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Abstract

Herpes simplex virus (HSV) types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these
immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as
ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced
immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report
we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial
cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase
signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the
epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion
protein and critical receptor for HSV envelope glycoprotein D (gD). Exposure of nectin-1 facilitates binding of HSV-1 gD,
which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact
junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected
to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell
spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-
exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1
infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible
mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals.
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Introduction

Herpes simplex virus type 1 (HSV-1) is a common oral

pathogen that causes multiple oral disorders such as ulcers,

necrotic lesions, and gingivostomatitis. Oral epithelium is also

infected with HSV-2 [1], but to a lesser extent. HIV infection leads

to reactivation and spread of herpesviruses, including HSV-1 and -

2, in oral and genital mucosa [2,3,4,5,6,7,8,9,10]. HIV infection

causes attenuation of the immune system by substantially depleting

CD4+ T cells in peripheral blood, lymphoid organs, and mucosal

tissues, leading to CD8+ T cell dysfunction [11,12,13]. HIV-

mediated depletion and dysfunction of CD4+/CD8+ T immune

cells can lead to the activation of herpesviruses [2,3,4,5,6], which

are usually latent under normal immune surveillance [14].

In addition to attenuation of the immune system, HIV in-

fection can impair the barrier function of various mucosal

epithelia, including oral, intestinal and anogenital mucosa

[15,16,17,18,19,20]. This in turn may facilitate the spread of

opportunistic infections, including HSV-1/2, throughout the

epithelium. HIV tat and gp120 proteins play an important role

in the impairment of the mucosal barrier by disrupting epithelial

tight junctions (TJs). HIV tat and gp120 are transactivator and

envelope proteins that activate multiple signaling pathways,

including mitogen-activated protein kinase (MAPK) signaling,

which lead to disruption of TJs through aberrant internalization of

TJ proteins and their down-regulation and/or proteasome-

mediated degradation [21,22,23,24,25,26,27,28,29,30,31,32].

Nectin-1 is a poliovirus receptor-related protein 1 (PRR1/

HveC/CD111) and a Ca2+-independent cell adhesion protein

of the immunoglobulin superfamily [33,34]. Nectin-1 binds to

HSV glycoprotein D (gD), facilitating entry of virions into

epithelial cells and cell-to-cell spread of progeny virions

[35,36,37,38,39,40,41,42]. Nectin-1 is sequestered in the intercel-

lular junctions, limiting the access of HSV [43].

In this study we wanted to explore the role of HIV-associated

disruption of oral mucosal epithelium in HSV-1 infection and

spread by using polarized oral keratinocytes as a model system.

Our data show that HIV tat and gp120 proteins disrupt oral
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epithelial TJs and adherens junctions (AJs), leading to the

paracellular spread of HSV, which may lead to rapid dissemina-

tion of virus within the mucosal environment and to saliva,

increasing the risk of spreading viral infection to others. HIV tat/

gp120-induced disruption of AJs exposes nectin-1 for HSV-1

binding. Furthermore, HIV-associated disruption of AJs and

exposure of nectin-1 promote HSV-1 infection and cell-to-cell

spread of the virus, leading to the rapid progression of HSV-

caused mucosal lesions and ulcers.

Materials and Methods

Ethics Statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki. The study was approved by the

Committee on Human Research of the University of California–

San Francisco (IRB approval #: H8597-30664-03). All subjects

provided written informed consent for the collection of samples

and subsequent analysis.

Establishment of Polarized Oral Epithelial Cells
To establish polarized cells from primary oral epithelial cells, we

propagated primary keratinocytes from adult tonsil tissue samples,

as described in our previous work [44,45]. Tonsil epithelial cell

lines were grown in culture medium SAGM (Lonza Inc.,

Allendale, NJ) and incubated at 37uC in a humidified incubator

containing 5% CO2. Polarized cells were established in 0.4-mm

Transwell two-chamber filter inserts (12-well inserts) as described

previously [45,46,47]. The polarity of epithelial cells was

confirmed by immunodetection of TJ protein zonula occludens-1

(ZO-1), and measurement of transepithelial resistance (TER) and

paracellular permeability [45]. TER was measured with an

epithelial Millicell-ERS volt-ohm-meter (Millipore Corp., Bill-

erica, MA). Paracellular permeability was evaluated by adding

horseradish peroxidase (HRP)-conjugated goat anti-donkey IgG

(Fab’)2 (Jackson ImmunoResearch Laboratories, Inc., West Grove,

PA) to the upper filter compartment and photometrically assaying

the medium from the lower compartment for HRP with o-

phenylenediamine dihydrochloride as the substrate [45,48].

Detection of IgG in the lower chamber indicated leakage of IgG

from the upper chamber.

Viruses and Viral Proteins
HIV-1SF33 dual-tropic virus was propagated in peripheral blood

mononuclear cells as described [46,49]. HIV was inactivated by

UV irradiation at 100 mJ/cm2 [50]. The virus stocks were grown

and quantitated for p24 antigen using a p24 ELISA assay and

stored in aliquots at 80uC. Recombinant HIV-1 (Bal strain) wild-

type tat and inactive mutant tat proteins were purchased from

ImmunoDX, LLC (Woburn, MA). Mutant tat was generated by

substitution of the basic arginine-rich domain at 49–57 aa and the

integrin-binding RGD motif in the C terminus with alanines.

HIV-1 (Bal strain) gp120 was provided by the NIH AIDS

Research Reagent Program. gp120 was inactivated by incubation

at 85uC for 30 min [24]. All proteins were stored at –80uC in the

dark before use.

HSV-1 (strain F) was grown and titered in Vero cells [51]. The

truncated form of HSV-1 gD ectodomain gD(306t), which

contains 1–306 residues of the ectodomain and lacks transmem-

brane and cytoplasmic domains [52], was provided by Gary H.

Cohen and Roselyn J. Eisenberg (Department of Microbiology,

School of Dental Medicine, University of Pennsylvania, Philadel-

phia, PA). HSV-1 gD(306t) was produced in the baculovirus

system [52].

Treatment of Polarized Cells with Cell-free HIV Virions,
HIV Proteins tat and gp120, and HSV gD

Infectious or UV-inactivated HIV-1SF33 was added to the apical

surface of polarized epithelial cells at 20 ng/ml of p24 antigen.

