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Abstract The ability to predict the dynamics of objects, linking applied force to motion, under-
lies our capacity to perform many of the tasks we carry out on a daily basis. Thus, a fundamental 
question is how the dynamics of the myriad objects we interact with are organized in memory. Using 
a custom-built three-dimensional robotic interface that allowed us to simulate objects of varying 
appearance and weight, we examined how participants learned the weights of sets of objects that 
they repeatedly lifted. We find strong support for the novel hypothesis that motor memories of 
object dynamics are organized categorically, in terms of families, based on covariation in their visual 
and mechanical properties. A striking prediction of this hypothesis, supported by our findings and 
not predicted by standard associative map models, is that outlier objects with weights that deviate 
from the family-predicted weight will never be learned despite causing repeated lifting errors.

Editor's evaluation
This paper provides compelling evidence from several behavioural experiments that recently learned 
estimates of the mass of novel objects possess a categorical structure in memory. It further links 
this categorical structure to important aspects of motor control, and provides a compelling window 
through which to consider the role of multiple systems in the learning and memory of novel object 
dynamics.

Introduction
Many theories about how objects are encoded in memory have been proposed (Collins and Quil-
lian, 1969; Warrington and Taylor, 1978; Mervis and Rosch, 1981; Schacter and Cooper, 1993; 
Gauthier et al., 1999; Chao et al., 1999; Chao and Martin, 2000; Humphreys and Forde, 2001; 
Freedman et al., 2001; Ashby and Maddox, 2005; Kemp and Tenenbaum, 2008; Kriegeskorte 
et al., 2008; Kourtzi and Connor, 2011; Mahon and Caramazza, 2011; Huth et al., 2012). These 
include theories concerned with the semantic, perceptual, and functional properties of objects. For 
example, a hammer may be semantically labeled as a tool, represented perceptually in terms of its 
shape, or evaluated functionally in the context of a particular task. However, the mechanical proper-
ties of objects, which are fundamentally important to human motor control, have received little atten-
tion in theories of object memory.

The majority of tasks we perform involve physical objects, and skilled interaction with these objects 
depends critically on our ability to predict their mechanical properties. For many of the objects that 
we interact with, dexterous performance requires accurate predictions of weight (Gordon et  al., 
1991; Wolpert and Flanagan, 2001; Flanagan et al., 2006; Johansson and Flanagan, 2009). For 
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example, when lifting an object from a surface, weight prediction allows us to produce the vertical 
forces required to raise the object smoothly. When lifting an object for the first time, people will 
estimate its weight based on visual information about its size and material properties (Gordon 
et  al., 1993; Flanagan and Beltzner, 2000; Baugh et  al., 2012; Baugh et  al., 2016). However, 
once an object has been lifted, a memory is formed of its actual (i.e. directly sensed) weight, and 
this memory can be used to guide subsequent lifts of the object (Baugh et al., 2012; Baugh et al., 
2016; Johansson and Westling, 1988; Flanagan et al., 2001; Flanagan et al., 2008). Thus, in addi-
tion to intact sensory and motor function, skilled manipulation—and thus the ability to perform most 
daily tasks—requires the capacity to form, and quickly access, representations of object weights in 
memory.

Here, we investigated how the mechanical properties of the myriad objects we interact with are 
organized in memory. To answer this question, we used a new three-dimensional robotic interface 
(Figure  1a) that, in combination with a stereoscopic virtual reality system, allowed us to simulate 
objects of varying size, weight, and appearance (Figure 1b). Objects were presented on a carousel 
and, on each trial, the participant ‘lifted’ the presented (i.e. nearest) object by first applying an upward 
force to the object, which was fixed to the surface of the carousel and therefore could not move. 
When ready, the participant pressed a button with their other hand, which caused the portion of 
the carousel below the object to open, releasing the object so that it was free to move. The aim 
was to match the upward force to the weight of the object so that it would not move up or down 
when released. Therefore, by measuring the force just prior to release, we could precisely measure 
the participant’s weight prediction on every trial. Because the robot simulated the mechanics of the 
object, the participant received direct haptic and visual feedback about both the object’s weight and 
their motor error (Figure 1c). At the end of the trial, the open portion of the carousel closed, and the 
participant replaced the object.

Using this task, we developed a novel motor learning paradigm in which participants repeatedly 
lifted a set of five similar-looking objects of varying size and weight (Figure 1d–f; filled circles corre-
spond to the objects in Figure 1b). In our key experiment (Figure 1d), these objects included four 
training objects (the two smallest and two largest) presented in an initial training phase, and an outlier 
object (the middle size) introduced later in a test phase. The training objects had a common density, 
and therefore had a linear relationship between size and weight. Although the size of the outlier 
was in the middle of the training objects, its weight was greater than would be expected under the 
assumption that it had the same density as the training objects. Using this lifting task, we could distin-
guish between two high-level hypotheses about memory organization.

