Published in partnership with Nanyang Technological University

https://doi.org/10.1038/s41522-024-00577-7

Gut and oral microbiota in gynecological cancers: interaction, mechanism, and therapeutic value

Check for updates

Jian Wu **1**,3 ⋈, Jiarui Li^{2,3}, Meina Yan¹ & Ze Xiang² ⋈

Gynecologic cancers develop from the female reproductive organs. Microbial dysbiosis in the gut and oral cavity can communicate with each other through various ways, leading to mucosal destruction, inflammatory response, genomic instability, and ultimately inducing cancer and worsening. Here, we introduce the mechanisms of interactions between gut and oral microbiota and their changes in the development of gynecologic tumors. In addition, new therapeutic approaches based on microbiota modulation are discussed.

Cancer is one of the leading causes of premature death all around the world and a huge threat to public health¹. Due to the strong influence of demographic changes such as population aging and growth on different trends in cancer incidence in different regions, the number of cancer patients worldwide is expected to double in the next 50 years². National cancer incidence rates from the GLOBOCAN database of the International Agency for Research on Cancer within the Global Cancer Observatory estimate that the six most commonly diagnosed cancers worldwide are currently: stomach, colorectal, lung, breast, cervical and prostate cancers¹, among which cervical cancer (CC) is the most common type of gynecological cancer. In addition, gynecological cancers also include endometrial cancer (EC) and ovarian cancer (OC) commonly, vaginal cancer and vulvar cancer rarely³.

Different part of the human body (gut, skin, lungs, oral cavity) is colonized by a variety of commensal, symbiotic and pathogenic microbiota, including bacteria, archaea, fungi, protists, and viruses^{4,5}. Additionally, the human microbiota, commonly referred to as "the hidden organ," contributes more genetic data than the total human genome by a factor of over 1506. The community of microbes in a particular environment is called microbiota, while the microbes, their genomes, and the surrounding environment are called microbiome⁷. In the past two decades, due to the rapid development of the technology of cultivating independent genomes, a lot of related research has been carried out, and studies such as the Human Microbiome Project (HMP) provide insights into the composition of a typical healthy microbiome⁸. Recent advances in microbiome research have demonstrated that the microbiome is not just a passive bystander, but plays an important role in altering the immune, metabolic and endocrine systems, which in turn affects the physiological functions of the host⁹⁻¹¹. More importantly, microbes have shown a complex relationship with cancer development. Although cancer is generally considered to be caused by a combination of host genetic and environmental factors, microbes have been implicated in \sim 20% of human malignancies 12.

As one of HMP's five research priorities (oral cavity, nasal, vaginal, intestinal, skin), the gut microbiome is considered the most important microbiome for maintaining human health. It is estimated that the human gastrointestinal tract harbors as many as 100 trillion microbes, with 200-1000 species of bacteria, numbering around 40 trillion¹³. The exact number of bacterial species shared within the digestive system or among individuals remains undetermined. For instance, a study of 124 European individuals revealed a total of approximately 1150 bacterial species, with most individuals harboring around 160 species¹⁴. Another study identified 632 bacterial species in a cohort of 1135 Dutch individuals¹⁵; and at least 1235 species-level phylotypes (SLPs) were found in the gut microbiota of 120 Chinese individuals¹⁶. Bacteria in the gut microenvironment are divided into seven major phyla (Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria, Proteobacteria, Verrucomicrobia, and Cyanobacteria), among which Bacteroidetes and Firmicutes accounting for over 90%¹⁷. The differences in microbial composition among different individuals can be categorized into three clusters, known as enterotypes, characterized by Bacteroidetes, Prevotella, and Firmicutes¹⁸. There are significant functional variations between different enterotypes. Crosstalk between microbial species also influences cancer pathology, acting on DNA stability, microenvironment composition, tumor promotion, and activation or avoidance of cancer immunity¹⁹. The rich gut microbiota not only affects cancer progression systemically, but also modulates response to cancer chemotherapy, radiation therapy, and immunotherapy²⁰.

The microbiome of oral cavity is the second largest and most diverse microbiome after the gut, with more than 700 species of bacteria²¹. The normal average temperature of the mouth at 37 °C and the stable pH of

¹Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China. ²Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. ³These authors contributed equally: Jian Wu, Jiarui Li.
©e-mail: wujianglinxing@163.com; zexiang@zju.edu.cn

saliva at 6.5–7 provide a stable environment for bacteria. Some periodontal microbes have now become the focus of a developmental association between oral microecosystems and cancer²². Microbes of oral cavity can be divided into 12 main phyla: Firmicutes, Fusobacteria, Proteobacteria, Actinobacteria, Bacteroidetes, Chlamydiae, Chloroflexi, Spirochaetes, SR1, Synergistetes, Saccharibacteria (TM7) and Gracilibacteria (GN02)²³. Oral cavity microecological disorders are closely related to many systemic diseases²⁴. Microbiota of oral cavity can invade the intestine or enter the blood circulation through tissues, and then affect the whole body²⁵. Oral microbiota mediated carcinogenic effects have been found, as represented by *Porphyromonas gingivalis*, *Tannerella forsythia* and *Prevotella intermedia*²⁶.

Previous studies have reviewed the potential relationships between the gut microbiome and CC, EC, and OC²⁷, but research on the complex role of oral microbiome and the interaction between oral-gut microbiome in gynecologic cancer is still lacking. Thus, this review focuses specifically on the relationship between intestinal and oral microbiota and their interactions with gynecological cancers. We highlight the interactions between host and bacterial communities and discuss how the gut-oral cavity microbiome plays an important role in the development and progression of gynecological malignancies. Finally, we also summarize the possible role of the microbiome in the etiology, prevention, therapeutic efficacy and toxic effects of gynecological cancer.

The role of gut, oral microbiota and their interaction in carcinogenesis Gut microbiota

The gut is not only a major site for digesting and absorbing nutrients, but also a natural immune barrier against pathogens. The paracacellular pathway regulated by tight junction (TJ) plays a crucial role in the generation of this selective barrier²⁸. TJ is a class of protein complexes that occurs only in vertebrates and is the junction complex at the very top of epithelial and endothelial cells²⁹. The core structure and function of TJ depend on occludin, claudins, the intracellular adapter proteins (ZO proteins) and junctional adhesionmolecule (JAM)30. Damage to the integrity of the intestinal barrier can lead to a rupture of the intestinal barrier TJ, resulting in a "leaky gut" that allows the lumen contents to interact abnormally with the intestinal mucosal immune system³¹. It has been reported that there is a strong link between intestinal microbiota imbalance and leaky gut. Excessive production of bacterial metabolites by overgrown bacteria can affect the barrier function of the intestinal wall, acting on zonulin (currently the only known physiological regulator of tight junctions between cells), and ZO-1 dissolves from TJ, increasing intestinal permeability³².

After promoting leaky gut, bacterial antigens themselves can migrate throughout the body, known as microbial translocation, and produce autoreactive immune cells within lymphatic junctions in peripheral organs. Nucleotide-binding oligomerization domain receptors (NODs) and toll-like receptors (TLRs) were used for pattern recognition receptor systems (PRRs)³³, where immune cells recognize microbial or pathogen-associated molecular patterns on pathogens (MAMP or PAMP)34. At the same time, bacterial antigens can stimulate intestinal immune cells to produce autoreactive cells, which then migrate throughout the body to their target peripheral organs and begin to attack³⁵. Mammalian native immune cells, including macrophages, dendritic cells, etc., can be activated by microbial components (non-self) represented by endotoxins or lipopolysaccharides of Gram-negative bacteria³⁶. Subsequently, a variety of intracellular signaling pathways are activated, and immune cells express pro-inflammatory and anti-microbial cytokines, chemokines and immune receptors^{34,37}, which induce gene mutation, change the expression and transformation of oncogenes and tumor suppressor genes, inhibit cell apoptosis, induce angiogenesis, and result in abnormal inflammatory signaling pathways³⁸. Chronic inflammation can also promote the establishment of immunosuppressive tumor microenvironment (TME) by recruiting a variety of immunosuppressive cells (M2-TAMs, MDSC, Treg, etc.), and promote the occurrence and development of tumors38.

In addition, metabolites of the gut microbiota have been shown to be associated with alteration of the host immune system and cancer incidence. Short-chain fatty acids (SCFAs) and bile acids (BAs) produced by the gut microbiota are critical in cell homeostasis because they help influence cell attachment, immune cell migration, cytokine production, chemotaxis, and programmed cell death³⁹. SCFAs, also known as volatile fatty acids, are the products of anaerobic bacteria in the colon that ferment undigested dietary fiber⁴⁰. The receptors for SCFAs belong to the G-protein-coupled receptors (GPCRS), which play roles in a variety of cellular pathways⁴¹. Various GPCRS, including GPR109A⁴², GPR41⁴³, and GPR43⁴³, affect the carcinogenic outcome by assisting T cell differentiation, promoting the formation of anti-pro-inflammatory cytokines, activating mitogen-activated protein kinases (MAPK) p38, and altering the cell cycle³⁹. BAs are a key metabolic component of gut bacteria that link the gut to the liver, thereby affecting gastrointestinal motility, intestinal permeability, and cancer development⁴⁴. BAs are a ligand for G protein-coupled bile acid receptor 1 (TGR5) and nuclear hormone receptor farnesoid X receptor (FXR). Studies have found that FXR expression levels are reduced on the mRNA of colon polyps, and the intestinal barrier is impaired and immune cell infiltration is increased in FXR-deficient mice⁴⁵. TGR5 signaling controls the complex balance between pro-inflammatory and anti-inflammatory cytokines in tumorassociated macrophages⁴⁶. Therefore, the regulation of SCFAs and BAs plays an important role in tumor prevention and treatment.

Oral microbiota

Microbiota of oral cavity can directly affect the disease status of dental caries and periodontal diseases. At the same time, oral microbiota reflects immune and metabolic information and status through dynamic interaction with the whole body organs of the host. In 1891, Willoughby D. Miller, the first oral microbiologist, wrote in the Lancet that "the human mouth is the focus of infection" and proposed the theory of focal oral infection, which believed that infections from the mouth were closely related to systemic diseases⁴⁷. A focal infection of oral origin may come from an open or closed site. Open lesions included caries, periodontal pockets, and extractive cavities, while closed lesions included periapical infections, unerupted teeth, and infected pulp tissue⁴⁸. From this, microorganisms and their metabolites can pass through connective tissues, muscles and fascia, enter blood vessels or lymphatic vessels or the nervous system, and eventually cause various systemic or degenerative changes⁴⁹. Thus, oral microbiota plays an important role in tumor proliferation, invasion and metastasis.