Active and inactive recombinant tat and/or gp120 (10 ng/ml of

each) were added to polarized tonsil cells from both apical and

basolateral surfaces. HSV-1 gD (306t) at 10 ng/ml was added to

polarized cells from both surfaces. Culture medium was changed

daily to add fresh virus or proteins. Disruption of TJs and AJs was

examined by immunostaining of their marker proteins ZO-1 and

E-cadherin, respectively. Expression and localization of ZO-1 and

E-cadherin as a ring shape was considered an intact junction.

Diffuse, dot-like patterns in the cytoplasm were considered

disrupted junctions [15]. Disruption of epithelial junctions was

also monitored by measuring TER and paracellular permeability

[46,47].

Immunofluorescence Assay
Polarized epithelial monolayers were fixed with 4% parafor-

maldehyde for 20 min, permeabilized with 0.05% Triton X-100,

and washed three times with PBS. To determine disruption of TJs,

we immunostained cells with mouse monoclonal antibodies against

ZO-1 (Invitrogen/Life Technologies, Austin, TX) for 1 h at room

temperature. For detection of AJs, polarized cells were stained

with rabbit antibodies to E-cadherin and mouse monoclonal

antibodies to nectin-1 (both from Invitrogen/Life Technologies).

To determine HSV-1 infection, we immunostained infected cells

with mouse antibodies against HSV-1 ICP4 and gB (both from

Santa Cruz Biotechnology, Inc., Dallas, TX), rabbit anti-gD

(HSV-1) (MyBioSource, San Diego, CA), and goat anti-HSV-1/2

antiserum (AbD Serotec, Raleigh, NC). All antibodies were diluted

1:50 in blocking solution (3% BSA and 0.03% saponin in PBS).

Monolayers were washed and then incubated for 25 min with

FITC- or TRITC-labeled secondary antibodies (Vector Labora-

tories, Inc., Burlingame, CA). Cell nuclei were counterstained with

TO-PRO-3 (blue) or propidium iodide (red) (Molecular Probes/

Life Technologies). Cells were analyzed by using a Leica SP5 laser

confocal microscope.

Assay for HSV-1 Spread through a Paracellular Route of
Disrupted Polarized Oral Epithelial Cells

For the HSV-1 paracellular spread assay, HSV-1 at a

multiplicity of infection (MOI) of 10 PFU per cell was added to

the apical surface of polarized monolayers, and cells were

incubated at 37uC for 1, 2, or 4 h. At the various time points,

culture medium was collected from the basolateral chamber of

Transwell inserts and used to infect Vero cells, which were grown

on cover slips on 24-well plates. After 4 h, cells were fixed for the

immunofluorescence assay. HSV infection was quantified by

detection of HSV-1 ICP4 protein, and the percentage of infected

Vero cells was determined.

HSV Infection and Cell-to-Cell Spread in Polarized Tonsil
Epithelial Cells

To examine HSV-1 infection in polarized tonsil epithelial cells,

we added HSV-1 to apical and basolateral membranes at an MOI

of 4 and 40 PFU per cell, respectively. This resulted in the equal

infection of virus at approximately 4 virions per cell from both

membranes, because about 90% of basolaterally added virions

could be trapped in the filter pores, and about 10% of virions

reach the basolateral membranes [45,47,53]. Cells were cultured

for 24 h and fixed and immunostained for HSV-1 gB using mouse

monoclonal antibodies (Santa Cruz Biotechnology).

HIV, Epithelial Junctions, Herpes Simplex Virus
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To examine the role of nectin-1 in HSV-1 infection, we

preincubated polarized cells with mouse monoclonal antibody to

nectin-1 (clone CK-8; Invitrogen/Life Technologies) at 10 mg/ml

for 1 h, and cells were then infected with HSV-1. After 24 h, cells

were fixed, and HSV infection was evaluated by immunostaining

of cells with polyclonal goat anti-HSV-1/2 antibodies (AbD

Serotec). HSV infection was quantified by counting infected cells,

and the percentage of infected cells was determined.

To determine cell-to-cell spread of HSV-1 in polarized

epithelial cells, a viral plaque assay was used [47]. Polarized cells

were infected with HSV-1 from the basolateral surface at an MOI

of 0.01 PFU per cell, and cells were incubated for 2 h at 37uC.

The cells were then washed once with serum-free medium and

overlaid with serum-free medium containing 0.5% methylcellulose

from apical and basolateral chambers; this prevents the spread of

released virions but allows cell-to-cell spread of progeny virions.

Cells were cultured for 3 days. To detect HSV-1-infected viral foci

or plaques, cells were fixed and immunostained with goat

polyclonal anti-HSV-1 antibodies (AbD Serotec). The number of

viral plaques was counted on a minimum of 3 filter inserts for each

experiment, and average plaque numbers were expressed per

insert. HSV-1 cell-to-cell spread was evaluated by quantitative

analysis of HSV-1-infected plaques. Foci containing 5 or more

infected cells were considered plaques, and cell numbers in each

plaque were counted. A minimum of 30 plaques for each

experimental condition were evaluated and the average number

of cells per plaque was expressed.

For inhibition of HSV-1 cell-to-cell spread after 2 h of infection,

cells were washed, and culture medium with antibodies to nectin-1

(Invitrogen/Life Technologies) and/or HSV-1 gD (MyBioSource,

San Diego, CA) (both at 10 mg/ml) was added to polarized cells

from apical and basolateral chambers. Cells were grown for

3 days, and culture medium was changed daily to add fresh

antibodies. Viral plagues were quantitated as described above.

Western Blot Assay
For Western blot detection of E-cadherin and nectin-1,

polarized tonsil epithelial cells were extracted, and proteins were

separated on a 16% SDS-polyacrylamide gel and blotted with

anti-E-cadherin and nectin-1 antibodies (both from Invitrogen/

Life Technologies). The protein bands were visualized using ECL

detection reagents (GE Healthcare Bio-Sciences, Pittsburgh, PA),

and equal protein loading was confirmed by detection of b-actin

(Ambion/Life Technologies).

