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Abstract

The protein kinases Raf- |, A-Raf and B-Raf connect receptor stimulation with intracellular signaling
pathways and function as a central intermediate in many signaling pathways. Gain-of-function
experiments shed light on the pleiotropic biological activities of these enzymes. Expression
experiments involving constitutively active Raf revealed the essential functions of Raf in controlling
proliferation, differentiation and cell death in a cell-type specific manner.

Introduction

All three Raf isoenzymes are cytosolic serine/threonine
protein kinases that exhibit a high degree of sequence sim-
ilarity. The enzymes contain three domains termed CR1,
CR2 and CR3. The N-terminal CR1 contains a Ras-binding
subdomain and a cysteine-rich subdomain, both required
to bind to activated Ras (Ras-GTP) at the cell membrane.
CR2 is rich in serine and threonine residues and nega-
tively regulates the biological activity of the catalytic
domain. CR3 contains the catalytic protein kinase domain

(figure 1).

Raf connects cellular stimulation with intracellular signal-
ing pathways. Raf translocates to the plasma membrane as
a result of receptor tyrosine kinase stimulation that leads
to a subsequent activation of Ras. Following activation,
Raf phosphorylates and activates mitogen-activated pro-
tein kinase (MAP) kinase (MEK) which in turn phospho-
rylates and activates the MAP kinases extracellular signal-
regulated protein kinases ERK1 and ERK2 [1]. Raf func-
tions therefore as a vital link between activated Ras and
ERK. The activated protein kinases ERK1/2 are able to
translocate into the nucleus and change the gene expres-

sion pattern via phosphorylation of gene regulatory pro-
teins. Thus, activation of Raf is essential for activating the
Raf/MEK/ERK signaling pathway and many functions
attributed to Raf activation are executed by the subsequent
activation of MEK and ERK. A microarray analysis con-
firmed that the transcriptional response to Raf activation
almost completely depends on MEK activation [2]. In line
with this, MEK is the only generally acknowledged sub-
strate for Raf [1,3].

Lessons from Raf-deficient mice

Gene ablation experiments involving the genes encoding
the Raf isoforms Raf-1, A-Raf, and B-Raf revealed diver-
gent phenotypes, indicating that Raf isoforms are not
always able to compensate for each other. In particular,
distinct essential functions are served by Raf-1 and B-Raf
in embryonic development [4]. Nevertheless, a functional
redundancy among the Raf family proteins exists and only
phenotypes requiring the activity of a distinct Raf isoform
are found. Inactivation of the Raf-1 and B-Raf-encoding
genes revealed that Raf-1 and B-Raf play essential anti-
apoptotic roles [5,6]. B-Raf is necessary for survival of
embryonic motoneurons and sensory neurons [7]. Several
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Modular structure of Raf. The Raf isoforms Raf-1, A-Raf
and B-Raf share three conserved domains termed CR1, CR2
and CR3. CRI contains a Ras-binding subdomain and a
cysteine-rich subdomain, both required to bind to activated
Ras (Ras-GTP) at the cell membrane. CR2 is rich in serine
and threonine residues and negatively regulates the biological
activity of the catalytic domain. This domain binds also regu-
latory 14-3-3 proteins. CR3 encompasses the protein kinase
domain.

review articles have been published that discuss these
mouse models in detail [4,8-10]

Gain-of-function mutants of Raf

Two strategies have been used to express constitutively
active Raf. The translocation of Raf to the plasma mem-
brane via binding to Ras-GTP is the key event in Raf acti-
vation [1]. Thus, a method to express a constitutively
active Raf-1 relies in the tethering of Raf to the plasma
membrane. This Raf-1 mutant termed Raf-CAAX carries at
the C-terminus an isoprenylation sequence derived from
K-Ras [11,12]. The artifical targeting of Raf-1 to the
plasma membrane leads to an activation of the enzyme in
a Ras-independent manner and shows 30-fold higher
kinase activity in growth-factor-deprived cells.