Radiotherapy is the most effective cytotoxic method against local solid tumors. Compared with healthy controls, the α-diversity of oral bacteria increased with disease intensification, and changes in oral microbiota can also affect the therapeutic effect and prognosis of liver metastasis radiotherapy for primary rectal cancer and colorectal cancer (CRC)⁵⁰. *Porphyromonas gingiwalis* has been shown to evade the host immune response by invading host cells, directly degrading cytokines and mediating receptor loss^{51,52}. Previous studies have shown that a history of periodontal disease and the presence of circulating antibodies against specific oral pathogens are associated with an increased risk of pancreatic cancer⁵³. Fan et al., in the first assessment between oral microbiome and risk of pancreatic cancer, found that *Porphyromonas gingivalis* and *Aggregatibacter actinomycetemcomitans* were associated with an increased risk of pancreatic cancer, phylum *Fusobacteria* and its genus *Leptotrichia* were associated with a reduced risk of pancreatic cancer⁵⁴.

Interaction between gut and oral microbiota in carcinogenesis

The mouth and gut are the most complex microbial habitats, exhibiting unique microbiota associated with the unique microenvironmental characteristics of these two physiological niches. The interactions between the oral and intestinal microbiota are complex, unstable, and interconnected. Regarding the transmission of oral bacteria to the intestine, two hypotheses have emerged: the hematogenous route, that is, oral bacteria enter the lesion and circulate to the gastrointestinal mucosa and colonize; And the enteral route, where bacteria in the mouth travel through the stomach to the intestines⁵⁵. Given the anatomical connection between the two organs,

alterations in the gut microbiome may also exert an influence on the oral microbiome. Oral to gut and gut to oral microbial transmission can shape and reshape microbial ecosystems in both habitats, thereby regulating the pathogenesis of different diseases⁵⁶. Typically, the taxa associated with environmental communities are part of the natural microbiome of healthy humans, and although pathogenic genera are widely present in the normal human microbiome, their abundance is comparatively lower⁵⁷. The potential for colonization of the gut by oral microbiota via the enteral route under healthy conditions is a topic of considerable controversy. Rashidi et al. demonstrated distinct ecological niches between the saliva and fecal microbiomes of healthy adults, challenging the hypothesis that oral bacteria can colonize the distal gut⁵⁸. However, Schmidt et al. provided evidence supporting widespread transmission and colonization of oral microbiota in healthy individuals despite intestinal barriers⁵⁹. Notably, microbial transmission between the mouth and gut is more pronounced in patients than in healthy individuals. In disease states, compromised chemical or immunological barriers and reduced colonization resistance may exacerbate the invasion and overgrowth of oral pathogens within the gut environment. The enrichment of oral bacterial communities observed in pancreatic cancer underscores the significance of the oral microbiome⁶⁰. It is noteworthy that Fusobacterium nucleatum is present both in saliva and colon samples from CRC patients⁶¹. Thus, perturbations to the oral/gut microbiome occur under diseased conditions with increased prevalence of pathogenic bacteria and specific alterations to microbial composition depending on disease state.

Numerous studies have shown that the gut microbiota from the mouth is enriched in the context of disease⁶⁰⁻⁶². 16S rRNA analysis of gastric mucosal samples from gastric cancer (GC) patients at different stages of development showed that five bacterial taxa were enriched in GC and showed significant centrality in their ecological networks, which were Peptostreptococcus stomatis, Streptococcus anginosus, Parvimonas micra, Slackia exigua and Dialister pneumosintes⁶³. Flemer et al. found similar enriched bacterial networks on the oral and colonic mucosal surfaces of patients with CRC and developed a CRC screening criterion that combines oral and fecal microbiota profiles with high specificity and sensitivity, and is particularly suitable for detecting colorectal polyps⁶⁴. Principal-coordinate analysis (PCoA) revealed that the intestinal ecology shaped by total abdominal irradiation (TAI) could be remodeled by the regulation of oral microorganisms. The relative abundance of Lachnoclostridium and Akkermansia in fecal samples of mice receiving oral microbiota transplantation (OMT) after TAI increased and decreased respectively at the genus level, but the relative abundance of both Lachnoclostridium and Akkermansia in the oral samples was reduced at the genus level, suggesting that oral microorganisms may migrate and transfer to the lower digestive tract⁵⁰. Ectopic colonization of the colon by orally derived Klebsiella is associated with abnormal activation of the immune system, inducing Th1 enrichment and driving severe intestinal inflammation (Fig. 1)⁶⁵.

Gut and oral microbiota in gynecological cancer Vaginal microbiota

With the development of modern molecular biology technology, especially the application of amplicon and metagenomic sequencing technology, it is increasingly recognized that even regions previously considered sterile, such as the uterus and fallopium, can harbor unique microbial communities 66,67. The healthy vaginal microbiota of most women of childbearing age is characterized by low microbial diversity and only one or a few dominant Lactobacillus spp., which maintain an acidic vaginal environment through colonization resistance, bioantagonism, and decomposition of glycogen in vaginal epithelial cells to produce lactic acid. Vaginal "self-purification" is maintained by the secretion of hydrogen peroxide (H2O2), bacteriocins, bacteriocins, and biosurfactants and by stimulating the body's immune defense against the growth of other bacteria and pathogenic bacteria⁶⁸. Vaginal microecological imbalance is closely related to the occurrence and development of female reproductive tract infectious diseases. Using 16S rRNA sequencing analysis, Ravel et al. firstly divided the vaginal microbiota of asymptomatic women of childbearing age into five community state types (CST), among which, the species diversity of CSTI (26.2%), CSTII (6.3%), CSTIII (34.1%) and CSTIV (5.3%) were dominated by *L. crispatus*, *L. asseri*, *L. inners* and *L. Jensenii*, respectively, with low species diversity. In contrast, CSTIV (27.3%) typically contained little or no *Lactobacillus* and was rich in anaerobes and bacteria associated with bacterial vaginosis, including *Streptococcus*, *Prevotella*, *Sneathia*, and others⁶⁹.

Studies have revealed the possibility that vaginal microbiota is influenced by gut and oral microbiota. Petricevic et al. found that 80% of pregnant women and 40% of postmenopausal women had the same Lactobacillus isolates in the vagina and rectum, and 53% of pregnant women and 33% of postmenopausal women had the same Lactobacillus strains in oral and rectal specimens. The presence of simultaneous oral, vaginal, and rectal custom Lactobacillus spp. in up to 30% of postmenopausal women reveals the potential role of the gut and oral cavity as reservoirs for vaginal colonization of Lactobacillus⁷⁰. Meanwhile, the gut and oral cavity may also be sources of extra-vaginal pathogens. Vaginal dysbiosis is characterized by a decrease in the number of Lactobacillus, and the most common form of vaginal dysbiosis is bacterial vaginosis (BV). Gardnerella vaginalis and Leptotrichia/Sneathia spp. were detected in oral or anal samples and anal samples of BV patients, respectively. The concentrations of these bacteria and Megasphaera were also higher at each site than in the 30 controls. In contrast, L. crispatus was more detected in anal samples from controls⁷¹. Therefore, extrapaginal colonization of vaginosis associated bacteria may be a risk factor for inducing disease.

Cervical cancer

CC is the fourth most common female cancer worldwide⁷², affecting about 8–30 women per 100,000 women per year worldwide⁷³. The main causes of CC are human papillomavirus (HPV) infection, environmental hygiene and dietary habits⁷⁴, and low- and middle-income countries face a significantly greater burden than high-income countries due to the lack of prevention and treatment programs. Persistent infection with high-risk HPV types, including HPV16 and HPV18, is a major cause of CC and its precancerous lesions. At the same time, it can also lead to high-grade lesions of the vagina, vulva and anus, and even invasive cancer in the corresponding parts⁷⁵.

The integration of HPV DNA into the genome of cervical epithelial cells results in the persistent expression of viral oncogenes E6 and E7. The products of these oncogenes stimulate the cellular ubiquitin-proteasome system (UPS), leading to the degradation of retinoblastoma protein (pRb) and facilitating entry into the S (synthesis) phase, thereby providing a foundation for viral replication⁷⁶. Concurrently, HPV E6 disrupts p53 function, thus interfering with normal cell apoptosis mechanisms and promoting unregulated cell proliferation. It also includes the involvement of other biomolecules such as proteins that affect gene splicing and epigenetic inheritance, ultimately leading to abnormal cell proliferation and carcinogenic induction⁷⁷.

Gut and oral microbiota in CC

One of the sites where HPV establishes itself is the respiratory tract, which is anatomically directly linked to the oral cavity. The epithelium of the mucous membrane of the upper aerodigestive tract (UADT) is similar to the epithelium of the outer layer of the cervix and vagina, so it is sufficient in both sites for HPV to colonize. Carcinomas of the oropharynx, particularly Waldeyer's tonsillar ring, contain more than 50% HPV DNA, and evidence of HPV colonization in the mouth has been obtained through epidemiological and molecular studies^{78–80}. Simultaneously, the presence of identical cancercausing HPV types in CC has also been observed in head and neck squamous cell carcinoma (HNSCC), thereby reinforcing the correlation between oral microbiota and CC81. Sexual activity is the main route of HPV transmission in the oral cavity. Gillison et al.'s comparative epidemiology of HPV-associated HNSCC and CC showed that both oral and cervical HPV infection are closely related to sexual behavior, and oral-genital contact may be a major mode of HPV exchange and transmission between the two sites⁸². Recent research on oral HPV infection also supports non-sexual contact, including the transmission of saliva through behaviors such as deep kissing⁸³. In addition to the oral cavity, studies have shown that HPV also occurs in the gut and may have