Detection of Nectin-1 and HSV-1 gD on the Cell Surface
by Domain-Selective Labeling Assay

Polarized cells were labeled with 200 mg/ml sulfo-NHS-LC-

biotin (Thermo Fisher Scientific Inc., Rockford, IL) from apical or

basolateral membranes for 30 min as described [44,47]. Cells were

washed with Tris saline (10 mM Tris-HCl pH 7.4, 120 mM

NaCl), and extracted in lysis buffer containing 1% Nonidet P-40,

1% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS),

1 mM phenylmethylsulfonyl fluoride (PMSF), and aprotinin

(1 mg/ml). Biotinylated proteins were precipitated with streptavi-

din–agarose beads in lysis buffer (Thermo Fisher Scientific,

Waltham, MA), followed by separation on a 4–20% Tris-glycine

SDS-polyacrylamide gel and transferred to nitrocellulose mem-

branes (GE Healthcare, Germany). Nectin-1 was detected using

mouse monoclonal (Invitrogen/Life Technologies) antibodies. To

determine binding of HSV-1 gD to nectin-1, we used the

truncated form of HSV-1 gD ectodomain gD(306t). HSV-

1 gD(306t) at 20 mg/ml was added to apical or basolateral

membranes for 30 min, and cells were washed and subjected to

domain-selective labeling from appropriate cell membranes. HSV-

1 gD was detected using rabbit polyclonal antibodies (MyBio-

Source). Bands were visualized using the ECL detection system

(GE Healthcare).

MAPK Activation Assay
Polarized tonsil epithelial cells were incubated with HIV tat

and/or gp120 recombinant proteins and UV-inactivated or active

cell-free HIV virions. One set of cells was treated with MAPK

inhibitor U0126 (Sigma) at 1 mM. The absence of toxic effect of

1 mM U0126 on polarized cells was confirmed by MTT cell

viability assay (Biotium Inc.) and measurement of TER. After

5 days, cells were extracted and proteins were separated on a 4–

20% Tris-glycine SDS-polyacrylamide gel and transferred to

nitrocellulose membranes (GE Healthcare). MAPK signaling

activity was measured by detection of phosphorylated and total

ERK1/2 protein using mouse monoclonal antibodies (Cell

Signaling Technology, Danvers, MA) that recognize phosphory-

lated (Clone E10, #9106) and nonphosphorylated (#9102)

ERK1/2. Protein bands were visualized using the ECL detection

system (GE Healthcare). Inhibition of MAPK activity by U0126

was quantitated by measuring the intensity of pixels (mean density)

in protein bands using Image J software.

Statistical Analysis
Data are presented as mean 6 standard error of the mean

(SEM) of two experiments performed in duplicate. The differences

between control cells (untreated or treated with inactive tat/

gp120) and experimental cells (treated with active tat/gp120 and

HIV virions) were analyzed using Student’s t test. A p value of

,0.05 was considered significant.

Results

HIV Tat- and gp120-Induced Disruption of Tight
Junctions of Polarized Oral Epithelial Cells Facilitates
Paracellular Spread of HSV-1

The tight junctions of oropharyngeal mucosal epithelium have

critical barrier functions for protection against paracellular spread

of various pathogens, including viruses. We have shown that HIV-

associated disruption of tight junctions of oral mucosal epithelium

facilitates paracellular spread of human papillomavirus [15]. HIV

tat and gp120 had the greatest effect on TJ disruption when cells

were treated with a combination of the two proteins for 5 days,

and there was no toxic effect on the cells [15]. Thus, to determine

if HIV tat- and gp120-induced TJ disruption facilitates HSV-1

paracellular spread, we treated polarized tonsil epithelial cells with

a combination of recombinant tat and gp120 at 10 ng/ml each,

which is similar to physiological levels in HIV-infected individuals

[54,55,56,57] (Fig. 1A). As negative controls we used mutant tat

protein, which lacks the basic and integrin-binding domains, and

heat-inactivated gp120; both are functionally inactive proteins

[15,21,58,59,60]. Culture medium was changed daily to include

fresh proteins, and disruption of TJs was confirmed on day 5 in

two inserts of each plate by three independent assays in the

following order: (i) measurement of TER, (ii) evaluation of

paracellular permeability, and (iii) immunostaining of cells for TJ

protein ZO-1. Measurement of TER showed that the electrical

resistance of cells treated with active forms of tat and gp120 was

substantially reduced, in contrast to that of TER in control cells,

either untreated or treated with inactive tat and gp120 (Fig. 1A,

upper panel). Consistent with the TER data, paracellular leakage

of IgG (Fab’)2 from the apical chamber to the basolateral chamber

was detected only when cells were treated with active tat/gp120

HIV, Epithelial Junctions, Herpes Simplex Virus
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(Fig. 1A, lower panel). Finally, localization of ZO-1 in polarized

cells treated with active tat/gp120 was diffuse cytoplasmic,

indicating disruption of TJs (Fig. 1B). Polarized cells treated with

inactive tat and gp120 and untreated control cells showed the

localization of ZO-1 as a ring shape, which is typical for intact TJs

(Fig. 1B).

After confirmation of TJ disruption, we added HSV-1 to the

apical surface of polarized cells at an MOI of 10 PFU per cell for

1, 2, or 4 h. Measurement of TER in control cells exposed to

HSV-1 showed that TER was not reduced at any time point (data

not shown), indicating that HSV does not alter the TJs of tonsil

epithelial cells. At various times, the culture medium in the lower

chamber was collected for the HSV-1 infectivity assay in Vero

cells. Virus-containing basolateral culture medium was added to

Vero cells, and culture was maintained for 4 h. Vero cells were

then fixed and immunostained for HSV-1 ICP-4, which is

immediate-early protein expressed at 4 h after infection (Fig. 1C)

[61]. Confocal immunofluorescence analysis of Vero cells showed

that ICP4 was expressed in the nuclei of cells treated with active

tat/gp120 and exposed to HSV-1. In contrast, ICP4 was not

detected in Vero cells that were untreated or treated with inactive

tat/gp120 and exposed to HSV-1. Quantitative analysis of HSV-

infected Vero cells indicated that HSV paracellular spread

through tat/gp120-disrupted TJs occurred after 1 h of exposure

to HSV-1 from the apical surface (Fig. 1D). During the next 2 and

4 h of HSV-1 exposure, the paracellular spread of HSV increased

in a time-dependent fashion. These data indicate that HIV tat/

gp120-induced disruption of TJs of tonsil epithelial cells facilitates

the paracellular spread of HSV-1.

