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Abstract

This mini-review summarizes current knowledge on similarities and synergism between smoking 

and psychological stress-induced modulations of growth stimulating and inhibiting regulatory 

networks in epithelial cells and epithelial cancers with emphasis on cancer stimulating 

neurotransmitters and their receptors as well as cancer inhibiting γ-aminobutyric acid (GABA) 

and opioids. Hyperactive cAMP signaling downstream of beta-adrenergic receptors (β-ARs) has 

been identified as the driving force of most smoking-associated cancers by numerous preclinical 

studies and psychological stress intensifies these effects while experimental stress reduction 

inhibits. The integration of cAMP reduction via stress reduction by pharmacological and 

psychological means such as psychotherapy, relaxation meditation and yoga into any cancer 

treatment strategy is recommended.

Introduction

Smoking is a documented risk factor for numerous human cancers, including cancer of the 

lungs, larynx, esophagus, stomach, breast, pancreas, colon, prostate and bladder1–3, with a 

particularly strong etiological association between smoking and cancer of the larynx, lungs4 

and pancreas5. Research into the mechanisms of tobacco-associated carcinogenesis has 

identified several powerful carcinogens in tobacco smoke, including polycyclic aromatic 

hydrocarbons (predominantly benzo[a]pyrene) and the nicotine derived nitrosamines N’-

nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone 

(N’nitrosonicotine ketone, NNK)1.

Research into the mechanisms of action of tobacco carcinogens has identified interactions of 

their metabolites with DNA that result in the formation of inactivating mutations in the 

tumor suppressor gene p536 and in mutations in the k-ras gene6 that sensitize the gene to its 

upstream stimulators7. Both mutations are frequently expressed in tobacco-associated 

human cancers8–9. Moreover, NNN and NNK are agonists for nicotinic acetylcholine 

receptors (nAChRs) with significantly higher affinity than their physiological agonist 

acetylcholine or nicotine10 and NNK is additionally an agonist for beta-adrenergic receptors 

(β-ARs) with significantly higher affinity than their physiological agonists epinephrine (Epi) 

and norepinephrine (Nor)11. In light of the ubiquitous expression of nAChRs and β-ARs in 
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mammalian cells12–13, these findings prompted research into the potential role of 

neurotransmitter receptors of the nicotinic cholinergic and beta-adrenergic families in the 

development, progression and resistance to therapy of cancer.

Regulation of cancer by the nAChR-mediated release of neurotransmitters.

The excitatory neurotransmitters acetylcholine, serotonin, glutamate, dopamine, Epi and Nor 

are not only synthesized and released by the brain and the autonomic nervous system but 

also by normal epithelial cells and epithelial cancers12, 14–17 and Nor and Epi in addition by 

the adrenal gland18. Acetylcholine is the physiological agonist for nAChRs and opens their 

ion channel upon binding to the receptor, resulting in membrane depolarization that triggers 

the opening of voltage-gated Ca2+-channels. In turn, this allows for the influx of Ca2+ ions, 

causing the release of neurotransmitters19.

Early in vitro studies have shown that binding of nicotine to the α7nAChR regulates the 

autocrine regulation of cell proliferation by serotonin in small cell lung cancer cells20. In 

addition, it has been shown that increases in systemic serotonin stimulated the growth of 

colon cancer allografts in mice by inducing angiogenesis21.

More recent investigations have shown that the α7nAChR regulates the release of Epi and 

Nor in vitro from cells of normal small airway epithelium, lung adenocarcinoma16, 

pancreatic duct epithelia and pancreatic ductal adenocarcinoma15, gastric cancer22, colon 

cancer23, and urothelial bladder cancer24 and induces their proliferation and migration via 

this autocrine mechanism. Moreover, all of these cancers as well as prostate cancer, ovarian 

cancer, breast cancer, and hemangiosarcoma are stimulated in their growth by exposure to 

exogenous Epi, Nor or synthetic beta-adrenergic agonist while the non-selective beta-

blocker propranolol inhibits the autocrine and exogenous stimulation of these cancers24–26. 