Alternatively, expression of the catalytic domain of either
Raf-1, B-Raf, or A-Raf as a fusion protein with the hor-
mone binding domain of the estrogen receptor [ER] gen-
erates a hormone-regulated constitutively active Raf. The
ARaf:ER fusion protein remains in an inactive state in the
absence of hormone, but is rapidly activated by the addi-
tion of hormone [13]. Figures 2A and 2B outline the strat-
egy of using steroid-binding domains for regulating the
function of Raf in cis [14]. In the absence of hormone, a
heat-shock protein such as Hsp90 binds to the estrogen
receptor domain and inhibit the catalytic function of the
Raf-estrogen receptor fusion protein by steric hindrance,
thus keeping the protein in an inactive state. Treatment
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with estrogen triggers the dissociation of the heat-shock
proteins, leading to a reversal of repression. As a result, Raf
activity can be hormonally controlled. The use of the
estrogen receptor mutant ERTamoxifen Mutant g]lows the use
of the synthetic ligand, 4-hydroxytamoxifen (4OHT) for
induction. The encoded hormone binding domain of the
estrogen receptor contains a glycine residue at position
525, instead of an arginine. As a result, the receptor is
largely insensitive to 17f-estradiol, but is readily activated
by 40HT [15]. The activation of the ERK signaling path-
way can be visualized by Western blot analysis using anti-
bodies that specifically recognize the phosphorylated
forms of ERK1 and ERK2 (figure 2C). In this review, we
will summarize some of the findings obtained with cells
expressing Raf-estrogen receptor fusion proteins, which
we consider the most important ones.

Role of Raf in the regulation of proliferation

The fact that Raf is activated following stimulation of the
cells with mitogens (i.e. EGF, PDGF, IGF) indicates that
these enzymes are involved in the regulation of cell
growth and proliferation. Accordingly, expression of the
hormone-regulated form of Raf-1, ARaf-1:ER, induced cell
proliferation in NIH 3T3 fibroblasts that was accompa-
nied by an upregulation of cyclin D1 and a repression of
p27K¥IP, a cyclin-dependent protein kinase inhibitor [16].
Expression of conditionally active forms of A-Raf and B-
Rafin NIH 3T3 cells revealed differences between the indi-
vidual Raf isoforms. While the activation of both AA-
Raf:ER and AB-Raf:ER induced the activation of MEK and
ERK protein kinases, AB-Raf:ER activated MEK with the
highest efficiency [17]. A microarray analysis performed
with human epithelial cells underlined the importance of
MEK activation by Raf [2]. Moreover, the fact that activa-
tion of ARaf:ER strongly induced the expression of growth
factors of the EGF growth factor family suggests the exist-
ence of an autocrine loop through the activation of the
EGF receptor: Activation of ARaf:ER triggers the stimulata-
tion of the EGF receptor. As a result, the Raf-MEK-ERK sig-
naling pathway is activated, leading to further synthesis of
EGF growth factors [2,18].

In keratinocytes, activation of the EGF receptor triggers
proliferation of the cells and involves the ERK signaling
pathway (figure 3A) [19]. The importance of the ERK sig-
naling pathway for growth of human keratinocytes was
further demonstrated with HaCaT keratinocytes express-
ing AA-Raf:ER. Proliferation of the cells was induced with
40HT and completely inhibited by pretreatment with the
MAP kinase kinase inhibitor PD98059 (figure 3B), indi-
cating that the mitogenic activity of AA-Raf:ER is mediated
by the activation of ERK. A comparison between the kinet-
ics of ERK phosphorylation and activation by EGF or
40OHT revealed major differences in the duration of ERK
activation (figure 3C). While EGF induced a strong phos-
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Figure 2

Design and biological activity of a conditionally active
forms of Raf. (A) Strategy: A heterologous protein is
expressed as a fusion protein with the ligand-binding domain
of the estrogen receptor. The fusion protein, that is constitu-
tively expressed, remains in an inactive state, due to the bind-
ing of chaperons of the Hsp90 family. The repression is
reversed by adding hormone. (B) Modular structure of Raf
and ARaf:ER, a conditionally active form of Raf-1. (C) Biologi-
cally active ARaf-1:ER triggers phosphorylation and activation
of ERK2. HT22 cells, murine cells of hippocampal origin, and
HT22-ARaf-1:ER cells were treated with 4OHT (+) or left
untreated (-). Whole cell extracts were prepared 15 min
after stimulation and subjected to Western blot analysis. The
blots were incubated with a rabbit antibody directed against
the phosphorylated form of ERK/2.