To determine if interaction of HSV-1 with oral epithelial cells

disrupts epithelial TJs, polarized tonsil epithelial cells were treated

with one of the key glycoproteins of HSV-1, the soluble gD(306t),

which contains 1–306 residues in its extracellular domain. Cells

were treated with 10 ng/ml of gD for 5 days and culture media

with fresh protein was changed every day. Measurement of TER

and immunostaining of ZO-1 showed that HSV-1 gD did not

reduce TER and did not alter localization of ZO-1 of polarized

cells (data not shown), indicating that HSV gD is not involved in

disruption of TJs.

Figure 1. HIV tat- and gp120-induced disruption of TJs of oral epithelial cells facilitates the paracellular spread of HSV-1. A (upper
panel). Polarized tonsil epithelial cells were treated with active or inactive recombinant HIV tat and gp120 in combination for 5 days, and TER was
then measured. A (lower panel). The same cells were used to evaluate paracellular permeability after 5 days of treatment, as determined by leakage
of IgG (Fab’)2 from the apical chamber to the basolateral chamber. OD, optical density. B. The same cells were immunostained for ZO-1 (green). Cell
nuclei are stained in blue. C. HSV-1 at an MOI of 10 PFU per cell was added to the upper chamber of polarized cells, and culture medium was
collected from the basolateral chamber after 1, 2, or 4 h. HSV-1 paracellular spread was confirmed by detection of ICP4 protein in Vero cells (green)
4 h after infection. Cell nuclei were stained with propidium iodide (red). Yellow indicates colocalization of ICP4 with the nuclear marker. D. HSV-1
paracellular spread was quantified by counting of HSV-1-infected Vero cells in 10 random microscopic fields and determining the percentage of cells
positive for ICP4. A, D: Error bars indicate SEM (n = 3).
doi:10.1371/journal.pone.0088803.g001
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Interaction of HIV Virions with Mucosal Epithelium
Disrupts Epithelial Tight Junctions and Promotes HSV
Paracellular Spread

To determine whether direct interaction of cell-free HIV virions

with mucosal epithelium disrupts the TJs, we exposed polarized

tonsil epithelial cells to dual X4- and R5-tropic HIV-1SF33 for

5 days. In parallel experiments UV-inactivated virions were used.

Culture medium was changed daily to add fresh virus, and TER

was measured daily. In untreated control cells, TER increased

over the 5 days. In contrast, TER gradually declined in cells

exposed to either inactivated or active HIV virions (Fig. 2A). The

HIV-induced reduction in TER was detected only with prolonged

exposure to virus (4–5 days); with shorter treatment (1–3 days) it

was not. Analysis of paracellular leakage of IgG (Fab’)2 confirmed

the TER data; i.e., both inactive and active HIV disrupted

epithelial TJs (data not shown). To examine the paracellular

spread of HSV through HIV-disrupted tonsil epithelial cells, we

added HSV to the apical membranes of polarized cells for 1, 2, or

4 h and tested the basolateral medium for HSV infection in Vero

cells. Quantitative analysis of HSV-infected Vero cells showed

HSV paracellular spread through cells disrupted by both HIV-

inactivated and HIV-active virus (Fig. 2B). HSV paracellular

spread was not detected through control cells with intact TJs.

HIV tat and gp120 and Cell-free HIV Virions Induce
Activation of MAPK Signaling in Polarized Oral Epithelial
Cells

MAPK activation is a key mechanism for the disruption of TJs,

and HIV tat binds to b1 and av integrins [59,60,62,63], which

leads to induction of MAPK activation in endothelial cells

[21,22,23]. Binding of HIV gp120 to chemokine receptors

CXCR4 and CCR5 in lymphocytes and macrophages also leads

to induction of MAPK [64,65,66,67]. We have shown that

polarized oral epithelial cells express to b1 and v integrins, and

CCR5 and CXCR4 [44,46,68], indicating availability of HIV tat

and gp120 receptors in oral epithelium. To determine if HIV tat

and gp120 interaction with these receptors induces MAPK in oral

epithelial cells, we examined the phosphorylation of MAPKs

ERK1/2 in polarized tonsil epithelial cells. Cells were treated with

tat or gp120 alone or in combination for 5 days. Also, tonsil cells

were incubated with UV-inactivated and infectious cell-free HIV

virions. TER was drastically reduced (80–90%) in cells treated

with active tat and/or gp120 and with active or inactive HIV

virions, compared to the TER of untreated control cells and cells

treated with inactive tat and/or gp120 (Fig. 3A). After confirma-

tion of TJ disruption, cells were extracted and examined for total

and phosphorylated ERK1/2 by Western blot assay (Fig. 3B).

These results show that both active tat and gp120 induce ERK1/2

phosphorylation and that treatment of cells with a combination of

tat and gp120 substantially increases ERK1/2 phosphorylation

over that in cells treated with tat or gp120 alone. Analysis of

MAPK activation in the cells incubated with UV-inactivated and

infectious HIV virions showed that both inactive and active virions

induce phosphorylation of ERK1/2.

To confirm the role of MAPK signaling in HIV-associated

disruption of TJs, polarized cells were treated with tat or gp120 in

the presence or absence of MAPK inhibitor U0126 at 1 mM

(Fig. 3C). Culture media with fresh proteins and inhibitor were

changed every day, and at day 5 TER was measured. Comparison

of TER in tat or gp120-treated cells with and without U0126

showed that TER was increased about 2 fold in cells with U0126

compared to cells without MAPK inhibitor (Fig. 3C). In the

presence of U0126, TER reached almost 60% of its normal level

in tat or gp120-untreated cells. The presence of U0126 in tat- or

gp120-untreated cells did not alter the TER. Analysis of ERK1/2

phosphorylation in tat- or gp120-treated cells in the presence and

absence of U0126 showed that U0126 induced approximately

50% reduction of ERK1/2 phosphorylation, which was well

correlated with the increase of TER (Fig. 3D). These findings

indicate that inhibition of MAPK signaling prevented tat and

gp120-induced disruption of tight junctions, i.e., HIV-induced

MAPK activation is critical for disruption of TJs in oral epithelial

cells.