In addition, it has been shown in adenocarcinomas of the lung and pancreas that NNK has 

identical cancer-stimulating effects as Epi and Nor by binding as an agonist to β-ARs and 

that propranolol inhibited these responses11, 25.

The amino acid neurotransmitter glutamate is synthesized and released by numerous cancers 

and stimulates their proliferation and migration, including cancer of the pancreas, prostate, 

breast and adenocarcinoma of the lungs26. In turn, the release of glutamate is regulated by 

the α7nAChR27. Moreover, the α7nAChR regulates the release of the catecholamine 

neurotransmitter dopamine and its receptors that are expressed in many cancers and can have 

cancer stimulating as well as inhibitory effects pending on the expression levels of receptors 

of the D1-like family which increase cAMP signaling via the G-protein Gsq or receptors of 

the D2-like family that are coupled to the inhibitory G-protein Gi and inhibit cAMP 

formation 28–29.

Antagonistic effects of receptors coupled to the stimulatory G protein Gs 

and receptors coupled to the inhibitory G protein Gi

Beta-adrenergic receptors are coupled to the stimulatory G protein Gs. Activation of Gs by 

binding of an agonist to the receptor activates the enzyme adenylyl cyclase that catalyzes the 
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formation of intracellular cyclic adenosine monophosphate (cAMP) which in turn activates 

protein kinase A (PKA)30. Increased intracellular cAMP and activated PKA stimulate the 

release of epidermal growth factor (EGF)25, 31, vascular endothelial growth factor 

(VEGF)32–33 and arachidonic acid (AA)11 from the cancer cells and from fibroblasts, 

macrophages and endothelial cells in the stroma that constitutes the cancer micro-

environment34–35. Each one of these released products stimulates the growth, metastatic 

potential and resistance to therapy of cancer.

Receptors coupled to the inhibitory G protein Gi and their endogenous agonists are the 

physiological inhibitors of Gs-coupled receptors. In accord with this function, it has been 

shown that the inhibitory neurotransmitter γ-aminobutyric acid (GABA) has tumor 

suppressor function via Gi-coupled GABAB receptors in vitro and in animal models for 

adenocarcinoma of the lung36and pancreas37. Cancer stem cells isolated from pancreatic 

cancer cell lines stimulated their self-renewal by the autocrine release of Epi and Nor that 

activated beta-adrenergic signaling and these effects were blocked by treatment with 

GABA38. In addition, the opioid dynorphin B inhibited the self-renewal of cancer stem cells 

from lung adenocarcinomas via their Gi-coupled opioid receptors39. Similarly, the synthetic 

opioid methadone has strong inhibiting effects on numerous cancers40–41. Moreover, 

preclinical studies have shown that the endogenous cannabinoid system is activated by 

binding of exogenous cannabinoids (medical marihuana, synthetic cannabinoids) to Gi-

coupled cannabinoid receptors, resulting in growth inhibition and improved response to 

therapy of lung adenocarcinoma, colon cancer and glioblastoma42–44.

Effects of smoking and chronic psychological stress on cancer stimulating 

and inhibiting networks (Figure 1)

Smoking and chronic psychological stress each induce the nAChR-regulated release of Epi 

and Nor, thereby increasing their systemic levels45. In turn, this creates an environment that 

supports the development and progression of numerous cancers for which Epi and Nor act as 

strong growth factors. Smoking and chronic psychological stress additionally suppress the 

GABA system46–47, thus depriving the body of the physiological inhibitor of Epi and Nor-

induced cancer stimulation. Acute exposure to nicotine stimulates the nAChR-mediated 

release of endogenous opioids above physiological levels48. Similar to opioid addiction, the 

continued exposure to unphysiologically high opioid levels during chronic nicotine-induced 

nicotine addiction and withdrawal desensitizes the Gi-coupled opioid receptors49, resulting 

in a reactive super activation of adenylyl cyclase/cAMP signaling48, 50. On the other hand, 

stress reduction51 and positive emotions52 decrease the levels of stress neurotransmitters 

while simultaneously increasing the levels of GABA and endogenous opioids within their 

phsyiologal range, thereby restoring cAMP homeostasis. The strong influence of these 

neuropsychological factors on cancer development and progression has been documented by 

preclinical investigations which have reported significant cancer-stimulating effects of 

experimentally induced stress on cancer of the lungs53, pancreas37, breast54–55 and ovary56 

whereas stress reduction by species appropriate environmental enrichment significantly 

reduced the development and progression of mouse xenografts from lung 

adenocarcinomas39.
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Conclusions and future directions