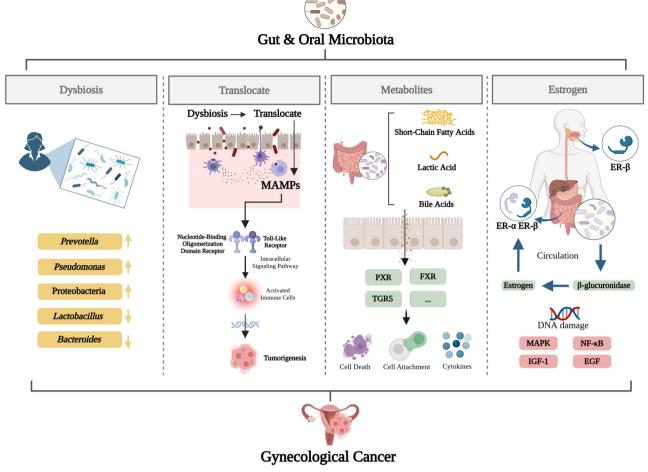


Fig. 1 | Gut and oral microbiota in the tumorigenesis. MAMP microbial-associated molecular patterns, PXR pregnane X receptor, FXR farnesoid X receptor, TGR5 Takeda G protein-coupled receptor 5, MAPK mitogen-protein kinases, NF-κB nuclear factor kappa-light-chain-enhancer in activated B cells, IGF-1 insulin-like growth factor 1, EGF epidermal growth factor. Alterations in oral/gut microbiota composition may impact the development of gynecological cancers via changes in pathogen translocation, metabolite release, and modulation of estrogen levels. Dysbiosis within the gut/oral microbiome represents a consistent hallmark among gynecological cancer patients; distinct diseases exhibit varying increases in specific bacterial species while universally displaying reduced levels of beneficial bacterium *Lactobacillus*. Anatomically, the mouth and gut are closely connected, and pathogens that colonize these two sites can migrate to various parts of the body. Immune

cells recognize pathogens' MAMPs through NODs and LTRs, producing a strong inflammatory response that induces gene mutations. Metabolites produced by intestinal microbes, including short-chain fatty acids (SCFAs), bile acids (BAs), and lactic acids (LAs), are crucial for cellular homeostasis. SCFAs are ligands for GPCRs, while BAs are ligands for PXR, TGR5, and FXR, which play roles in various cellular pathways, controlling cell adhesion, cell apoptosis, and the formation of various cytokines. Furthermore, estrogen receptors are highly expressed in the mouth and intestines, where estrogen compounds can shape the gut and oral microbiomes. On the other hand, there are genes encoding β -glucuronidase in the human gut microbiome, which regulates endogenous estrogen metabolism and affects downstream MAPK, NF- κ B, IGF-1, and EGF pathways.

an impact on tumorigenesis. Cheng et al. used polymerase chain reaction (PCR) and Southern blot hybridization to detect specific types of HPV DNA in colorectal tumors and detected HPV DNA in 37 out of 70 patients with colorectal cancer (CRC), indicating that HPV may be associated with the development of CRC84. Consequently, HPV can gain entry into the body via oral transmission routes such as sexual activity and subsequently disseminate to lower anatomical regions, establishing residence in the respiratory and digestive tracts while readily infiltrating the uterus. However, there was no close relationship between HPV and sex, age, tumor stage, and tumor location, suggesting that viral infection is not retrograde transmission from the anus to the cecum. Therefore, whether HPV can be transmitted to the cervix through the anus also needs more research to fully confirm.

Apart from HPV infection, gut and oral microecological disorders caused by abnormal bacterial proliferation are also a major cause of CC. The reduction of *Lactobacillus* and the advantage of anaerobic bacteria are the characteristics of the microecology of CC patients⁸⁵. Depletion of certain *Lactobacillus* species, including *L. crispatus*, *L. gasseri*, and *L. jensenii*, can

trigger an inflammatory response that can lead to DNA damage and cancercausing mutations^{86,87}. HPV infection induced by reducing Lactobacillus, while increasing the abundance of Sneathia spp. and Clostridiales, which may also contribute to the pathogenesis of CC88. Wang et al. compared the gut bacteria of CC patients with healthy controls. The gut microbiota associated with CC showed an increasing trend in α -diversity, while the abundance of bacteria in seven genera, including Escherichia-Shigella, Roseburia, Pseudomonas, Lachnoclostridium, Lachnospiraceae_UCG-004, Dorea and Succinivibrio, were significantly enriched from healthy controls⁸⁹. It can be seen that the disruption of the microbiome, represented by the abnormal reduction of beneficial bacteria Lactobacillus, has a potential relationship with the occurrence of CC. The increased α -diversity of oral microbiome has also been demonstrated in patients with many different types of cancer^{90,91}, which may hint at the role of oral-gut microbiome communication in CC. However, studies on changes in oral microbiome composition in patients with CC are still limited, and more studies are needed to verify the association between the two (Fig. 2).

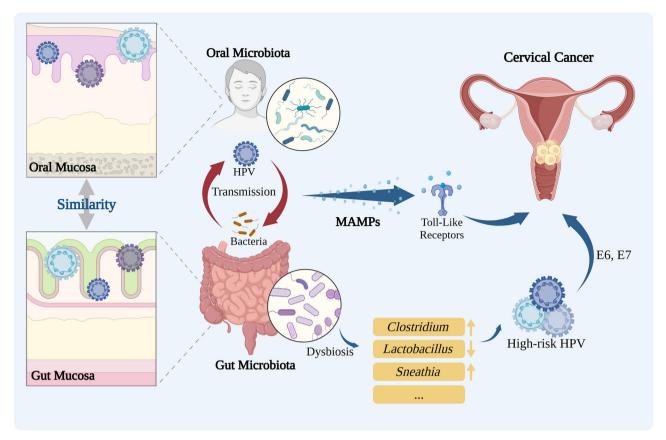


Fig. 2 | Gut and oral microbiota in the development of cervical cancer (CC). HPV is the main cause of CC, and evidence of HPV colonization has been found on the mucous membranes of the oral and gastrointestinal tracts. Integration of HPV DNA into the genome of cervical epithelial cells leads to sustained expression of viral oncogenes E6 and E7, ultimately leading to abnormal cell proliferation and carcinogenic induction. In addition to HPV infection, bacterial dysbiosis caused by abnormal bacterial proliferation in the gastrointestinal tract and oral mucosa is also a

major cause of CC, with a reduction in *Lactobacillus* and an advantage of anaerobic bacteria being characteristic of CC patients' microbiome. Disruption of the microbiome triggers an inflammatory response, which can lead to DNA damage and carcinogenic mutations. HPV may also interact with the microbiome, with a reduction in Lactobacillus induced by HPV infection, and an increase in the abundance of *Sneathia* spp. and *Clostridium* also potentially contributing to the development of CC.

Therapeutic value of microbiota in CC

At present, the mainstream prevention method for CC is HPV vaccine, with ongoing enhancements in both their efficacy and safety as the vaccines themselves continue to advance. Folate and methionine are important components of DNA synthesis and methylation, and low red blood cell folate levels have been associated with hypomethylation of DNA in stunted tissues and an increased risk of HPV infection in women^{92,93}. When the combined methylation level of the HPV 16 enhancer and the promoter site is \geq 11%, the likelihood of being diagnosed with cervical intraepithelial neoplasia (CIN) 2+ is reduced by 55%. Oral supplementation of folic acid and vitamin B12 leads to a significant reduction in the methylation of HPV16, thereby inhibiting cervical dysplasia and ultimately lowering the risk of CIN^{94,95}.

Microbial regulation methods, particularly probiotics, have gradually shown surprising effects in the treatment of CC. *Lactobacillus* is found in the lower part of the female reproductive tract and protects vaginal epithelial cells from HPV by producing antibacterial products, blocking the production of harmful molecules adhering to cervical epithelial cells, and the production of lactic acid⁹⁶. Taking the commercially available probiotic Yakult (containing *Lactobacillus casei* Shirota) was used to intervene in patients with low-grade squamous intraepithelial lesions. Women who received the probiotic were found to have twice the likelihood of clearing HPV-related cellular abnormalities compared to the control group (60% vs. 31%), and also exhibited a higher HPV clearance rate (29% vs. 19%)⁹⁷. Furthermore, *L. paracasei* and *L. casei* isolated from human milk have demonstrated exceptional antibiotic sensitivity,

antioxidant activity, and robust resistance to low pH and high concentration bile salt, rendering them promising candidates as anti-cancer agents⁸. Probiotics can also affect the survival outcome of preclinical rat models by influencing cell cycle, oxidative stress, and inflammatory response⁷³. Additionally, probiotic therapy can alleviate side effects during cancer treatment. The co-administration of *Lactobacillus acidophilus* LA-5 and *Bifidobacterium animalis* subsp. *lactis* BB-12 significantly reduced radiation-induced diarrhea (53.8% vs. 82.1%), thereby contributing to the shortened overall treatment duration and mitigating the risk of tumor cell regrowth⁹⁹.

Endometrial cancer

EC is the second most common gynecological malignancy, with 417,000 new cases worldwide in 2020, posing a serious threat to women's reproductive health and life safety¹⁰⁰. The overall incidence of EC has increased by 132% in the last 30 years, and obesity and metabolic syndrome-related diseases, including diabetes and polycystic ovary syndrome (PCOS), are risk factors for developing EC^{100–103}. In addition, estrogen-secreting tumors and hormone replacement with unopposed estrogen therapy also increase the risk of EC in women^{104,105}. In recent years, although the incidence has increased across all age groups, cases in women under 40 have doubled¹⁰⁶. The traditional treatment methods of EC are mainly surgery and chemoradiotherapy, and the treatment methods are relatively single, and the patients have insufficient or excessive treatment. Therefore, it is very important to explore the pathogenesis and new diagnosis and treatment methods of EC.

Gut and oral microbiota in EC

Microbiome disturbances represent a significant risk factor for developing EC. Compared to healthy controls, there was a notable decrease in αdiversity within the gut microbiome among individuals with EC; additionally observed were reduced abundance of Firmicutes, Clostridia, Clostridiales, Ruminococcaceae, Faecalibacterium, and Gemmiger_formicis alongside an increased prevalence of Proteobacteria, Gammaproteobacteria, Enterobacteriales, Enterobacteriaceae and Shigella as predominant members within their gut microbial community¹⁰⁷. This indicates that the abundance, diversity, and dominant microbiota of the gut microbiome in EC patients have undergone significant changes. Further research has strengthened the tight connection between dysbiosis of the gut microbiome and various health problems, especially estrogen metabolism disorders and PCOS, which are considered strong risk factors for EC. Most Porphyromonas species reported in the literature are found in the oral microbiota of mammals and are closely related to oral cancer¹⁰⁸. However, recent studies have found that Porphyromonas somerae is overrepresented in the uterus of EC patients, and P. somerae can invade host uterine endometrial cells and may interfere with normal cell function by producing succinic acid¹⁰⁹. In the lower genital tract, the diagnostic sensitivity of Atopobium vaginae and Porphyromonas sp. for EC ranges from 73% to 93%, with a specificity of 67% to 90%¹¹⁰. This research indicates a potential translocation of oral pathogens to the uterus leading to carcinogenesis.

Recent advances in sequencing technology have shown that estrogenic compounds can shape the vaginal and distal microbial communities, including the gut and mouth 111-113. Estrogen promotes the proliferation of endometrial cells through the action of estrogen receptors, which may cause the accumulation of carcinogenic mutations and lead to cancer¹¹⁴. Estrogen receptor-β is highly expressed in the oral mucosa and salivary glands, which explains the effect of estrogen on oral tissues¹¹⁵. Estrogen metabolites are excreted from the urine or bile after binding by sulfonation or gluconalidation, while estrogen inactivated in the intestine can be accidentally reactivated and absorbed by the intestine¹¹⁶. In contrast, the gut and oral microbiota also affect women's sex hormone levels and thus alter the development of cancer¹¹⁷. It has been shown that estrogen levels are directly related to the α-diversity of the gut microbiome, which is significantly associated with three genera of the Ruminococcaceae family, and the gut microbiome can also participate in the reactivation of estrogen 118. β-glucuronidase regulates endogenous estrogen metabolism. In the gut, the most important gene encoding β-glucuronidase activity is the β-glucuronidase (GUS) gene. The atlas for the characterization of β-glucuronidase in the human gut microbiota identified 112 GUS coding genes, and they were expressed in four phyla: Bacteroidetes, Firmicutes, Verrucomicrobia, and Proteobacteria 119. While little is known about the oral microbiome and EC, there are studies that have revealed the potential of Porphyromonas gingivalis in the carcinogenesis process¹⁰⁹. In summary, we can speculate that oral-gut microbes may alter cancer progression through pathogen translocation and perturbation of estrogen levels.