HIV tat and gp120 and Cell-free HIV Virions Disrupt
Adherens Junctions of Oral Epithelial Cells and Expose
Nectin-1

Activation of MAPK signaling may also lead to disruption of

AJs [69,70]. Dissociation of AJs by calcium depletion liberates

nectin-1, facilitating HSV-1 infection [43]. We hypothesized that

HIV-induced MAPK activation may also disrupt AJs, liberate

nectin-1, and thereby promote HSV-1 infection. To test this

hypothesis, we investigated the role of HIV tat/gp120 and cell-free

HIV virions in the disruption of AJs, liberation of nectin-1, and

binding of nectin-1 to HSV gD.

Coimmunostaining of nectin-1 and E-cadherin in polarized

tonsil epithelial cells showed that these two adhesion proteins were

colocalized (Fig. 4A). To examine whether the HIV tat and gp120

and virions disrupt the AJs, we treated polarized tonsil cells with

inactive or active tat and gp120 in combination and cell-free HIV

virions for 5 days. Immunostaining of E-cadherin in these cells

showed that active tat/gp120 as well as cell-free HIV virions

substantially reduced or completely inhibited expression of E-

cadherin and altered its localization from cell membrane to

Figure 2. HIV cell-free virion-associated disruption of epithelial
tight junctions facilitates HSV paracellular spread. A. Polarized
tonsil epithelial cells were incubated with dual X4- and R5-tropic HIV-
1SF33 for 5 days. One set of cells was exposed to UV-inactivated virions.
Culture medium was changed daily to add fresh virus, and TER was
measured. B. HSV-1 was added to the apical surface of polarized cells
upon complete disruption of TJs at 5 days. HSV paracellular spread at 1,
2, and 4 h after incubation was examined in Vero cells grown in the
basolateral chamber of filter inserts by immunostaining of ICP4 protein.
HSV-1 paracellular spread was quantified by counting HSV-1-infected
Vero cells, and the percentage of cells positive for ICP4 was determined.
A, B: Error bars indicate SEM (n = 3).
doi:10.1371/journal.pone.0088803.g002
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cytoplasm (Fig. 4B). In contrast, E-cadherin in cells treated with

inactive tat and gp120 and in untreated control cells was

exclusively localized in the cell membranes, where AJs are formed.

Nectin-1 expression by active tat/gp120 and HIV virions was not

reduced, and its localization was not changed (Fig. 4B). A Western

blot assay confirmed the immunostaining data (Fig. 4C). Treat-

ment of polarized cells with HSV-1 envelope proteins gD(306t) for

5 days did not alter localization of E-cadherin and nectin-1 (data

not shown), indicating that HSV-1 gD does not disrupt AJs.

To determine if disruption of AJs liberates nectin-1, we

performed domain-specific surface labeling of apical or basolateral

membranes of polarized cells with sulfo-NHS-LC-biotin. The

presence of nectin-1 was examined in the avidin-precipitated total

membrane proteins by Western blot assay. Analysis of nectin-1 in

the apical and basolateral membranes of polarized cells treated

with inactive tat and gp120 showed that only a trace amount of

nectin-1 was present in the apical and basolateral membranes of

cells with an intact AJ (Fig. 4D). In contrast, substantially more

nectin-1 was detected on the polarized cells with AJs disrupted by

active tat and gp120. These data indicate that the disruption of

tat/gp120-induced AJs allows for more penetration of biotin into

junctional areas, where it subsequently labeled nectin-1. Penetra-

tion of biotin into nectin-1 sequestered areas without relocalization

of nectin-1 from the lateral membranes showed that disruption of

AJs did not lead to liberation or release of nectin-1. More likely,

disruption of AJs facilitated exposure of nectin-1 to cell surface

biotinylation; i.e., sequestered nectin-1 within the AJs was exposed

owing to the disruption of AJs.

To study the role of HIV tat/gp120-exposed nectin-1 in HSV-

1 gD binding, we performed soluble gD binding to apical and

basolateral surfaces of intact and disrupted polarized cells by active

and inactive tat/gp120, respectively. The soluble HSV-

1 gD(306t), which binds to nectin-1, was added to apical or

basolateral membranes of polarized cells for 30 min. The apical or

basolateral surfaces of polarized cells were biotinylated, and the

presence of HSV gD was examined in the avidin-precipitated total

membrane proteins by Western blot assay. Domain-specific

labeling showed that HSV-1 gD binding to the cell surface was

increased two- to threefold in the polarized cells with the disrupted

AJs than in the cells with intact AJs (Fig. 4E), indicating that the

Figure 3. HIV tat and gp120 activate MAPK in polarized oral epithelial cells. (A) Polarized cells were treated with active or inactive tat and
gp120, alone or in combination. In parallel experiments, cells were exposed to UV-inactivated or active HIV-1SF33. Culture medium was changed daily
to add fresh proteins and virus, and at day 5 the TER was measured. (B) After measurement of TER, the same cells were used for evaluation of MAPK
activation. Cells were extracted, and total and phosphorylated ERK1/2 were detected by Western blot assay. (C) Polarized cells were treated with
active forms of tat or gp120 in the presence or absence of MAPK inhibitor U0126. Tat -and gp120 -untreated cells with or without U0126 served as
controls. At day 5 TER of polarized cells was measured. (D) The same cells from panel C after measurement of TER were extracted and used for
evaluation of phosphorylated and total ERK1/2. The mean densities of pixels in the protein bands were measured by Image J software, and the results
for each gel are shown as a bar graph under each blot. A and C: Error bars indicate SEM (n = 3).
doi:10.1371/journal.pone.0088803.g003
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Figure 4. HIV-disrupted epithelial junctions lead to exposure of nectin-1 and facilitate its binding to HSV-1 gD. A. Polarized tonsil
epithelial cells were coimmunostained for nectin-1 and E-cadherin. Yellow in the merged panel indicates colocalization of nectin-1 and E-cadherin. B.
Polarized tonsil cells were treated with active or inactive tat and gp120 in combination for 5 days. In parallel experiments, cells were exposed to HIV-
1SF33 for 5 days. Cells were then immunostained for E-cadherin and nectin-1. C. Polarized cells were treated with active or inactive tat and gp120 in
combination or with cell-free HIV-1SF33 for 5 days. Cells were then extracted, and E-cadherin and nectin-1 were detected by Western blot assay. D.
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exposure of nectin-1 is facilitated by HSV-1 gD binding to

disrupted epithelial cells.