phorylation of ERK within 1 hour after stimulation, phos-
phorylated ERK was barely detected in AA-Raf:ER
expressing keratinocytes that had been incubated for 1
hour with 40HT. Phosphorylated ERK was, however,
detected in these cells 4 and 8 hours after induction of AA-
Raf:ER. These results indicate that the kinetics of ERK acti-
vation (transient versus sustained) are of minor impor-
tance for the induction of the mitogenic program of
keratinocytes by A-Raf. This observation is in contrast to
the role of ERK in neuronal survival where a sustained
activation of ERK is required for neuroprotection (see
below).

In a human breast epithelial cell line, activation of
ARaf:ER triggered the expression of genes encoding regu-
lators of cell proliferation, including cyclin D1, and
induced a transient increase in S phase cells. However, Raf
activation did not induce growth factor-independent pro-
liferation [18], in contrast to the situation encountered
with AA-Raf:ER expressing keratinocytes. These data indi-
cate that cell-type specific variations are important for the
biological outcome of Raf activation.

Although the activation of a conditional form of Raf can
promote DNA synthesis and cellular proliferation, other
reports show that it can also provoke cell cycle arrest.
Expression of ARaf-1:ER in small lung cancer cells induced
a growth inhibitory pathway that is accompanied by the
induction of the cyclin-dependent protein kinase inhibi-
tor p27KIP and a decrease in cdc2 protein kinase activity
[20]. In prostate cancer cells, activation of ARaf-1:ER
induced expression of the cyclin-dependent protein
kinase inhibitor p21¥KIPand an accumulation of the cells in
G1, thus leading to growth suppression [21]. Likewise,
ARaf-1:ER and AB-Raf:ER elicited a G1 arrest in NIH 3T3
cells that was accompanied by an upregulation of the cyc-
lin-dependent protein kinase inhibitor p21XIP, In contrast,
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activation of AA-Raf:ER promoted the entry of quiescent
NIH 3T3 cells into the S-phase of the cell cycle. A catalyti-
cally potentiated form of AA-Raf:ER, however, induced
cell cycle arrest and enhanced p21KIP expression, similarly
to AB-Raf:ER or ARaf-1:ER [22]. These data suggest that
the catalytical activity and the duration of the signaling of
Raf might determine the role of these enzymes in the pro-
gression of the cell cycle. In addition, cell type-specific dif-
ferences are essential for Raf induction and impairment of
the growth capacity of the cells.

Anti-apoptotic role of Raf

Raf-1-deficient embryos are growth retarded and apop-
totic cells are found in different tissues [6,7]. Raf-1-defi-
cient fibroblasts are hypersensitive to apoptotic stimuli
such as serum withdrawal or Fas/Fas ligand interaction.
Thus, it was concluded that the major function of Raf-1 is
to counteract apoptosis [7]. Also B-Raf-deficient embryos
die because of vascular defects due to apoptotic death of
differentiated endothelial cells [23].

The activation of the MEK/ERK signaling pathway by Raf
has been correlated with inhibition of programmed cell
death. The ERK signaling pathway has been described to
play an important role as a main antagonist of various
apoptosis-inducing challenges [[24,25]; reviewed in ref
[26]]. Activation of the ERK signaling pathway suppresses
the proapoptotic activity of stress-activated JNK/p38 pro-
tein kinases in PC12 pheochromocytoma cells, thus pro-
tecting the cells from NGF withdrawal-induced cell death
[27]. In line with this, BDNF-elicited ERK activation pro-
tects cortical neurons against a challenge with the topoi-
somerase | inhibitor campthothecin [28]. In addition, it
has been shown that activation of the ERK signaling path-
way via treatment of the cells with either EGF or 12-O-tet-
radecanoylphorbol-13-acetate may lead to an inactivation
of caspase-9 due to a direct phosphorylation of Thr125 of
caspase-9 by ERK. This phosphorylation blocks caspase-9
processing and the subsequent activation of caspase-3
[29].