Studies have shown that women diagnosed with PCOS had a 2.7-fold increased risk of EC120, and that gut microbiome dysbiosis was associated with the onset of both PCOS and EC. Comparative analysis of insulin resistance PCOS (PCOS-IR), PCOS alone (PCOS-NIR) and healthy control (HC) showed no significant difference between α -diversity and β -diversity in three types of samples. However, the relative abundance of Rothia, Ruminococcus and Enterococcus in PCOS-IR group was significantly increased¹²¹. Another study also revealed higher abundance of Lachnospira in the gut microbiota of PCOS-IR patients, along with lower abundance of Prevotella compared to the PCOS-NIR group. In the latter group, there was a relatively higher abundance of Lactobacillus and Akkermansia 121. Enterococcus. fasecalisproduces GeIE, which can degrade the intestinal incretin hormone glucagon-like peptide-1 (GLP-1), leading to abnormal insulin secretion and disruption of host metabolism. Thus, Enterococcusmay impact the development and progression of PCOS-IR by modulating the GLP-1 signaling pathway¹²². Similarly, various bacteria associated with endometriosis (EMS), endometrial polyps (EP), dysfunctional menstrual bleeding¹²³ and pelvic inflammatory disease¹²⁴ also cause endometrial inflammation and can lead to endometrial malignancies. Limited data from animal models have demonstrated a robust correlation between the gut microbiome and EMS. These findings indicate a decrease in both diversity and abundance of the gut microbiome in EMS mice, alongside an increase in the levels of fecal goosedeoxycholic acid and ursodeoxycholic acid¹²⁵. Lan et al. prospectively revealed the biomarker role of gut microbes in EP. Compared to infertile and healthy subjects, infertile EP patients had higher proportions of *Prevotella*, *Streptococcus*, *Fusobacterium*, *Fenollaria*, and *Porphyromonas*¹²⁶.

Therapeutic value of microbiota in EC

Regulation of microorganisms by probiotics, fecal microbial transplantation (FMT) and antibiotics have opend up potential avenues for improving care of EC and endometrium-related diseases. Given the limited research on EC microbiome regulation therapy, we have supplemented the microbiome treatment related to gynecological diseases associated with EC, hoping to provide more insights into cancer treatment. As a preferred strain for optimizing the female reproductive tract environment, Lactobacillus rhamnosus BPL005 is often selected in most studies, with its ability to effectively lower pH levels in the external environment while secreting organic acids such as lactic acid, thereby assisting in inhibiting the growth of pathogenic bacteria¹²⁷. Chenoll et al. found that the L. rhamnosus BPL005 (CECT 8800) strain could be protective against endometrial infection in an in vitro model of primary endometrial epithelial cells with Atopobium vaginae, Gardnerella vaginalis, Propionibacterium acnes, and Streptococcus agalactiae colonization. In this model, BPL005 was shown to reduce pH and produce organic acids when cocultured with these pathogens, with lactic acid being most relevant 128. After treating PCOS rats with Lactobacillus and FMT from healthy rats, it was observed that the estrus cycle improved in all the eight rats in the FMT group and 75% of the rats in the Lactobacillus group. Additionally, there was a reduction in androgen biosynthesis. The intestinal microecology of the FMT and Lactobacillus treatment groups recovered with the increase of Lactobacillus and Clostridium, and the decrease of Prevotella¹²⁹.

In addition to FMT, manipulating the microbiota using antibiotics or probiotics represents a potential approach for treating chronic diseases that may progress to EC. Modifying the composition of the gut microbiome with broad-spectrum antibiotics (vancomycin, neomycin, metronidazole, and ampicillin) has been shown to decelerate the proliferation and inflammation of endometriosis in mice; targeting *Bacteroides* with metronidazole can reduce the growth of endometriosis¹³⁰. Simultaneous administration of vitamin D and probiotics containing *Lactobacillus acidophilus*, *Bifidobacterium bifidum*, *L. reuteri* and *L. fermentum*) has demonstrated significant improvements in hirsutism and total testosterone concentration, as well as reductions in inflammation and oxidative stress¹³¹.

Ovarian cancer

OC is an uncommon but serious threat to women's health of the malignant tumor, called by "silent killer" because of its difficulty to detect, treat and easiness to relapse 132,133. More than 70% of OCs are not diagnosed until the disease has progressed to stage III or IV, and more than 50% of OC patients survive less than 5 years¹³⁴. The enhancement of clinical diagnosis and treatment for OC, as well as the improvement of patient survival prognosis, is a matter of urgency. OC can be subdivided into different histological subtypes, of which 90% are epithelial cancers, including serous, endometrioid, clear-cell and mucinous carcinomas, and the remaining 10% are nonepithelial cancers¹³⁵. Genes have been identified that are associated with a higher risk of developing OC, such as BRCA1 or BRCA2136. Standard treatments for newly diagnosed cancers include cell reduction surgery and platinum-based chemotherapy. For recurrent cancer, chemotherapy, antiangiogenic drugs, and poly (ADP-ribose) polymerase inhibitors are the main means¹³⁵. With the development of microbiome, the potential of microbiome in diagnosis, treatment and prognosis of OC remains to be explored.

Gut and oral microbiota in OC

The role of infection and inflammation in the pathogenesis of OC has not been fully elucidated. As hormone levels change, inflammation and ovulation may lead to oxidative stress leading to DNA damage. Ovarian synthesis and secretion as well as estrogen, progesterone and a small amount of androgens, estradiol level changes are associated with the development of OC137. As mentioned before, the gut microbiome not only alters the hepatoenteric circulation of estrogen, but also interferes with the secretion of β-glucuronidase, thereby altering the regulation of estrogen metabolism¹³⁸. A comparative analysis of epithelial ovarian cancer (EOC), epithelial benign ovarian tumor (EBOT) patients, and HC revealed that in EOC the relative abundance of beneficial bacteria Bifidobacterium and Ruminococcaceae_Ruminococcus is decreased, and its distribution is related to EOC stage and subtype, while microdysbiosis promotes EOC progression through Hedgehog (Hh) signaling pathway¹³⁹. Amico et al. analyzed the gut microbiome of patients with EOC and documented fluctuations in changes from adjuvant chemotherapy to postoperative follow-up. Gut microbiota of platinumresistant patients exhibited a significant decrease in diversity and an increase in the proportion of Coriobacteriaceae and Bifidobacterium while that of platinum-sensitive patients appear to be more diverse and stable overall, and are rich in lactic acid users from the Veillonellaceae family¹⁴⁰. D'Amico et al. also demonstrated a similar correlation between the dynamics of the intestinal microbiome during chemotherapy and treatment outcomes in EOC patients, suggesting that the microbiome during chemotherapy can serve as a prognostic biomarker for EOC¹⁴¹. Malregulated oral microbes may be ectopic to the gut, or interact with estrogen to trigger an inflammatory response, and then affect the development of OC through MAMP. However, the relevant research is still very limited and needs to be carried out.

Therapeutic value of microbiota in OC

Existing studies have hinted that balancing the composition of microecology is a feasible strategy for the treatment of OC. The proportion of Proteobacteria, Firmicute, *Brucella*, Chlamydia and Mycoplasma was significantly increased in OC tissues^{67,142,143}. Nene et al.'s analysis of the cervix and vagina of patients with OC showed that a reduction in the relative abundance of the beneficial *Lactobacillus spp*. increased the risk of cancer development¹⁴⁴. Rats with PCOS that underwent FMT or *Lactobacillus* transplant exhibited reduced serum androgen levels, increased granulosa cells in the ovaries, and the formation of corpora lutea, indicating amelioration of ovarian cysts¹²⁹. It may be feasible to modulate the microbial composition in the female reproductive tract and fallopian tube by using antibiotics, suppository containing viable *Lactobacillus spp*. or performing FMT from healthy people in patients. But whether this modulation can directly transform into reduced OC incidence still needs to be investigated.

Vaginal cancer

The incidence of primary vaginal cancer is relatively rare, accounting for only 1% to 2% of female reproductive tract malignancies and 10% of vaginal malignancies ¹⁴⁵. Most vaginal malignancies are metastatic cancers that can originate from tumors of the cervix, vulva, or other sites. Guidelines from the International Federation of Gynecology and Obstetrics (FIGO) state that cases should be classified as vaginal cancer only after the possibility of metastasis has been ruled out ¹⁴⁶. Previous vaginal cancer is most common in older, postmenopausal women ¹⁴⁷. Young vaginal malignancies are often associated with CC and are particularly associated with persistent HPV infection ¹⁴⁸. With numerous number of women who continue to be infected with high-risk types of HPV, there is an increasing trend of young vaginal cancer patients, especially in areas with high incidence of human immunodeficiency virus (HIV) infection.

Gut and oral microbiota in vaginal cancer

The homeostasis of vaginal microbiota is directly linked to the development of vaginal cancer. Several studies have reported that the healthy vaginal microbiota is dominated by species represented by *Lactobacillus* spp., which includes *L. crispatus*, *L. gasseri*, *L. iners*, *L. jensenii*^{149,150}. The normal average vaginal pH value for a woman is 3.80 ± 0.20 , with an average lactic acid concentration of $0.79\% \pm 0.22\%$ w/v. This concentration demonstrates efficacy in deactivating BV-associated bacteria, HIV-1, *Chlamydia trachomatis*, and *Neisseria gonorrhoeae*¹⁵¹. Disruption of the oral/gut microbiome

may perturb the equilibrium of the vaginal microbiome, impact vaginal pH, and contribute to the development of vaginal diseases, potentially progressing to cancer. In comparison to adolescent women with a Lactobacillus-dominated vaginal microbiome, those with an unfavorable vaginal microbiome exhibited a higher prevalence of bacteria linked to periodontal disease in their supragingival microbiome, including Prevotella intermedia and Porphyromonas endodontalis, Saliva showed enrichment of Pseudomonas aeruginosa and P. intermedia¹⁵². These findings imply a correlation between dysbiosis in the oral and vaginal microbiomes. 16S rRNA sequencing of patients with BV revealed that gut microbiome was dominated by Firmicutes followed by Bacteroidetes and Proteobacteria 153. Another study found that BV-positive patients harbored higher α -diversity and had lower abundance of L. helveticus. Meanwhile, Prevotella copri, an intestinal microbe associated with healthy microecology, was only abundant in vaginal samples from women without BV, which reveals a possible crosstalk between gut-vaginal microbiota¹⁵⁴. A study by Antonio et al. evaluated the association between vaginal and/or rectal colonization of the genus Lactobacillus and the presence of BV and found that the rectum may act as a vaginal Lactobacillus reservoir. Co-colonization of the vagina and rectum with H₂O₂-producing *Lactobacillus* was associated with a lower prevalence of BV compared with vaginal colonization alone 155. Besides, additional relationships between the vaginal and gut microbiome have been proposed: for example, gut β -glucuronidase activity can affect vaginal microbiome homeostasis by modulating circulating estrogen levels¹⁵⁶.