HIV-Induced Exposure of Nectin-1 Facilitates HSV-1
Infection

To determine if HIV-induced exposure of nectin-1 plays a role

in HSV infection, we examined HSV-1 infection in polarized cells

with intact AJs or AJs disrupted by active or inactive tat/gp120.

HSV infection was also examined in cells with AJs disrupted by

HIV virions. Infected cells from apical or basolateral surfaces were

evaluated by immunostaining of cells with monoclonal antibody

against HSV-1 gB. Confocal microscopic analysis showed that

most HSV-1 gB-positive cells were found in the cells with AJs

disrupted by active tat/gp120 or HIV virions (Fig. 5A). Quanti-

tative analysis showed that HSV infection was four- to fivefold

higher in the cells with disrupted AJs than in the cells with intact

AJs (Fig. 5B). HSV infection from the apical surface was

approximately one-half that from the basolateral surface (Fig. 5B).

To further investigate the role of nectin-1 in HSV entry into

polarized cells with disrupted AJs, we treated polarized tonsil cells

with active or inactive tat/gp120 and HIV virions for 5 days. After

confirmation of AJ disruption, cells were preincubated with

antibodies to nectin-1 (CK-8), which recognizes its V domain

between 80 and 105 aa where it binds HSV-1 gD [71]. Cells were

then infected with HSV-1. Cells without antibodies served as a

control. After 24 h, cells were fixed and immunostained with goat

anti-serum against HSV-1. Quantitative analysis of HSV-infected

cells showed that antibodies to nectin-1 reduced HSV-1 infection

in cells treated with active tat/gp120 and HIV virions by ,70%

(Fig. 5C). Significant inhibition of HSV-1 infection by anti-nectin-

1 antibodies in cells treated with inactive tat/gp120 was not

observed, indicating that antibodies are efficient when AJs are

disrupted. These data clearly indicate that tat/gp120- and virion-

induced disruption of AJs exposes nectin-1 to gD, which binds to

nectin-1, facilitating viral infection. However, approximately 10–

15% of cells with intact junctions were infected with HSV-1 in the

presence of anti-nectin-1 antibodies. This could be basal HSV-1

infection of polarized cells due to low levels of other gD receptors,

including herpesvirus entry mediator (HVEM) and 3-O-sulfated

heparan sulfate (3-OS-HS), which are not restricted to junctions

[72,73,74,75].

HIV-Induced Exposure of Nectin-1 Facilitates HSV-1 Cell-
to-Cell Spread

Since interaction of HSV-1 gD with nectin-1 is critical for cell-

to-cell spread of virus [35,76,77,78] we investigated the role of

HIV-associated exposure of nectin-1 in the spread of HSV-1.

Polarized tonsil cells were treated with active or inactive tat/gp120

and HIV virions, and disruption of epithelial junctions was

confirmed by measurement of TER after 5 days. Cells were

infected with HSV-1 from basolateral membranes at an MOI of

0.01 PFU per cell and were fixed and immunostained with

polyclonal goat anti-HSV serum after 3 days. Confocal microsco-

py of cell-to-cell spread of virus revealed small foci (plaques) of

infected cells in the untreated control cells and in the cells treated

with inactive tat/gp120 (Fig. 6A). HSV-infected plaques in the

cells treated with active tat/gp120 and HIV virions were

substantially larger. Analysis of HSV-infected plaque numbers

also showed that about 4 fold more plaques were detected in

disrupted cells by tat/gp120 and HIV virions than in intact cells of

untreated controls and cells treated with inactive tat/gp120

(Fig. 6B, upper panel). Quantitative analysis of plaque size showed

that the average number of infected cells in untreated control cells

and in cells treated with inactive tat/gp120 was approximately 10–

15 cells per plaque (Fig. 6B, lower panel). In contrast, the number

of infected cells in polarized cells treated with active tat/gp120 and

HIV virions was 70–80 cells per plaque.

Next, we incubated cells with active tat/gp120 for 5 days. After

confirming the reduction of TER, we exposed cells to HSV-1;

after 2 h, the infected cells were incubated with antibodies against

gD, nectin-1, and a combination of gD and nectin-1. Cells were

maintained for 3 days, and culture medium was changed every

Apical or basolateral membranes of polarized epithelial cells were treated with inactive or active HIV tat and labeled with sulfo-NHS-LC-biotin. Nectin-
1 was detected in the avidin-precipitated total membrane proteins by Western blot assay. E. HSV-1 gD(306t) at 20 mg/ml was added to apical or
basolateral membranes of polarized epithelial cells treated with inactive or active HIV tat/gp120. After 30 min the cell surface was labeled with sulfo-
NHS-LC-biotin. Proteins biotinylated at the cell surface were precipitated with streptavidin–agarose beads, and gD was detected by Western blot
assay. AP, apical; BL, basolateral.
doi:10.1371/journal.pone.0088803.g004

Figure 5. HIV-disrupted epithelial junctions facilitate HSV-1
infection. A. Polarized tonsil cells were treated with HIV tat/gp120 or
HIV virions for 5 days and infected with HSV-1. After 24 h, cells were
fixed and immunostained using anti-HSV-1 gB antibodies (red). Cell
nuclei are stained in blue. B. HSV-1 infection was quantitatively
evaluated, and the percentage of cells positive for gB was determined.
Error bars indicate SEM. C. Cells were incubated with antibodies against
nectin-1 for 1 h and then infected with HSV-1. Cells were fixed after
24 h, HSV-1 infection was confirmed by detection of goat anti-HSV-1
immune serum, and the number of infected cells was counted. ab, cells
incubated with antibodies. c, control cells without antibodies. Error bars
indicate SEM. *P,0.01, **P,0.001, all compared with the control group.
doi:10.1371/journal.pone.0088803.g005
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day to add fresh antibodies. Quantitative analysis of HSV-infected

plaque numbers showed that anti-gD and -nectin-1 antibodies

independently reduced plaque numbers by approximately 30%

and 40%, respectively, compared to control cells without

antibodies (Fig. 6C, upper panel). Combination of these two

antibodies reduced plaque numbers by about 60%. Quantitative

analysis of plaque formation showed that antibodies to gD and

nectin-1 independently reduced plaque size by approximately 60%

and 50%, respectively (Fig. 6C, lower panel). Furthermore, the

combination of antibodies to nectin-1 and gD reduced plaque size

by about 70%. These data indicate that HIV-induced disruption

of AJs and exposure of nectin-1 are important for the cell-to cell

spread of HSV in oral epithelial cells.