The survival of cells requires the presence of survival fac-
tors, and the lack of this trophic support is one of the best-
studied signals for induction of cell death. In Rat-1 fibrob-
lasts, overexpression of B-Raf protected the cells from
apoptosis, induced by growth factor withdrawal. Treat-
ment with the MEK inhibitor PD98059 blocked the anti-
apoptotic activity of B-Raf, indicating that the activation
of the Raf-MEK-ERK signaling pathway is necessary for the
anti-apoptotic role of B-Raf in Rat-1 fibroblasts [30].

Experiments using HT22 immortalized neurons derived
from the hippocampal region of the CNS showed that
stimulation with BDNF rescues the cells from serum with-
drawal-induced cell death when the BDNF receptor TrkB
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Figure 3

Activation of a conditionally active form of A-Raf(AA-
Raf:ER) induces proliferation of human HaCaT kerat-
inocytes via activation of the ERK signaling pathway.
(A, B) Stimulation of HaCaT-AA- Raf:ER cells with either EGF
(I ng/ml) (A) or 4OHT (25 nM) (B) leads to an upregulation
of DNA synthesis, as measured by the incorporation of the
pyrimidine analogue 5-bromo-2'-deoxyuridine (BrdU) instead
of thymidine into the DNA of proliferating cells. The incor-
porated BrdU was detected by immunoassay. Mitogenic sign-
aling induced by EGF or 4OHT was completely abrogated by
the MAP kinase kinase inhibitor PD98059. (C) Kinetics of
ERK activation in EGF and 4OHT treated HaCaT-AA-Raf:ER
cells. Whole cell extracts were prepared from cells at differ-
ent time points and subjected to Western blot analysis. The
blots were incubated with an affinity purified rabbit antibody
directed against the phosphorylated (active) form of ERK2
(reproduced from [19] with copyright permission from the
American Physiological Society).

is expressed. An analysis of intracellular signaling cascades
revealed that stimulation of the TrkB receptor with BDNF
leads to an activation of both the ERK and the PI3 kinase
pathways. A pharmacological approach showed that the
major neuronal survival-promoting signaling pathway
includes an activation of PI3 kinase and AKT [31]. These
and other observations [28] indicate that the signaling
cascade BDNF — TrkB stimulation — PI3 kinase activa-
tion — activation of AKT —— cell survival is of general
importance and is not limited to a particular neuronal
population or neuronal cell line. In contrast, the neuro-
protective activity of BDNF is independent of the ERK sig-
naling pathway since PD98059 did not impair the BDNF-
mediated protection of neurons against serum with-
drawal-induced programmed cell death. To clarify the role
of ERK for neuroprotection, HT22 cells were analyzed that
expressed a ARaf-1:ER fusion protein and allowed the
selective activation of the ERK signaling pathway (figure
2C). Activation of the catalytic function of Raf-1 by 4OHT
rescued HT22 cells from serum withdrawal-induced cell
death, as depicted in figure 4A. The neuroprotective role
of ARaf-1:ER was confirmed by phase contrast microscopy
(figure 4B). Inhibition of ARaf-1-induced MEK activation
by PD98059 blocked the cytoprotective activity of ARaf-
1:ER [31], indicating that the activation of ERK via MEK is
the underlying cause for neuroprotection mediated by the
activation of the ARaf-1-ER fusion protein. These results
were a puzzle to be solved: BDNF-mediated neuroprotec-
tion against serum withdrawal-mediated cell death was
independent of ERK; in contrast, the Raf-1-estrogen recep-
tor fusion protein protected the cells solely via activation
of the ERK signaling pathway. To find clues to the solution
of the puzzle, the kinetics of ERK activation in HT22 cells