Therapeutic value of microbiota in vaginal cancer

The balance of microecology and prevention of BV may be an effective way to prevent and treat vaginal cancer. A randomized trial involving 64 patients revealed that oral administration of *L. rhamnosus* GR-1 and *L. fermentum* RC-14 caused microbial transfer from the rectum to the vagina, increased the vaginal load of *Lactobacillus*, and reduced the occurrence and recurrence of BV in nonpregnant women ¹⁵⁷. After oral administration of probiotics in women with BV, the abundance of *Prevotella copri* was significantly increased, while that of *Gardnerella vaginalis* was significantly decreased, suggesting that probiotics may play a role in the regulation of vaginal microbiota ¹⁵⁴.

Vulvar cancer

Vulvar cancer is also a rare malignancy of the reproductive system that pretends to occur in postmenopausal women, accounting for 3–5% of all gynecologic cancers in economically developed countries¹⁵⁸. At present, there is no specific screening method for vulvar cancer, and the most effective way to reduce its incidence is to treat vulvar precancerous lesions related to its occurrence and development in time¹⁵⁹. Most patients with vulvar cancer will have symptoms of pruritus or pain, lumps, or ulcers in the vulva¹⁶⁰. Therefore, any suspected vulvar lesion must be biopsied to rule out invasive carcinoma. The pathological causes of vulvar cancer include HPV infection, chronic inflammation and immunosuppression. The most common pathological type of vulvar cancer is squamous cell carcinoma, and the treatment is mainly based on tissue type and surgical stage¹⁵⁹.

Gut and oral microbiota in vulvar cancer

Gut and oral microbiota may enhance inflammatory responses through the activation of MAMP and its pattern recognition receptor (PRR)¹⁶¹. Toll-like receptors (TLRs) are one of the most widely studied PRRs. Interactions between the lipopolysaccharide (endotoxemia) and TLRs can trigger an inflammatory response that leads to disruption of intestinal impermeability and altered carbohydrate metabolism and absorption ¹⁶². TLRs are thought to be involved in the response to HPV infection, and several lines of evidence suggest that they may play a role in HPV clearance ¹⁶³. A large study involving 876 cases of CC, 517 cases of vulvar cancer, and 1100 controls showed that genetic variation in TLR was associated with an increased risk of developing cervical and vulvar tumors ¹⁶⁴. Due to the scarcity of clinical cases, the current research on the microbiome of vulvar cancer mainly focuses on the vaginal microbiome, while the research on the intestinal and oral microbiome of patients is very scarce.

Table 1 | Changes of gut and oral microbiota in gynecological disorders

Disease Type	Colonization site	Name of Microbiota	Changes	Reference
CC and HNSCC	Oral cavity	HPV	Increase	82
Colorectal cancer	Gut	HPV	Increase	84
CC	Gut	Escherichia-Shigella, Roseburia, Pseudomonas, Lachnoclostridium, Lachnospiraceae_UCG-004, Dorea and Succinivibrio	Significant different from healthy controls	89
Endometrial cancer	Gut	Faecalibacterium prausnitzii and Gemmiger formicilis	Decrease	107
Endometrial cancer	Gut	Bifidobacterium adolescentis	Increase	107
Endometrial cancer	Oral cavity	Porphyromonas somerae	Increase	109
PCOS	Gut	Lactobacillus, Ruminococcus and Clostridium	Decrease	129
PCOS	Gut	Prevotella	Increase	129
PCOS	Gut	Rothia, Ruminococcus and Enterococcus	Increase	121
Endometriosis	Gut	Lachnospiraceae_NK4A136_group, Lactobacillus and Bacteroides	Decrease	125
Endometriosis	Gut	Allobaculum, Akkermansia, Parasutterella and Rikenella	Increase	125
Endometrial polyps	Gut	Prevotella, Streptococcus, Fusobacterium, Fenollaria, and Porphyromonas	Increase	126
OC	Gut	Actinobacteria	Decrease	139
OC	Gut	Proteobacteria	Increase	139
OC	Gut	Coriobacteriaceae and Bifidobacterium	Increase	141
BV	Oral	Prevotella intermedia, Porphyromonas endodontalia and Pseudomonas aeruginosa	Increase	152
BV	Gut	Firmicutes, Bacteroidetes and Proteobacteria	Increase	153
BV	Gut	L. helveticus and Prevotella copri	Decrease	154
BV	Gut	L. crispatus and L. jensenii	Decrease	155

CC cervical cancer, HNSCC head and neck squamous cell carcinoma, PCOS polycystic ovary syndrome, OC ovarian cancer, BV bacterial vaginosis.

Therapeutic value of microbiota in vulvar cancer

The lack of preclinical or clinical trials demonstrating a therapeutic relationship between vulvar cancer and the microbiota in the available literature limits further deliberation in this review.

Insights into shared pathogenic mechanisms among gynecologic cancers

Despite the distinct pathological features of various gynecological cancers, all gynecological cancers originate from the Müllerian duct and are located within the female reproductive system, regulated by female hormones such as estrogen and progesterone. Molecular sequencing has revealed common processes in the development of different types of gynecological cancers. For example, there are 193 differentially expressed genes between CC, EC, and vulvar cancer, with apoptosis regulation genes enriched in all three cancers ¹⁶⁵; CC and EC have extensive similarities in differentially expressed genes, affected biological processes, and transcription factor binding sites ¹⁶⁵; while CC, EC, and OC share a dMMR-signature, four recurrent CNV events, and extensive alterations in PI3K-Akt-mTOR signaling and cilium component genes ¹⁶⁶. Due to the related pathway and gene features among gynecological cancers, multiple networks or cascades can lead to the malignant transformation of ovarian-uterine-vaginal tissues, and these cancers may share common pathogenic factors.

Disturbances in the oral and gut microbiome are one of the causative factors of gynecological cancer. In different gynecological cancers or precancerous gynecological conditions, an increase in anaerobic bacteria and a decrease in beneficial bacteria *Lactobacillus* have been found. Elevated pathogens may disseminate to various parts of the female reproductive system, triggering a strong autoimmune response and causing cellular malignant mutations. Meanwhile, a decreased *Lactobacillus* is associated with an abnormal elevation in vaginal pH. Furthermore, estrogen receptors display high expression characteristics in both the oral and gut mucosa, revealing the interaction between estrogen and its receptors in maintaining microbial stability in these two sites. Estrogen shapes the oral and intestinal microbiome through complex mechanisms. Estrogen compounds can interact with the

gut microbiome to promote the growth and proliferation of beneficial bacteria, while preventing the excessive proliferation of harmful bacteria 167 . It is worth noting that the human gut microbiome contains the gene GUS, which encodes β -glucuronidase. β -glucuronidase is a key enzyme that catalyzes the hydrolysis reaction of bound estrogen (such as estradiol glucuronate), generating biologically active free estrogen. These free estrogen can then activate estrogen receptors in the gut and surrounding tissues, triggering a series of downstream signaling pathways, including MAPK, NF- κ B, IGF-1, and EGF, which play important roles in regulating endometrial 168 , ovarian epithelial 169 , and vaginal mucosal 170 cell proliferation and differentiation.

Outlook

People's understanding of the microbiome is changing from "affecting human health and disease" to "seeing the human microbiome as an organ." For example, the gut microbiome is closely related to the occurrence and development of diseases in various systems throughout the body, so concepts such as "gut-brain axis" and "gut-liver axis" have been proposed successively. Current research focuses on the signaling pathway and metabolite transfer between the microbiome and tissues and organs such as brain, liver and lung, and analyzes the interaction mechanism. The study of microbes and human health and disease has gradually increased from "correlation" to "causal mechanism".

Gynecological malignancies pose a great threat to women's health, and the application of microorganisms is a promising therapeutic target. The microbiome composition of cancer tissue and adjacent reproductive tract different from that of normal patients. Besides, microorganisms in distal organs such as the gut and mouth interact, migrate to the female reproductive tract to interfere with the microecological balance. *Lactobacillus* was found to play a crucial role in maintaining reproductive health, and the relative abundance of *Lactobacillus* was significantly reduced in patients with gynecological cancer. At the same time, metabolites produced by the microbiota, such as SCFAs and BAs, can affect the inflammatory response, the absorption of nutrients, and also have an impact on the development of cancer (Table 1).

sorders	
cancer and dis	
gynecological	
treatment of g	
microbiota in the	
Modulation of	
Table 2 N	

Disease Type	Method	Specific ingredients/ Taeget microbiota	Result	Reference
OIN	Folate and vitamin B12 intake HPV 16	HPV 16	Higher folate and vitamin B12 intake could lower the risk of HPV16 infection and CIN.	95
Cervical lesions	Probiotics	НРУ	Probiotics increased the chance of clearance of HPV and cytological abnormalities.	97
20	Probiotics	L. casei and L. paracasei	Probiotics had acceptable anticancer effects on cervix cancer.	86
00	Probiotics	L. acidophilus LA-5 and Bifidobacterium animalis subsp. lactis BB-12	Probiotics reduced the incidence and severity of side effect radiation-induced diarrhea.	66
Endometrial infection Probiotics	Probiotics	L. rhamnosus BPL005	$\label{eq:loss_equation} \textit{L. rhamnosus} \ \text{BPL005} \ \text{showed a protective role on endometrial infections with no signs of cytotoxicity.}$	128
Endometriosis	Antibiotics	Vancomycin, neomycin, metronidazole and ampicillin	Antibiotic therapy reduces endometriosis progression in mice, possibly by reducing specific gut bacteria.	130
PCOS	Probiotics and vitamin D	L. acidophilus, Bifidobacterium bifidum, L. reuteri and L. fermentum	Co-administration of vitamin D and probiotic significantly improved the health state of PCOS patients.	131
Bacterial vaginosis	Probiotics	L. thamnosus GR-1 and L. fermentum RC-14	Probiotics reduced the occurrence and recurrence of BV in nonpregnant women.	157
Bacterial vaginosis	Probiotics	L. thamnosus GR-1 and L. fermentum RC-14	Probiotics restored the abundance of Prevotella copri in BV patients.	154

The relationship between the human microbiome and nutrition and medicine provides new ideas for personalized nutrition interventions and the development of new therapies, and has become another revolutionary innovation point in the pharmaceutical, food and health products industry, with great potential to trigger fierce global competition (Table 2). The main ways to regulate the human microbiome in clinical practice are: microbiome detection and health guidance, antibiotics and other microecological drugs, probiotics and prebiotic, FMT, etc.