Discussion

We have shown that HIV proteins tat and gp120 and cell-free

HIV virions facilitate HSV infection and spread within the oral

epithelium. HIV tat-, gp120-, and virion-induced disruption of TJs

and AJs of oral epithelial cells facilitates HSV-1 paracellular

spread. Furthermore, HIV tat/gp120- and HIV virion-induced

disruption of AJs of oral epithelial cells substantially increases HSV

infection and cell-to-cell spread.

The barrier function of the lining of oropharyngeal, gut, and

anogenital mucosal epithelium is mediated by well-developed

epithelial TJs and AJs. HIV-associated disruption of TJs opens

paracellular space between epithelial cells, leading to the passage

of multiple pathogens, including viruses [15,19,50,79]. The loss of

barrier function in mucosal epithelium may promote reinfection

by HSV-1 with the same or different genotype; this is possible in

HSV-seropositive individuals [80,81,82,83,84]. Moreover, HIV-

induced dysfunction of the immune system may increase

reinfection by HSV with different genotypes of virus [85]. The

opening of paracellular space between mucosal epithelial cells may

also facilitate the paracellular release of reactivated HSV into

saliva, leading to the rapid spread of virus to others.

HIV-induced disruption of both TJs and AJs depends on

MAPK activation by tat and gp120 and HIV virions. It is well

documented that the MAPK-associated mechanism of HIV tat-

and gp120-induced disruption of TJs takes place through aberrant

Figure 6. HIV tat/gp120-disrupted epithelial junctions facilitate HSV-1 cell-to-cell spread through junctional areas of polarized oral
epithelial cells. A. Polarized tonsil cells were treated with active or inactive tat/gp120 and HIV virions for 5 days. Disrupted cells were infected with
HSV-1 at 0.01 PFU per cell from basolateral membranes of polarized cells. After 3 days, cells were fixed and immunostained using goat anti-HSV
immune serum (green). Cell nuclei are stained in red. Yellow represents colocalization of HSV proteins and nuclei. B. (upper panel) Plaque numbers
were counted from 3 independent filter inserts and data are presented as the average number of HSV-infected plaques per insert. (lower panel) Cell-
to-cell spread of HSV-1 was quantitatively evaluated by counting HSV-infected cells in the plaques. Results are presented as the average number of
HSV-infected cells per plaque. Error bars indicate SEM. C. Polarized cells were infected with HSV-1. After 4 h, antibodies to nectin-1 and gD were
added separately and in combination. Cell medium was changed daily to add fresh antibodies. Cells were fixed and immunostained for HSV-1, and
the plaque numbers (upper panel) and the number of HSV-1-positive cells in plaques were counted (lower panel). Error bars indicate SEM. *P,0.05,
*P,0.01, **P,0.001, all compared with the control group.
doi:10.1371/journal.pone.0088803.g006
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internalization of TJ proteins and their down-regulation and/or

proteasome-mediated degradation [21,22,23,24,25,26,27,28,29,

30,31,32]. Here we have shown for the first time that HIV tat

and gp120 proteins and HIV virions also induce dissociation of

AJs. It has been reported that activation of the MAPK ERK

pathway in epithelial cells induces expression of transforming

growth factor-b1, vgixg causes internalization of E-cadherin

from AJs into cytoplasm, leading to the epithelial-to-mesenchy-

mal transition (EMT) [86]. MAPK activation also induces the

expression of fibroblast growth factor-2, which causes E-cadherin

down-regulation via EMT mechanisms [87]. Our data show that

HIV virions and tat/gp120 induce activation of MAPK ERK1/2

and reduce E-cadherin expression, also altering its localization

from membrane to cytoplasm. These findings suggest that HIV

induces the disruption of AJs through the EMT phenotype, which

is a well-coordinated epigenetic process [88]. HIV has previously

been shown to cause EMT in renal epithelium. HIV infection is

associated with kidney failure due to severe nephropathy,

characterized by the loss of the renal epithelial phenotype and

the acquisition of mesenchymal features, including de-differenti-

ation, depolarization, and proliferation [89,90,91,92,93]. Our data

also consistently show that treatment of polarized oral epithelial

cells with HIV tat and gp120 and HIV virions induces disruption

of TJs and AJs and therefore the depolarization of epithelial cells.

UV irradiation of HIV virions did not affect the role of HIV in the

disruption of cell junctions and depolarization, indicating that

HIV infection is not critical for disruption of cell junctions.

The major receptor for HSV-1 gD nectin-1 is an adhesion

protein associated with AJs. Nectin-1 has hemophilic interactions

with itself and heterophilic interactions with nectins 3 and 4; such

interactions within the lateral membranes of epithelial cells form

AJs [94]. Dissociation of AJs by calcium depletion liberates nectin-

1, indicating that it is sequestered within the AJs [43]. However, in

our study HIV tat/gp120- and HIV-induced disruption of AJs did

not alter localization of nectin-1 from lateral membranes of

polarized cells, suggesting that, in this case, release or liberation of

nectin-1 may not occur. Rather, our results show that HIV-

associated disruption of AJs leads to the exposure or unmasking of

nectin-1 from its sequestered areas. HIV-induced exposure of

nectin-1 is a key factor for HSV infection in the lateral membranes

of oral epithelial cells. Nectin-1 has three Ig-like extracellular

domains; HSV gD binds to V domain, which is the distal Ig-like

domain [95,96]. Antibodies to the V domain of nectin-1 and to

HSV gD reduce HSV-1 infection, indicating that HIV-induced

disruption of AJs exposes the V domain of nectin-1 to the HSV-

1 gD. This notion is well supported by the lack of inhibitory effect

of anti-nectin-1 antibodies to HSV-1 infection in cells with intact

AJs; i.e., nectin-1 is hidden within the intact AJs and thus is not

accessible to the HSV gD. HSV-1 entry may occur by direct fusion

of the viral envelope with the plasma membrane or by endocytosis

of virions into the cytoplasm and subsequent fusion of the virion

envelope with endosomal membranes [97,98]. Mechanisms of

HSV gD and –nectin-1-mediated viral entry via HIV-disrupted

junctional areas need to be clarified.