http://www.biosignaling.com/content/7/1/8

have been investigated (figure 4C). Stimulation of TrkB
expressing HT22 cells with BDNF triggered a robust, but
transient activation of ERK that was not sufficient to con-
fer protection against the loss of trophic support. In con-
trast, expression of a conditionally activatable Raf-1 that
induced a sustained ERK phosphorylation lasting for
hours, rescued neuronal HT22 cells from serum depriva-
tion-induced cell death. The phosphorylation state of the
ERK substrate Elk-1 mirrored the kinetic profile of ERK
activation, i.e. transient or sustained activation of ERK is
translated in the nucleus into a transient or sustained acti-
vation of Elk-1 (figure 4C). We then asked the question
how long ERK has to be activated in order to protect HT22
cells from serum deprivation-induced apoptosis. Addition
of PD98059 at different time points following treatment
of the cells with 40HT revealed that a prolonged activa-
tion of ERK, lasting for hours, is necessary for neuropro-
tection [31] (figure 4D). These results shed light on the
fact that the kinetics of ERK activation (transient versus
sustained) are of major importance for the neuroprotec-
tive activity. Thus, activation of PI3 kinase by BDNF in
neuronal cells represents the dominant survival pathway,
whereas the ERK signaling pathway plays no or only a
marginal role. However, a sustained activation of ERK,
lasting for several hours, protects neurons from growth
factor deprivation-induced cell death, indicating that the
duration of ERK activation is of major importance for its
neuroprotective biological function. Thus, stimulation of
the cells with neurotrophins of elevated concentrations,
or stimulation with several ligands, i.e. BDNF and EGF,
may trigger a sustained activation of ERK.

The activation of an estrogen-inducible activated Raf-1
mutant ARaf-1:ER also prevented apoptosis induced by
loss of matrix contact (anoikis), cytoskeletal integrity and
serum removal in lung fibroblasts [32]. In these cells it has
been shown that activation of ARaf-1:ER prevented the
upregulation of Bim, a proapoptotic BH3-only protein of
the Bcl-2 family, in serum-starved cells. This rescue relies
on the activation of the ERK pathway and was independ-
ent of the JNK — c-Jun and PI3 kinase - PDK — AKT
pathway [33]. In human breast epithelial cells, the expres-
sion of genes encoding growth factors of the EGF family as
a result of ARaf-1:ER activation protected the cells from
detachment-induced apoptosis [18]. Activation of ARaf-
1:ER also blocked programmed cell death induced by
TGFP in MLCK epithelial cells [34]. However, activation
of ARaf-1:ER did not provide protection against oxidative
glutamate toxicity in HT22 hippocampal cells [35]. These
data indicate that the anti-apoptotic function of Raf is
restricted to particular apoptotic signaling pathways.

In addition to the well-established target MEK, Raf may
use other effectors to inhibit programmed cell death. It
has been shown that Raf-1 promotes cell survival in a
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Figure 4 (see previous page)

A conditionally active form of Raf-1 (ARaf-1:ER) protects HT22 neuronal cells against serum deprivation-
induced cell death via activation of ERK. (A, B) Activation of Raf-1 provides protection against serum deprivation-induced
apoptosis. HT22-ARaf-1:ER cells were serum-starved in the presence or absence of 4OHT (200 nM) for twenty-four hours.
The reduction of colorless 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide by mitochondrial NAD(P)H-depend-
ent dehydrogenases to formazan dye crystals was used as an indicator for cell survival (MTT assay). (A); , values statistically sig-
nificantly different (p < 0.005) from those of cells incubated in the absence of serum and PD98059, but in the presence of
40HT. (B) HT22ARaf-1:ER cells or HT22pac cells cells were serum-starved in the presence or absence of 4OHT for twenty-
four hours. The cytotoxic effect of serum withdrawal was determined by phase contrast microscopy. The neuroprotection was
abrogated by incubation with the MEK inhibitor PD98059, indicating that the ERK signaling pathway is essential for ARaf-1:ER
mediated neuroprotection. (C) Kinetics of ERK2 and Elk-1 phosphorylation after stimulation with BDNF or 4OHT. BDNF