Currently, the microbiological research in the field of gynecologic oncology is still in its early stages, with insufficient depth and breadth of exploration, which to some extent limits our understanding of the complex mechanisms of gynecologic cancer. Because of this, this article collects typical cases of microbial regulation in closely related gynecologic basic diseases, intending to provide new perspectives and insights into the pathogenesis and treatment of gynecologic cancer through these examples. More extensive and in-depth research is needed in the future to develop more precise and effective diagnostic tools and treatment methods, in order to provide comprehensive services for the prevention, early diagnosis and comprehensive management of gynecologic cancer, and ultimately benefit the health and well-being of female patients.

Data availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

Received: 11 April 2024; Accepted: 29 September 2024; Published online: 10 October 2024

References

CIN cervical intraepithelial neoplasia, PCOS polycystic ovary syndrome.

- Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 71, 209–249 (2021).
- Soerjomataram, I. & Bray, F. Planning for tomorrow: global cancer incidence and the role of prevention 2020–2070. Nat. Rev. Clin. Oncol. 18, 663–672 (2021).
- Chase, D., Goulder, A., Zenhausern, F., Monk, B. & Herbst-Kralovetz, M. The vaginal and gastrointestinal microbiomes in gynecologic cancers: a review of applications in etiology, symptoms and treatment. *Gynecol. Oncol.* 138, 190–200 (2015).
- Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).
- Ursell, L. K. et al. The intestinal metabolome: an intersection between microbiota and host. *Gastroenterology* 146, 1470–1476 (2014).
- Grice, E. A. & Segre, J. A. The human microbiome: our second genome. Annu. Rev. Genomics Hum. Genet. 13, 151–170 (2012).
- Marchesi, J. R. & Ravel, J. The vocabulary of microbiome research: a proposal. Vol. 3, 1–3 (Springer, 2015).
- Consortium, H. M. P. Structure, function and diversity of the healthy human microbiome. *Nature* 486, 207–214 (2012).
- 9. Ansaldo, E., Farley, T. K. & Belkaid, Y. Control of immunity by the microbiota. *Annu. Rev. Immunol.* **39**, 449–479 (2021).
- Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).
- Qi, X., Yun, C., Pang, Y. & Qiao, J. The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microbes 13, 1–21 (2021).
- de Martel, C. et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. *Lancet Oncol.* 13, 607–615 (2012).
- Xiang, Z. et al. Gut microbiota modulation: a viable strategy to address medical needs in hepatocellular carcinoma and liver transplantation. *Engineering* 29, 59–72 (2023).

- Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. *Nature* 464, 59–65 (2010).
- Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).
- Yang, J. et al. Species-level analysis of human gut microbiota with metataxonomics. Front. Microbiol. 11 https://doi.org/10.3389/ fmicb.2020.02029 (2020).
- Adak, A. & Khan, M. R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 76, 473–493 (2019).
- Costea, P. I. et al. Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 3, 8–16 (2018).
- Dzutsev, A. et al. Microbes and cancer. *Annu. Rev. Immunol.* 35, 199–228 (2017).
- Fernandes, M. R., Aggarwal, P., Costa, R. G. F., Cole, A. M. & Trinchieri, G. Targeting the gut microbiota for cancer therapy. *Nat. Rev. Cancer* 22, 703–722 (2022).
- Caselli, E. et al. Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy picture. BMC Microbiol. 20, 120 (2020).
- 22. Stasiewicz, M. & Karpiński, T. M. The oral microbiota and its role in carcinogenesis. Semin. Cancer Biol. **86**, 633–642 (2022).
- Perera, M., Al-Hebshi, N. N., Speicher, D. J., Perera, I. & Johnson, N. W. Emerging role of bacteria in oral carcinogenesis: a review with special reference to perio-pathogenic bacteria. *J. Oral. Microbiol.* 8, 32762 (2016).
- Peng, X. et al. Oral microbiota in human systematic diseases. Int. J. Oral. Sci. 14, 14 (2022).
- Bourgeois, D., Inquimbert, C., Ottolenghi, L. & Carrouel, F. Periodontal pathogens as risk factors of cardiovascular diseases, diabetes, rheumatoid arthritis, cancer, and chronic obstructive pulmonary disease-is there cause for consideration? *Microorganisms* 7. https://doi. org/10.3390/microorganisms7100424 (2019).
- Chen, Y., Chen, X., Yu, H., Zhou, H. & Xu, S. Oral microbiota as promising diagnostic biomarkers for gastrointestinal cancer: a systematic review. *Onco Targets Ther.* 12, 11131–11144 (2019).
- Han, M. et al. Gut microbes in gynecologic cancers: causes or biomarkers and therapeutic potential. Front. Oncol. 12. https://doi. org/10.3389/fonc.2022.902695 (2022).
- Gumbiner, B. Structure, biochemistry, and assembly of epithelial tight junctions. Am. J. Physiol. Cell Physiol. 253, C749–C758 (1987).
- Balda, M. S. & Matter, K. Tight junctions. *J. cell Sci.* 111, 541–547 (1998).
- Steed, E., Balda, M. S. & Matter, K. Dynamics and functions of tight junctions. *Trends Cell Biol.* 20, 142–149 (2010).
- De Souza, H. S. & Fiocchi, C. Immunopathogenesis of IBD: current state of the art. Nat. Rev. Gastroenterol. Hepatol. 13, 13–27 (2016).
- El Asmar, R. et al. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology 123, 1607–1615 (2002).
- 33. Athman, R. & Philpott, D. Innate immunity via Toll-like receptors and Nod proteins. *Curr. Opin. Microbiol.* **7**, 25–32 (2004).
- Chu, H. & Mazmanian, S. K. Innate immune recognition of the microbiota promotes host-microbial symbiosis. *Nat. Immunol.* 14, 668–675 (2013).
- 35. Fasano, A. Leaky gut and autoimmune diseases. *Clin. Rev. Allergy Immunol.* **42**, 71–78 (2012).
- 36. Ramírez-Pavez, T. N. et al. The role of peritoneal macrophages in endometriosis. *Int. J. Mol. Sci.* **22**, 10792 (2021).
- Sultani, M., Stringer, A. M., Bowen, J. M. & Gibson, R. J. Antiinflammatory cytokines: important immunoregulatory factors contributing to chemotherapy-induced gastrointestinal mucositis. *Chemother. Res. Practice* 2012, 490804 (2012).

- Zhao, H. et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target Ther.
 263 (2021).
- Mirzaei, R. et al. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. *Biomed. Pharmacother.* 139, 111619 (2021).
- Miller, T. L. & Wolin, M. J. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. *Appl. Environ. Microbiol.* 62, 1589–1592 (1996).
- Kasubuchi, M., Hasegawa, S., Hiramatsu, T., Ichimura, A. & Kimura,
 I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. *Nutrients* 7, 2839–2849 (2015).
- Thangaraju, M. et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 69, 2826–2832 (2009).
- 43. Kim, M. H., Kang, S. G., Park, J. H., Yanagisawa, M. & Kim, C. H. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. *Gastroenterology* 145, 396–406.e391-310 (2013).
- Jia, W., Xie, G. & Jia, W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. *Nat. Rev. Gastroenterol. Hepatol.* 15, 111–128 (2018).
- De Gottardi, A. et al. The bile acid nuclear receptor FXR and the bile acid binding protein IBABP are differently expressed in colon cancer. *Dig. Dis. Sci.* 49, 982–989 (2004).
- Calmus, Y. & Poupon, R. Shaping macrophages function and innate immunity by bile acids: mechanisms and implication in cholestatic liver diseases. *Clin. Res. Hepatol. Gastroenterol.* 38, 550–556 (2014).
- 47. Miller, W. D. The human mouth as a focus of infection. *Lancet* **138**, 340–342 (1891).
- Freire, M., Nelson, K. E. & Edlund, A. The oral host-microbial interactome: an ecological chronometer of health? *Trends Microbiol.* 29, 551–561 (2021).
- Billings, F. Chronic focal infections and their etiologic relations to arthritis and nephritis. *Arch. Intern. Med.* 9, 484–498 (1912).
- Dong, J. et al. Oral microbiota affects the efficacy and prognosis of radiotherapy for colorectal cancer in mouse models. *Cell Rep.* 37, 109886 (2021).
- Stathopoulou, P. G., Benakanakere, M. R., Galicia, J. C. & Kinane, D.
 F. The host cytokine response to Porphyromonas gingivalis is modified by gingipains. *Oral. Microbiol. Immunol.* 24, 11–17 (2009).
- Duncan, L., Yoshioka, M., Chandad, F. & Grenier, D. Loss of lipopolysaccharide receptor CD14 from the surface of human macrophage-like cells mediated by Porphyromonas gingivalis outer membrane vesicles. *Micro. Pathog.* 36, 319–325 (2004).
- Michaud, D. S., Joshipura, K., Giovannucci, E. & Fuchs, C. S. A prospective study of periodontal disease and pancreatic cancer in US male health professionals. *J. Natl. Cancer Inst.* 99, 171–175 (2007).
- Fan, X. et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 67, 120–127 (2018).
- Khor, B. et al. Interconnections between the oral and gut microbiomes: reversal of microbial dysbiosis and the balance between systemic health and disease. *Microorganisms* 9, 496 (2021).
- Park, J., Shokeen, B., Haake, S. K. & Lux, R. Characterization of Fusobacterium nucleatum ATCC 23726 adhesins involved in strainspecific attachment to Porphyromonas gingivalis. *Int. J. Oral. Sci.* 8, 138–144 (2016).
- Segata, N. et al. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. *Genome Biol.* 13, R42 (2012).

