 f in 63
and 41 % yield, respectively (entries 2 and 3). The annulation of

bromo-substituted diyne 1 g gave pentalene 2 g in 60 % yield,
which could be useful for further transformations by common

coupling reactions (entry 4). The mesityl group indeed enables
a control of the pentalene synthesis. It is interesting to note

that the reaction of the 2,4-dimethylbenzene-substituted diyne

1 h resulted in the clean formation of the corresponding penta-
lene 2 h in 91 % yield and no generation of the pentalene 3 h
(entry 5). As shown in Scheme 2, the gold-catalyzed reaction of
diyne 1 h possibly leads to two intermediates I a and I b. Vinyl

cation intermediate I b might be unfavorable because the cycli-
zation of I b, which should proceed through a planar configu-

ration is probably prohibited by the steric hindrance between

the gold catalyst and the o-methyl substituent of the aromatic
moiety. This results in the selective formation of 2 h. This step

could be crucial for controlling the reaction of the mesitylene-
substituted diyne 1 d. Overall, those results indicated that re-

giospecific annulation was achieved by the introduction of a
mesityl group or 2,4-dimethylbenzene.

Table 1. Electronic effect on the selectivity.

Entry[a] R Time [h] Yield [%][b] 2 :3[c]

1 OMe 1 a 1 40 96:4
2 F 1 b 1 62 42:58
3 CF3 1 c 16 29 6:94

[a] 1 (0.05 mmol), catalysts (0.005 mmol) in solvent (1 mL). [b] Combined
yield of 2 and 3. [c] Determined by 1H NMR of the crude mixture.

Scheme 1. Possible selectivity control by different aryl groups in the gold-
catalyzed annulation of unsymmetrically substituted 1,5-diynes.

Table 2. Reaction of mesitylene-substituted diynes.

Entry[a] Ar R Time [h] Yield [%][b]

1 mesityl H 1 d 1 94
2 mesityl OMe 1 e 3 63
3[c] mesityl CF3 1 f 20 41
4 mesityl Br 1 g 20 60
5 2,4-dimethylbenzene H 1 h 1 91

[a] 1 (0.05 mmol), catalysts (0.005 mmol) in solvent (2 mL). [b] Isolated
yield. [c] 40 8C.
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Based on the results with the diynes being blocked at the o-
positions, the selective synthesis of S-shape bispentalenes

should be feasible. We then designed and synthesized the
benzene- and naphthalene-based tetraynes 4 a and 4 b with
mesitylene (Scheme 3). The tetraynes 4 a and 4 b were conven-
iently prepared by sequential Sonogashira-coupling reactions
of 1,4-dibromo-2,5-diiodobenzene or 3,7-dibromonaphthalene-

2,6-diyl-bis(trifluoromethanesulfonate). Using (IPr)AuCl/AgNTf2,
the benzene-based tetrayne 4 a was completely consumed

within 2 h, the corresponding linear bispentalene 5 a was ob-

tained in 81 % yield as a reddish-brown solid. In addition, the
annulation of naphthalene-based tetrayne 4 b with (IPr)AuCl/

AgNTf2 proceeded at room temperature and gave the linear
bispentalene 5 b in 86 % yield as a red solid.

The connectivity of 5 b in the solid state was confirmed by
X-ray crystallography (Figure 1). Due to the mesityl group, the

Scheme 2. Gold-catalyzed reaction to form pentalene 2 h.

Scheme 3. Top) Gold-catalyzed annulation of 1,2,4,5-tetra(ethynyl)benzene (4 a), and bottom) 2,3,6,7-tetra(ethynyl)naphthalene (4 b) .

Figure 1. Solid-state molecular structure of 5 b.
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previously reported n-pentyl substituted S-shape bispentalene

B (Figure 2)[4e] shows significantly smaller torsion angles (34.2–
37.98) between the pentalene core and the peripheral aryl

group than pentalene 5 b (63.5–69.38).

We considered tetrayne 6a, having a different substitution
pattern, as another approach to access the bispentalene scaf-

fold. It could potentially afford two isomers, 7a and 8a, be-
cause the second annulation could occur on both carbon

atoms of the intermediate II a (Scheme 4). Indeed, the intramo-
lecular annulation with 5 mol % of gold catalysts in dichloro-

ethane afforded pentalenes 7 a and 8 a in 20 and 72 % yield,

respectively. The structure of 8 a was unambiguously
confirmed by single-crystal X-ray crystallography (Figure 3). In-

terestingly, the pentalene core and the peripheral mesityl
group are nearly vertical and the two mesityl groups are paral-

lel.
When the cyclization of 6a was performed using (IPr)AuCl/

AgNTf2, isomers 7 a and 8 a were produced in a 22:78 ratio. In

our previous report,[4e] the bulkiness of the ligand had a signifi-
cant effect on the ratio of the resulting bispentalene isomers.