HIV-induced disruption of AJs also promotes the cell-to-cell

spread of HSV-1, indicating that the availability of the nectin-1 V

domain on the lateral membranes of epithelial cells is critical for

the spread of progeny virions. It has been well documented that

the extracellular V domain of nectin-1 is critical for HSV cell-to-

cell spread, in contrast to the cytoplasmic tail and transmembrane

domains of nectin-1, which do not play a critical role in virus

spread [76]. HSV-1 does not spread from nectin-1-positive to

nectin-1-negative cells [77], suggesting that the disruption of AJs

may efficiently promote virus spread as it exposes nectin-1 from

neighboring epithelial cells. During the spread of HSV, newly

synthesized gD replaces the nectin-1 in infected cells at junctions

with uninfected cells [78]. This requires that unoccupied nectin-1

binding sites be available from hemophilic or heterophilic

interactions of nectin-1 from uninfected cells. Thus, the HIV-

induced exposure of nectin-1 promotes binding of gD to

Figure 7. Model of HIV-facilitated HSV infection and spread in the oral mucosal epithelium. The oral mucosal epithelium consists of
stratified squamous epithelial cells. Each layer of epithelial cells forms lateral intercellular junctional complexes, including AJs and TJs. HSV-1 gD
receptor nectin-1 is sequestered within the intact AJs area of lateral membranes of epithelial cells (left panel). HIV-induced disruption of AJs exposes
nectin-1 from its sequestered areas (right panel), which binds to HSV gD and thereby promotes HSV infection and cell-to-cell spread within the oral
epithelium. HIV-induced disruption of TJs leads to paracellular spread of HSV virions, which may facilitate penetration of virus from the apical to the
basolateral direction into the deeper part of the epithelium, and from the basolateral to the apical direction leading to release of virus into saliva.
Thus, HIV-induced disruption of epithelial junctions may facilitate the spread of HSV-1 infection within the mucosal epithelium, leading to the rapid
progression of HSV-mediated mucosal lesions and ulcers.
doi:10.1371/journal.pone.0088803.g007
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unoccupied nectin-1 binding sites from uninfected cells and

therefore may facilitate rapid HSV cell-to-cell spread.

HSV gD also interacts with other receptors. HSV-1/2 gD binds

to HVEM, HSV-1 gD binds to 3-OS-HS, and HSV-2 gD

interacts with nectin-2 [72,73,74,75,99]. Further study may

elucidate the functional role of these receptors in HSV infection

and cell-to-cell spread in HIV-disrupted polarized oral epithelial

cells.

HIV-associated HSV-1 spread in the oral epithelium is a

common manifestation of HIV/AIDS [2,3,4,5,6,7], in which

junctions of oral epithelium are disrupted [15]. HIV-associated

exposure of nectin-1 in oral epithelium could be an important

mechanism for the rapid spread of HSV-1 infection. Furthermore,

our findings may also apply to HIV-associated spread of HSV-2

within the genital mucosa [100,101,102,103,104], because HIV

induces disruption of vaginal and cervical epithelium [50] and

HSV-2 also uses nectin-1 for entry and spread [105].

The presence of HIV tat and gp120 in the mucosal

environment of HIV-infected individuals is critical for the

disruption of epithelial junctions and the exposure of nectin-1.

The presence of HIV virions and HIV gene products in oral and

genital epithelium is well described [15,106,107,108,109,110,111,

112,113,114,115,116,117,118,119], especially in circulating HIV-

infected immune cells [117,118,119]. Secretion of HIV tat and

gp120 into blood has been shown [54,55,56,57,120,121,122]. The

immune cells expressing tat and gp120 have been detected in the

oral and anal mucosa of HIV-infected individuals, including those

on antiretroviral therapy (ART) [15]. HIV in anal tissues,

including tissues from ART-treated donors, replicates and is

infectious [15]. Furthermore, tat and gp120 are detected in the

saliva, and salivary tat penetrates mucosal epithelium [15]. HIV

tat may penetrate cells and tissues through its protein transduction

domain, which is based on the amino acids arginine and lysine.

Internalization of protein into cells and tissues is accomplished by

several mechanisms, including endocytosis and macropinocytosis

[123,124,125,126,127]. Mucosal epithelium may therefore be

exposed to tat and gp120 from multiple sources, including saliva

and circulating immune cells, even among individuals receiving

ART whose HIV viral load is suppressed. Mucosal epithelium may

also serve as an HIV reservoir [118] and as a source of tat and

gp120, which disrupt AJs and expose nectin-1, leading to infection

and spread of HSV-1 and -2.

Incubation of polarized oral epithelial cells with cell-free HIV

virions also caused disruption of TJs and AJs and exposed nectin-

1, leading to HSV-1 infection and spread. Thus, in addition to

secreted tat and gp120, the presence of HIV virions within the

mucosal environment may contribute to the disruption of mucosal

epithelium and thereby the promotion of HSV spread.

In summary, we have shown that HIV proteins tat and gp120

and cell-free virions disrupt oral epithelial junctions and expose

HSV-1 receptor nectin-1, which is sequestered within the AJs.

This is critical for infection by HSV-1 and its rapid paracellular

and cell-to-cell spread (Fig. 7), suggesting that the interaction of

HIV and HSV through the mucosal environment may play an

important role in the development of HIV/AIDS-associated HSV

disease. Combined with other factors, such as HIV/AIDS-caused

reduction of immune response to HSV, this may increase the risk

of subsequent development of HSV-associated diseases. Topical

inhibitors of HIV tat- and gp120-activated MAPK signaling

[21,22,23,24,25,26,128,129,130,131,132,133,134,135], which

plays a key role in disruption of epithelial junctions and exposure

of nectin-1 in HIV-infected individuals, may be useful for reducing

HSV-1 spread within the oral and genital epithelium.
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