- Rashidi, A., Ebadi, M., Weisdorf, D. J., Costalonga, M. & Staley, C.
 No evidence for colonization of oral bacteria in the distal gut in healthy adults. *Proc. Natl. Acad. Sci. USA* 118, e2114152118 (2021).
- 59. Schmidt, T. S. B. et al. Extensive transmission of microbes along the gastrointestinal tract. *eLife* **8**, e42693 (2019).
- Gaiser, R. A. et al. Enrichment of oral microbiota in early cystic precursors to invasive pancreatic cancer. Gut 68, 2186–2194 (2019).
- Komiya, Y. et al. Patients with colorectal cancer have identical strains of Fusobacterium nucleatum in their colorectal cancer and oral cavity. Gut 68, 1335–1337 (2019).
- 62. Wu, J. et al. Tongue coating microbiota community and risk effect on gastric cancer. *J. Cancer* **9**, 4039 (2018).
- Coker, O. O. et al. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 67, 1024–1032 (2018).
- Flemer, B. et al. The oral microbiota in colorectal cancer is distinctive and predictive. Gut 67, 1454–1463 (2018).
- Atarashi, K. et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation. *Science* 358, 359–365 (2017).
- Baker, J. M., Chase, D. M. & Herbst-Kralovetz, M. M. Uterine microbiota: residents, tourists, or invaders? *Front. Immunol.* 9, 208 (2018).
- Banerjee, S. et al. The ovarian cancer oncobiome. Oncotarget 8, 36225 (2017).
- Witkin, S. S. & Linhares, I. M. Why do lactobacilli dominate the human vaginal microbiota? *BJOG Int. J. Obstet. Gynaecol.* 124, 606–611 (2017).
- Ravel, J. et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 108, 4680–4687 (2011).
- Petricevic, L. et al. Characterisation of the oral, vaginal and rectal Lactobacillus flora in healthy pregnant and postmenopausal women. Eur. J. Obstet. Gynecol. Reprod. Biol. 160, 93–99 (2012).
- Marrazzo, J. M. et al. Extravaginal reservoirs of vaginal bacteria as risk factors for incident bacterial vaginosis. *J. Infect. Dis.* 205, 1580–1588 (2012).
- Buskwofie, A., David-West, G. & Clare, C. A. A review of cervical cancer: incidence and disparities. *J. Natl. Med. Assoc.* 112, 229–232 (2020).
- Wahid, M. et al. Microbes in gynecologic cancers: causes or consequences and therapeutic potential. Semin. Cancer Biol. 86, 1179–1189 (2022).
- Mert, I., Walther-Antonio, M. & Mariani, A. Case for a role of the microbiome in gynecologic cancers: Clinician's perspective. J. Obstet. Gynaecol. Res. 44, 1693–1704 (2018).
- Bosch, F. X. et al. Epidemiology and natural history of human papillomavirus infections and type-specific implications in cervical neoplasia. *Vaccine* 26, K1–K16 (2008).
- Ghittoni, R. et al. The biological properties of E6 and E7 oncoproteins from human papillomaviruses. Virus Genes 40, 1–13 (2010).
- Martinez-Zapien, D. et al. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. *Nature* 529, 541–545 (2016).
- Li, W. et al. Human papillomavirus positivity predicts favourable outcome for squamous carcinoma of the tonsil. *Int. J. Cancer* 106, 553–558 (2003).
- Mellin, H., Friesland, S., Lewensohn, R., Dalianis, T. & Munck-Wikland, E. Human papillomavirus (HPV) DNA in tonsillar cancer: clinical correlates, risk of relapse, and survival. *Int. J. Cancer* 89, 300–304 (2000).
- Paz, I. B., Cook, N., Odom-Maryon, T., Xie, Y. & Wilczynski, S. P. Human papillomavirus (HPV) in head and neck cancer. *Cancer* 79, 595–604 (1997).
- 81. Kreimer, A. R., Clifford, G. M., Boyle, P. & Franceschi, S. Human papillomavirus types in head and neck squamous cell carcinomas

- worldwide: a systematic review. *Cancer Epidemiol. Biomark. Prev.* **14**. 467–475 (2005).
- Gillison, M. L. et al. Eurogin Roadmap: comparative epidemiology of HPV infection and associated cancers of the head and neck and cervix. *Int. J. Cancer* 134, 497–507 (2014).
- 83. D'Souza, G., Agrawal, Y., Halpern, J., Bodison, S. & Gillison, M. L. Oral sexual behaviors associated with prevalent oral human papillomavirus infection. *J. Infect. Dis.* **199**, 1263–1269 (2009).
- 84. Cheng, J. Y., Sheu, L. F., Meng, C. L., Lee, W. H. & Lin, J. C. Detection of human papillomavirus DNA in colorectal carcinomas by polymerase chain reaction. *Gut* **37**, 87 (1995).
- 85. Brotman, R. M. et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. *J. Infect. Dis.* **210**, 1723–1733 (2014).
- Borgdorff, H. et al. Cervicovaginal microbiome dysbiosis is associated with proteome changes related to alterations of the cervicovaginal mucosal barrier. *Mucosal Immunol.* 9, 621–633 (2016).
- De Backer, E. et al. Quantitative determination by real-time PCR of four vaginal Lactobacillus species, Gardnerella vaginalis and Atopobium vaginae indicates an inverse relationship between L. gasseri and L. iners. BMC Microbiol. 7, 1–13 (2007).
- Lee, J. E. et al. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort. *PloS One* 8, e63514 (2013).
- Wang, Z. et al. Altered diversity and composition of the gut microbiome in patients with cervical cancer. AMB Express 9, 40 (2019).
- Takahashi, Y. et al. Analysis of oral microbiota in Japanese oral cancer patients using 16S rRNA sequencing. *J. Oral. Biosci.* 61, 120–128 (2019).
- Nearing, J. T., DeClercq, V. & Langille, M. G. Investigating the oral microbiome in retrospective and prospective cases of prostate, colon, and breast cancer. npj Biofilms Microbiomes 9, 23 (2023).
- Gerhard, D. et al. A relationship between methylenetetrahydrofolate reductase variants and the development of invasive cervical cancer. *Gynecol. Oncol.* 90, 560–565 (2003).
- Piyathilake, C. J., Macaluso, M., Brill, I., Heimburger, D. C. & Partridge, E. E. Lower red blood cell folate enhances the HPV-16-associated risk of cervical intraepithelial neoplasia. *Nutrition* 23, 203–210 (2007).
- Piyathilake, C. J. et al. Folate and vitamin B12 may play a critical role in lowering the HPV 16 methylation–associated risk of developing higher grades of CIN. Cancer Prev. Res. 7, 1128–1137 (2014).
- Piyathilake, C. J. et al. Folate and vitamin B12 may play a critical role in lowering the HPV 16 methylation-associated risk of developing higher grades of CIN. Cancer Prev. Res (Philos.) 7, 1128–1137 (2014).
- Martin, D. H. & Marrazzo, J. M. The vaginal microbiome: current understanding and future directions. *J. Infect. Dis.* 214, S36–S41 (2016).
- 97. Verhoeven, V. et al. Probiotics enhance the clearance of human papillomavirus-related cervical lesions: a prospective controlled pilot study. *Eur. J. Cancer Prev.* **22**, 46–51 (2013).
- Riaz Rajoka, M. S. et al. Anticancer potential against cervix cancer (HeLa) cell line of probiotic Lactobacillus casei and Lactobacillus paracasei strains isolated from human breast milk. Food Funct. 9, 2705–2715 (2018).
- Linn, Y. H., Thu, K. K. & Win, N. H. H. Effect of probiotics for the prevention of acute radiation-induced diarrhoea among cervical cancer patients: a randomized double-blind placebo-controlled study. *Probiotics Antimicrob. Proteins* 11, 638–647 (2019).
- Crosbie, E. J. et al. Endometrial cancer. *Lancet* 399, 1412–1428 (2022).

- Lauby-Secretan, B. et al. Body fatness and cancer—viewpoint of the IARC Working Group. N. Engl. J. Med. 375, 794–798 (2016).
- Friberg, E., Orsini, N., Mantzoros, C. & Wolk, A. Diabetes mellitus and risk of endometrial cancer: a meta-analysis. *Diabetologia* 50, 1365–1374 (2007).
- Navaratnarajah, R., Pillay, O. C. & Hardiman, P. In Seminars in reproductive medicine. 062-071 (© Thieme Medical Publishers).
- Grady, D., Gebretsadik, T., Kerlikowske, K., Ernster, V. & Petitti, D. Hormone replacement therapy and endometrial cancer risk: a metaanalysis. *Obstet. Gynecol.* 85, 304–313 (1995).
- Evans, AT 3rd., Gaffey, TA., Malkasian, GD Jr. & Annegers, JF.
 Clinicopathologic review of 118 granulosa and 82 theca cell tumors.
 Obstet. Gynecol. 55, 231–238 (1980).
- 106. Rizvi, N. A. et al. Durvalumab with or without tremelimumab vs standard chemotherapy in first-line treatment of metastatic nonsmall cell lung cancer: the MYSTIC phase 3 randomized clinical trial. *JAMA Oncol.* 6, 661–674 (2020).
- Li, Y., Liu, G., Gong, R. & Xi, Y. Gut microbiome dysbiosis in patients with endometrial cancer vs. healthy controls based on 16S rRNA gene sequencing. *Curr. Microbiol.* 80, 239 (2023).
- Acuña-Amador, L. & Barloy-Hubler, F. Porphyromonas spp. have an extensive host range in ill and healthy individuals and an unexpected environmental distribution: a systematic review and meta-analysis. *Anaerobe* 66, 102280 (2020).
- Crooks, T. A. et al. Porphyromonas somerae invasion of endometrial cancer cells. Front. Microbiol. 12, 674835 (2021).
- Walther-António, M. R. S. et al. Potential contribution of the uterine microbiome in the development of endometrial cancer. *Genome Med.* 8, 122 (2016).
- Choi, S., Hwang, Y.-J., Shin, M.-J. & Yi, H. Difference in the gut microbiome between ovariectomy-induced obesity and dietinduced obesity. J. Microbiol. Biotechnol. 27, 2228–2236 (2017).
- Shen, J. et al. Effects of low dose estrogen therapy on the vaginal microbiomes of women with atrophic vaginitis. Sci. Rep. 6, 24380 (2016).
- 113. Lucisano, M. P. et al. Alteration of the oral microbiota may be a responsible factor, along with estrogen deficiency, by the development of larger periapical lesions. *Clin. Oral. Investig.* 25, 3651–3662 (2021).
- Antunes, C. M. et al. Endometrial cancer and estrogen use: report of a large case-control study. N. Engl. J. Med. 300, 9–13 (1979).
- Valimaa, H. et al. Estrogen receptor-beta is the predominant estrogen receptor subtype in human oral epithelium and salivary glands. J. Endocrinol. 180, 55–62 (2004).
- Boutriq, S. et al. Gut and endometrial microbiome dysbiosis: a new emergent risk factor for endometrial cancer. *J. Pers. Med.* 11, 659 (2021).
- Vieira, A. T., Castelo, P. M., Ribeiro, D. A. & Ferreira, C. M. Influence of oral and gut microbiota in the health of menopausal women. *Front. Microbiol.* 8 https://doi.org/10.3389/fmicb.2017.01884 (2017).
- Flores, R. et al. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. *J. Transl. Med.* 10, 253 (2012).
- Pollet, R. M. et al. An atlas of β-glucuronidases in the human intestinal microbiome. Structure 25, 967–977.e965 (2017).
- Dumesic, D. A. & Lobo, R. A. Cancer risk and PCOS. Steroids 78, 782–785 (2013).
- He, F. & Li, Y. The gut microbial composition in polycystic ovary syndrome with insulin resistance: findings from a normal-weight population. *J. Ovarian Res.* 14, 1–12 (2021).
- 122. LeValley, S. L., Tomaro-Duchesneau, C. & Britton, R. A. Degradation of the incretin hormone glucagon-like peptide-1 (GLP-1) by Enterococcus faecalis metalloprotease GelE. MSphere 5, 00585–00519, https://doi.org/10.1128/msphere (2020).