stimulation triggers a rapid, but transient activation of ERK in TrkB receptor expressing HT22 cells (HT22-TrkB.TK cells,
upper panel), whereas activation of the ARaf-1:ER fusion protein leads to a sustained activation of ERK, lasting for hours
(HT22-ARaf-1:ER cells, lower panel). The kinetics of ERK phosphorylation and activation correlate very well with phosphoryla-
tion and activity of the ternary complex factor Elk-1, a nuclear substrate of ERK that functions as a key regulator of serum
response element-driven gene transcription. (D) Prolonged activation of ERK is essential for neuroprotection. HT22 cells
expressing ARaf-1:ER were serum-starved and incubated with 4OHT for twenty-four hours. PD98059 was added simultane-
ously (t = 0), or eight (t = 8) or sixteen hours (t = 16) after stimulation of the cells with 4OHT. Cells were analyzed twenty-
four hours after stimulation by either the MTT assay (left) or by phase contrast microscopy (right) (reproduced from [31] with

copyright permission from Blackwell Publishing, Oxford).

MEK/ERK-independent manner via antagonizing apopto-
sis signal-regulating kinase-1 (ASK-1) [36]. Raf-1 is also
targeted to the mitochondria by Bcl-2 that leads to cell
survival without ERK activation, probably by phosphor-
ylating substrates other than MEK, such as Bcl-2 family
members [37,38].

Role of Raf in cellular differentiation

Raf activation has been discussed primarily as an integral
part of the ERK signaling pathway controlling cellular
growth. The impact of Raf in the control of cellular differ-
entiation has only been put in the limelight in recent
years. The lethal phenotypes observed in either Raf-1-, A-
Raf- or B-Raf-deficient mice sheds light on the essential
role of Raf during development. Nullizygous B-Raf/--
embryos, for example, die by embryonic day 12.5 show-
ing defects in vascular endothelial cell differentiation
[23]. In cell culture models, B-Raf controls myelopoiesis
at multiple stages. In particular, B-Raf deficient ES cells
have a quantitative defect in myeloid progenitor cell for-
mation [39]. B-Raf is also crucial for T-cell development,
in particular for the transition to CD4+ and CD8* single-
positive cells [40]. In immortalized cells from rat hippoc-
ampus neurons, activation of ARaf-1:ER was shown to
induce neuronal differentiation [41]. In neural stem cells,
supplementation of the medium with EGF and bFGF is
necessary to inhibit differentiation. Removal of the
mitogens stops the cell cycle and induces differentiation
[42]. Figure 5 shows that expression of the astrocytic
marker GFAP is upregulated in differentiated HNSC.100
neural stem cells. This upregulation of GFAP expression
was prevented in ARaf-1:ER-expressing neural stem cells
that were stimulated by 40HT in the absence of EGF and

bFGF in the medium [43], indicating that enhanced Raf-1
activity blocked the differentiation of the cells. Together,
these data show that Raf influences developmental proc-
esses, although the exact molecular mechanisms have to
be determined in each cell type.

Conclusion

Results obtained with constitutively active Raf mutants
has been questioned, since the lack of the regulatory
domains in the Raf mutants may compromise the sub-
strate specificity and the dynamic regulation of activity
[9]. Nevertheless, the many data obtained using these
mutants have improved our knowledge of the functions
of Raf in growth control, apoptosis and differentiation.
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Figure 5

Activation of ARaf-1:ER blocks differentiation along
the astrocytic lineage in human neural stem cells. (A)
HNSC.100 neural stem cells expressing ARaf-1:ER were incu-
bated with or without EGF, bFGF and 4OHT, as indicated.
RNA was isolated and analyzed by RT-PCR. (B) Quantifica-
tion and statistical analysis of the data shown in (A) (GFAP,
glial fibrillary acidic protein; GAPDH, glycerinaldehyde-3-
phosphate-Dehydrogenase; |IOD = Integrated optical density)
(reproduced from [43], copyright by the American Society
for Biochemistry and Molecular Biology).
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