The addictive properties of smoking have been extensively investigated. The focus of that 

research has been on nicotine-induced changes in nAChR-mediated brain neurotransmission 

characterized by hyperactivity of excitatory neurotransmitters accompanied by suppression 

of their physiological inhibitors, the GABA and endogenous opioid systems, and the 

resulting psychological responses associated with addiction and withdrawal symptoms. 

However, the fact that smoking also causes cardiovascular disease by elevating systemic Epi 

and Nor levels due to their increased release from the adrenal gland and sympathetic nervous 

system strongly suggests that smoking-induced modulations in nAChR expression and 

function are not restricted to the brain, where they cause addiction, but instead occur 

universally in non-neuronal cells and tissues as well where their altered functions cause non-

neuronal diseases. As is summarized in this mini-review, epithelial cells express nAChR-

regulated autocrine signal transduction pathways that maintain the balance between 

excitatory neurotransmitters that stimulate cell proliferation and GABA which inhibits. The 

same changes that cause nicotine addiction when occurring in brain nAChRs cause systemic 

and epithelial hyperactivity of cancer stimulating neurotransmitters while suppressing 

inhibitory GABA. The release of Epi and Nor from cancer cells and the sympathetic nervous 

system is predominantly stimulated by the homomeric α7nAChR14 which does not undergo 

long-lasting desensitization in response to chronic nicotine exposure57. By contrast, the 

heteromeric α4β2nAChRs that regulates GABA release from epithelial cells and epithelial 

cancers desensitizes in response to chronic nicotine, resulting in suppressed GABA 

release58. The unrestricted growth of cancer cells is further supported by the systemic 

increase in Nor and Epi and simultaneous suppression of the endogenous opioid system and 

GABA system caused by smoking and chronic psychological stress. The resulting beta-

adrenergic receptor hyperactivity additionally impairs the immune system,via 

cyclooxynenase-2-mediated suppression of CD8+ T cell responses59, an effect caused by the 

beta-adrenergic stimulation of arachidonic acid release in cancer cells11.

Current therapeutic strategies of cancer therapy aim to destroy existing cancer cells by 

chemotherapy, radiation and immunotherapy. These treatments shrink existing tumors, 

thereby often rendering them surgically resectable, resulting in significant increases in 

overall survival times. However, they do not remove the imbalance in cancer stimulating and 

inhibiting regulatory networks characterized by hyperactive cAMP signaling that is caused 

by smoking and chronic psychological stress, which often work synergistically. Accordingly, 

the majority of cancers eventually relapse. A major goal of adjuvant cancer therapy aimed at 

preventing the formation of new cancer cells via self-renewing stem cells and the associated 

progression, resistance to therapy and cancer relapse should therefore be the restoration of 

cAMP homeostasis. General beta-blockers such as propranolol used successfully for the 

long-term management of cardiovascular disease, nutritional GABA supplements or over the 

counter valerian extracts that stimulates the endogenous synthesis of GABA (both widely 

used as sleep aids and anxyolytics), positive allosteric modulators of the GABAB-R used for 

the management of drug addiction as well as opioids used for anesthesia, analgesia, cough 

suppression and the management of drug addiction should all be explored in clinical trials as 

adjuvant therapy of cancer. Finally, the powerful cancer stimulating effects of psychological 
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stress and cancer inhibiting effects of psychological well –being cannot be over-emphasized. 

Stress reduction/relaxation by psychotherapy, relaxation meditation and yoga should be an 

essential component of any cancer treatment plan.
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Figure 1. 
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