- Pelzer, E. S., Willner, D., Buttini, M. & Huygens, F. A role for the endometrial microbiome in dysfunctional menstrual bleeding. *Antonie Van. Leeuwenhoek* 111, 933–943 (2018).
- 124. Hernandes, C. et al. Microbiome profile of deep endometriosis patients: comparison of vaginal fluid, endometrium and lesion. *Diagnostics* 10, 163 (2020).
- Ni, Z. et al. Correlation of fecal metabolomics and gut microbiota in mice with endometriosis. *Am. J. Reprod. Immunol.* 84, e13307 (2020).
- Lan, J., Chen, C., Chen, L. & Liu, P. Intestinal microflora provides biomarkers for infertile women with endometrial polyps. *Biomarkers* 27, 579–586 (2022).
- Molina, N. M. et al. New opportunities for endometrial health by modifying uterine microbial composition: present or future? *Biomolecules* 10, 593 (2020).
- Chenoll, E. et al. Selection of new probiotics for endometrial health. *Front. Cell. Infection Microbiol.* 9 https://doi.org/10.3389/fcimb. 2019.00114 (2019).
- Guo, Y. et al. Association between polycystic ovary syndrome and gut microbiota. *PloS One* 11, e0153196 (2016).
- Chadchan, S. B. et al. Antibiotic therapy with metronidazole reduces endometriosis disease progression in mice: a potential role for gut microbiota. *Hum. Reprod.* 34, 1106–1116 (2019).
- 131. Ostadmohammadi, V., Jamilian, M., Bahmani, F. & Asemi, Z. Vitamin D and probiotic co-supplementation affects mental health, hormonal, inflammatory and oxidative stress parameters in women with polycystic ovary syndrome. J. Ovarian Res. 12, 5 (2019).
- 132. Carlson, K. J., Skates, S. J. & Singer, D. E. Screening for ovarian cancer. *Ann. Intern. Med.* **121**, 124–132 (1994).
- Jayson, G. C., Kohn, E. C., Kitchener, H. C. & Ledermann, J. A.
 Ovarian cancer. *Lancet* 384, 1376–1388 (2014).
- Hankey, B. F., Ries, L. A. & Edwards, B. K. The surveillance, epidemiology, and end results program: a national resource. *Cancer Epidemiol. Biomark. Prev.* 8, 1117–1121 (1999).
- Matulonis, U. A. et al. Ovarian cancer. *Nat. Rev. Dis. Prim.* 2, 16061 (2016).
- Friebel, T. M., Domchek, S. M. & Rebbeck, T. R. Modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: systematic review and meta-analysis. J. Natl. Cancer Inst. 106, dju091 (2014).
- Trabert, B. et al. Circulating estrogens and postmenopausal ovarian and endometrial cancer risk among current hormone users in the Women's Health Initiative Observational Study. *Cancer Causes Control* 30, 1201–1211 (2019).
- Ghahremani, M., Foghi, A. & Dorrington, J. Etiology of ovarian cancer: a proposed mechanism. *Med. Hypotheses* 52, 23–26 (1999).
- Hu, X. et al. Gut microbiota dysbiosis promotes the development of epithelial ovarian cancer via regulating Hedgehog signaling pathway. Gut Microbes 15, 2221093 (2023).
- D'Amico, F. et al. Gut microbiota dynamics during chemotherapy in epithelial ovarian cancer patients are related to therapeutic outcome. Cancers 13, 3999 (2021).
- D'Amico, F. et al. Gut microbiota dynamics during chemotherapy in epithelial ovarian cancer patients are related to therapeutic outcome. Cancers (Basel) 13. https://doi.org/10.3390/cancers13163999 (2021).
- Zhou, B. et al. The biodiversity composition of microbiome in ovarian carcinoma patients. Sci. Rep. 9, 1691 (2019).
- Chan, P. J., Seraj, I. M., Kalugdan, T. H. & King, A. Prevalence of mycoplasma conserved DNA in malignant ovarian cancer detected using sensitive PCR–ELISA. *Gynecol. Oncol.* 63, 258–260 (1996).
- 144. Nené, N. R. et al. Association between the cervicovaginal microbiome, BRCA1 mutation status, and risk of ovarian cancer: a case-control study. *Lancet Oncol.* 20, 1171–1182 (2019).
- Di Donato, V. et al. Vaginal cancer. Crit. Rev. Oncol./Hematol. 81, 286–295 (2012).

- Beller, U. et al. Carcinoma of the vagina. Int. J. Gynecol. Obstet. 95, S29–S42 (2006).
- Davis, K. P., Stanhope, C. R., Garton, G. R., Atkinson, E. J. & O'Brien,
 P. C. Invasive vaginal carcinoma: analysis of early-stage disease.
 Gynecol. Oncol. 42, 131–136 (1991).
- Bouma, J., Burger, M., Krans, M., Hollema, H. & Pras, E. Squamous cell carcinoma of the vagina: a report of 32 cases. *Int. J. Gynecol.* Cancer 4, 389–394 (1994).
- Gootenberg, D. B., Mitchell, C. M. & Kwon, D. S. Cervicovaginal microbiota and reproductive health: the virtue of simplicity. *Cell Host Microbe* 23, 159–168 (2018).
- Vásquez, A., Jakobsson, T., Ahrné, S., Forsum, U. & Molin, G. Vaginal Lactobacillus flora of healthy Swedish women. J. Clin. Microbiol. 40, 2746–2749 (2002).
- O'Hanlon, D. E., Come, R. A. & Moench, T. R. Vaginal pH measured in vivo: lactobacilli determine pH and lactic acid concentration. *BMC Microbiol.* 19, 1–8 (2019).
- 152. Balle, C. et al. Relationship between the oral and vaginal microbiota of South African adolescents with high prevalence of bacterial vaginosis. *Microorganisms* 8, 1004 (2020).
- 153. Okoli, A. C., Agbakoba, N. R., Ezeanya, C. C., Oguejiofor, C. B. & Anukam, K. C. Comparative abundance and functional biomarkers of the vaginal and gut microbiome of Nigerian women with bacterial vaginosis: A study with 16S rRNA metagenomics. *J. Med. Lab. Sci.* 29, 1–26 (2019).
- 154. Vasundhara, D., Raju, V. N., Hemalatha, R., Nagpal, R. & Kumar, M. Vaginal & gut microbiota diversity in pregnant women with bacterial vaginosis & effect of oral probiotics: an exploratory study. *Indian J. Med Res.* 153, 492–502 (2021).
- Antonio, M. A. D., Rabe, L. K. & Hillier, S. L. Colonization of the rectum by lactobacillus species and decreased risk of bacterial vaginosis. *J. Infect. Dis.* 192, 394–398 (2005).
- Baker, J. M., Al-Nakkash, L. & Herbst-Kralovetz, M. M. Estrogen–gut microbiome axis: physiological and clinical implications. *Maturitas* 103, 45–53 (2017).
- 157. Reid, G. et al. Oral use of Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: randomized, placebo-controlled trial in 64 healthy women. FEMS Immunol. Med. Microbiol. 35, 131–134 (2003).
- Halec, G. et al. Biological relevance of human papillomaviruses in vulvar cancer. Mod. Pathol. 30, 549–562 (2017).
- 159. Maclean, A. B. Vulval cancer: prevention and screening. *Best. Pract. Res. Clin. Obstet. Gynaecol.* **20**, 379–395 (2006).
- 160. Capria, A., Tahir, N. & Fatehi, M. Vulva cancer. (StatPearls, 2021).
- Glavan, T. W. et al. Gut immune dysfunction through impaired innate pattern recognition receptor expression and gut microbiota dysbiosis in chronic SIV infection. *Mucosal Immunol.* 9, 677–688 (2016).
- Burcelin, R., Serino, M., Chabo, C., Blasco-Baque, V. & Amar, J. Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. *Acta Diabetol.* 48, 257–273 (2011).
- Daud, I. I. et al. Association between toll-like receptor expression and human papillomavirus type 16 persistence. *Int. J. Cancer* 128, 879–886 (2011).
- 164. Bodelon, C. et al. Genetic variation in the TLR and NF-κB pathways and cervical and vulvar cancer risk: a population-based case–control study. *Int. J. Cancer* 134, 437–444 (2014).
- 165. Pappa, K. I. et al. Profiling of discrete gynecological cancers reveals novel transcriptional modules and common features shared by other cancer types and embryonic stem cells. *PloS One* 10, e0142229 (2015).

- Guo, Y. et al. Molecular profiling reveals common and specific development processes in different types of gynecologic cancers. Front. Oncol. 10. https://doi.org/10.3389/fonc.2020.584793 (2020).
- Chen, K. L. & Madak-Erdogan, Z. Estrogen and microbiota crosstalk: should we pay attention? *Trends Endocrinol. Metab.* 27, 752–755 (2016).
- Bukato, K., Kostrzewa, T., Gammazza, A. M., Gorska-Ponikowska, M. & Sawicki, S. Endogenous estrogen metabolites as oxidative stress mediators and endometrial cancer biomarkers. *Cell Commun. Signal* 22, 205 (2024).
- Kozieł, M. J. & Piastowska-Ciesielska, A. W. Estrogens, estrogen receptors and tumor microenvironment in ovarian cancer. *Int. J. Mol. Sci.* 24. https://doi.org/10.3390/ijms241914673 (2023).
- Lethaby, A., Ayeleke, R. O. & Roberts, H. Local oestrogen for vaginal atrophy in postmenopausal women. *Cochrane Database Syst. Rev.* 2016, Cd001500 (2016).

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 82272396) and Suzhou Medical and Health Science and Technology Innovation Project (No. SKY2022057 and KJXW2021043). Figures were created using BioRender software (biorender.com).

Author contributions

J.W., J.L., and Z.X.: writing-original draft preparation; J.W., M.Y., and Z.X.: writing-review & editing; Z.X. and J.L.: references collection, tables and figures organization; J.W.: acquisition of funds, J.W. and Z.X.: visualization, investigation. All authors have agreed to its publication.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to Jian Wu or Ze Xiang.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024