Therefore, a set of differently sized ligands on the catalysts was
investigated to prove this effect on the selectivity of isomeric

bispentalenes 7 a and 8 a. Pre-activated [(IPr)Au(NCMe)]SbF6

and [(IPr)Au]NTf2 catalysts[7] gave the same results as (IPr)AuCl/

AgNTf2 (Table 3, entries 2 and 6). On the other hand, the PPh3

ligand only gave poor yields of the products 7 a and 8 a
(entry 3). No reaction took place with a nitrogen acyclic car-
bene (NAC) complex (entry 4). As expected, no reaction oc-
curred in the complete absence of a gold catalyst, using only

Figure 2. Previously reported bispentalenes A and B.

Figure 3. Solid-state molecular structure of 8 a.

Table 3. Examination of different ligands on the gold catalysts with substrate
6 a.

Entry[a] Catalyst Time [h] Yield [%][b] 7 a :8 a Ratio 7 a :8 a

1 (IPr)AuCl/AgNTf2 2 20:72 22:78
2 [(IPr)Au(NCMe)]SbF6 1.5 21:72 23:77
3 Ph3PAuNTf2 3 15:55 21:79
4 NACAuCl/AgSbF6 4 ND ND
5 (IPr)*AuCl/AgNTf2 3.5 62[c] 4:96[d]

6 [(IPr)Au]NTf2 2.5 18:71 20:80
7 AgNTf2 4.5 ND ND

[a] Reaction performed in a vial in DCE (1 mL), 6 a (0.02 mmol) and catalyst
(0.005 mmol). [b] Isolated yield. [c] Combined yield of 7 a and 8 a. [d] Deter-
mined by 1H NMR.

Scheme 4. Gold-catalyzed reaction to form bispentalenes 7 a and 8 a.
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AgNTf2 (entry 7). The short ligand screening finally revealed
that the sterically bulky IPr* ligand[8] increases the ratio of pen-

talen 8 a (entry 5). This can be rationalized by the steric hin-
drance between the mesitylene substituent and the gold com-

plex on the intermediate II a, which ultimately leads to the for-
mation of product 8 a.

The selective formation of 8 a was investigated by using
M06-2X-CPCM/BS2//B3LYP-CPCM/BS1 calculations. It was found

that the selectivity is mainly controlled by a steric repulsion be-

tween the mesityl substituent and the IPr ligand in TS-1 b
(Figure 4). This destabilizing interaction is absent in TS-1 a,

causing this transition structure to be 0.3 kcal mol@1 lower in
energy than in TS-1 b. To support this assertion, the IPr car-

bene ligand was replaced by the IMe carbene ligand, in which
the bulky N-substituents of IPr are replaced by methyl groups.

The results starting from this new model system are shown in

Figure 5. In contrast to the real system in which TS-1 a is calcu-
lated to be slightly lower in energy than TS-1 b, for the less

bulky model system, the energy order of the transition struc-
tures becomes reversed. In this case, TS-1 b-M is calculated to

be 2.0 kcal mol@1 lower in energy than TS-1 a-M (Figure 5). The
energy order of transition structures TS-1 b-M and TS-1 a-M is

most likely set by the thermodynamic aspects of the transfor-

mation. Indeed, 7 a is about 6 kcal mol@1 more stable than 8 a,
resulting in TS-1 b-M lying lower in energy than TS-1 a-M.

Thus, although the formation of 7 a is thermodynamically fa-

vored over 8 a, the steric interaction between the IPr ligand
and the Mes substituent in TS1-b leads to less 7 a than 8 a
being formed.

Figure 4 shows quite similar energy values of TS-1 a and TS-
1 b with TS-1 a being lower in energy by 0.3 kcal mol@1. This is
consistent with the experimental 22:78 ratio of the two prod-

ucts. Figure 5 shows a higher difference in energy for TS-1 a-M
and TS-1 b-M with a reversed order, now with TS-1 b-M being

lower. Since the repulsive interactions of the two aryl substitu-

ents in TS-1 a and TS-1 a-M are almost identical, this clearly in-
dicates that the ligand–aryl steric interaction in TS-1 b is stron-

ger than that in TS-1 b-M.
Next, several electron-withdrawing and electron-donating

substituents on the aromatic moieties were investigated using
[(IPr)Au(NCMe)]SbF6 as the catalyst. In the case of tetrayne 6 a,

the gold-catalyzed reaction afforded bispentalenes 7 a and 8 a
in a ratio of 22:78 (Table 4, entry 1). Fluoro-substituted sub-
strate 6 b led to the separable bispentalene isomers 7 b and

8 b with a ratio of 35:65 in 25 and 55 % yield, respectively
(entry 2). Tetrayne 6 c with dimethyl substituents on the outer

aromatic moieties exhibit higher selectivity towards the forma-
tion of 8 c over 7 c (entry 3, 91:9 ratio, 36 and 3 % yield, respec-

tively), although the overall yield significantly dropped. These

results indicate that the substituents on outer aromatics influ-
ence the selectivity of the transformation.

Figure 4. The selectivity-determining step with the IPr carbene ligand (energies in kcal mol@1).
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The optical properties of bispentalenes 5 a, 5 b, 7 a and 7 b
were examined by UV–Vis absorption spectroscopy in dichloro-
methane (Figure 6). Based on previous work,[4e] the two charac-

teristic absorptions (l= 450–550 nm) of 5 a, 7 a, and 7 b might
be assigned to HOMO!LUMO++1 and HOMO@1!LUMO tran-
sitions. The introduction of mesityl groups has a significant

effect on the absorption. Thus, the absorption peaks (lmax =

474 and 502 nm) of mesitylene-substituted 5 a were red-shifted

(30 nm) compared to the S-shaped benzene-based bispentale-
ne A (lmax = 496 and 532 nm). A similar tendency was observed

between naphthalene-based bispentalenes 5 b (lmax = 490 and

525 nm) and B (lmax = 510 and 550 nm). In addition, from the
comparison of 5 a (lmax = 474 and 502 nm) and 7 a (lmax = 460

and 490 nm), differences on the substitution position of mesi-
tyl groups caused significant blue-shift.

The HOMO and LUMO levels of the series of bispentalenes
5 a, 5 b, 7 a, and 7 b in CH2Cl2 were estimated by cyclic voltam-

metry (Table 5). Compared to the previously synthesized ben-

zene-based bispentalene A and naphthalene-based bispenta-
lene B (Figure 2), the HOMO levels of 5 a (@5.24 eV) and 5 b
(@5.50 eV) are lower than the HOMO levels of the correspond-

ing compounds A (@5.20 eV) and B (@5.38 eV). The LUMO
levels of 5 a (@3.11 eV) and 5 b (@2.93 eV) are significantly

higher than the LUMO level of the corresponding compound-
s A (@3.23 eV) and B (@3.09 eV), which resulted in the larger

HOMO–LUMO energy gap of 5 a and 5 b. Based on the solid-
state structure of 5 b (Figure 1), the peripheral mesitylene

might contribute less to the core p-system, which could have

an effect on the HOMO and LUMO energy levels. The HOMO
and LUMO levels of the S-shaped bispentalenes 7 a (HOMO =

@5.30 eV, LUMO =@3.18 eV) and 7 b (HOMO =@5.40 eV,
LUMO =@3.25 eV) are lower compared to 5 a. The HOMO–

LUMO gaps for 7 a and 7 b (Egap = 2.15 eV) are not significantly
different from that of 5 a (Egap = 2.13 eV).

Table 4. Bispentalene derivatives.[a]

Entry Compound R1 R2 Time [h] Yield [%][b] 7:8

1 6 a H H 2 20:72
2 6 b F H 2 25:55
3 6 c Me Me 3 3:36

[a] Reaction performed in a vial in DCE (1 mL), 6 (0.05 mmol) and catalyst
(0.005 mmol). [b] Yield of isolated product.

Figure 6. UV–Vis absorption of 5 a, 5 b, 7 a, and 7 b.

Figure 5. The selectivity-determining step with the smaller IMe carbene ligand (energies in kcal mol@1).
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Conclusions

We report the regiospecific annulation of unsymmetrically sub-

stituted 1,2-di(arylethynyl)benzene derivatives. Both electronic

and steric effects on the aromatic moieties of the substrates
are crucial for the selectivity. Especially, the introduction of

sterically blocked substituents, such as 2,4,6-trimetylbenzene
or 2,4-dimethylbenzene, enabled the regiospecific annulation.

This method provided the geometrically-controlled synthesis
of S-shaped bispentalenes from 1,2,4,5-tetraethynlbenzene or

2,3,6,7-tetraethynlnaphthalene. Moreover, the annulation of a

series of tetraynes with a different substitution pattern regiose-
lectively provided bispentalenes. Our computational studies

showed that 7 a is the thermodynamic product of the reaction,
whereas 8 a is the kinetic product, preferentially formed with

bulky NHC ligands (like IPr, but better IPr*).
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Table 5. Cyclic voltammetry data and estimated HOMO and LUMO ener-
gies.

Eox1

[V]
Ered1

[V]
EHOMO

[c]

[eV]
ELUMO

[c]

[eV]
Egap

[eV]

A[a] 0.40 @1.57 @5.20 @3.23 1.98
5 a[a] 0.44 @1.69 @5.24 @3.11 2.13
B[a] 0.58 @1.71 @5.38 @3.09 2.29
5 b[a] 0.70 @1.87 @5.50 @2.93 2.57
7 a[b] 0.51 @1.65 @5.30 @3.15 2.15
7 b[b] 0.60 @1.55 @5.40 @3.25 2.15

[a] Cyclic voltammetry in CH2Cl2 containing 0.1 m nBu4NPF6 with ferrocene
on a Pt working electrode, a Pt/Ti counter electrode, and a Ag reference
electrode at a scan rate of 0.2 V s@1. All potentials are given versus the
Fc+/Fc couple used as an internal standard. [b] Electrochemical data ob-
tained at a scan rate of 0.2 V s@1 in CH2Cl2 containing 0.1 m nBu4NPF6 on a
glassy carbon working electrode, a Pt/Ti counter electrode, and Ag refer-
ence electrode. [c] HOMO and LUMO energy levels in eV were approxi-
mated using the equation HOMO =@(4.80++Eox), LUMO =@(4.80++Ered),
Egap = LUMO@HOMO.
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