First, the ‘object families’ hypothesis asserts that multiple objects are represented in memory by 
clustering them into categories, or families. This hypothesis posits that the training objects and the 
outlier will be represented as a single family (Figure 1d; green line), provided that the weight of the 
outlier falls within the family boundary (shaded green region). As a consequence, this hypothesis 
predicts that participants will fail to learn the actual weight of an outlier that falls within the family 
boundary, and will instead estimate the weight based on the family structure (open green circle). We 
refer to this predicted effect as the ‘family effect’. However, if the weight of the outlier is extreme and 
falls beyond the family boundary (Figure 1e), a separate memory will be formed for the outlier object. 
Thus, this model predicts an all-or-nothing pattern of learning whereby, depending on their family 
boundary, a participant will either fully learn the outlier weight or completely fail to learn it.

An alternative hypothesis is that object properties are encoded in an ‘associative map’. This idea 
comes from a well-known theoretical framework that has been successful in explaining how senso-
rimotor transformations for reaching, grasping, and saccades are encoded in memory (Zipser and 
Andersen, 1988; Salinas and Abbott, 1995; Pouget and Sejnowski, 1997). In associative map 
models (Figure 1d and e; purple curve), experience with individual objects causes the visual and 
mechanical properties sensed during each interaction to become gradually associated. Additionally, 
memories of individual objects influence one another only through local generalization, producing 
smoothly varying mappings between visual size and expected weight. In associative map models, the 
predicted weight of the outlier (open purple circle) will become increasingly accurate with experience, 
such that an outlier of any weight will be at least partially learned. Note that associative map learning 
is also implemented by modular models, which have been proposed to account for learning in both 
motor (Wolpert and Kawato, 1998) and non-motor (Kalish et al., 2004) tasks.

https://doi.org/10.7554/eLife.71627
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Figure 1. Object families and associative maps make different predictions for an outlier lifting task. (a) Participants grasped the handle of a three-
dimensional robotic interface (3BOT) with their right hand and viewed stereoscopic scenes (Oculus Rift). The 3BOT could track movement and simulate 
the haptic experience of manipulating objects. (b) Screenshots of the key stages of the lifting task. See text for details. (c) Load force and vertical 
position traces from an example trial, color-coded to match the numbers in (b). In this example, the anticipatory force was less than the weight of the 
object (dotted line), causing a downward movement of the hand and object. (d-f) Tasks used to examine family representations. In these tasks there 
were five visually similar objects of varying volume and mass. In the Linear+ condition (d), four of the objects had a linear relation between size and 
weight. A fifth object of intermediate size had a higher density (hence the + notation) and therefore was an outlier. Under the object families hypothesis, 
the four objects induce learning of the family structure (green line). Visually similar objects that fall within the category boundary for the family (shaded 
green region) are treated as family members. Because the outlier falls within the category boundary, its weight should be persistently misestimated 
based on the family structure (green circle). Under the associative map hypothesis, exposure to the outlier leads to partial learning of its actual weight 
(purple circle). In the Linear++ condition (e), the object families hypothesis predicts that when the outlier becomes sufficiently extreme, and crosses the 
family boundary, it will be categorized as an individual and its weight fully learned. The associative map hypothesis still predicts partial learning of this 
outlier. In the Uncorr+ condition (f), when size and weight are uncorrelated, the object families hypothesis predicts that the object weights will each be 
learned individually. Under the associative map hypothesis, there is no fundamental difference between this scenario and those depicted in (d, e), so the 
predictions for learning are similar to the object families hypothesis (i.e. all five objects will eventually be learned).

https://doi.org/10.7554/eLife.71627
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These two hypotheses also make different predictions regarding how lifting the outlier will affect 
the four training objects during the test phase. Again, the object families hypothesis predicts an all-
or-nothing pattern, depending on how the outlier is encoded. When encoded as a family member, the 
unexpectedly heavy weight of the outlier updates the family representation, causing the predicted 
weight to increase on a subsequent lift of a training object. However, once the outlier is classified as 
a separate individual, this outlier-to-family updating should be greatly suppressed. The associative 
map hypothesis, on the other hand, predicts that lifting the outlier will always update the estimated 
weights of similar-looking training objects.

Finally, the two hypotheses also make different predictions when there is no structured relationship 
between size and weight (Figure 1f). Under the object families hypothesis, each of these objects is 
learned as an individual (Figure 1f; separate green lines) and, as a consequence, the training objects 
will be learned more slowly than when they are learned as a family and there will be minimal single-trial 
generalization from the ‘outlier’ to the training objects. In contrast, in an associative map model, this 
scenario does not fundamentally differ from those depicted in Figure 1d and e.

Consistent with the object families hypothesis, we show that participants encode objects that 
covary in size and weight as a family, and that this representation exerts a powerful family effect on 
outlier objects, whose weights can differ markedly from the weights predicted by the family. In partic-
ular, we show that participants can completely fail to learn the weight of an outlier object, despite 
experiencing large, repeated movement errors; errors that, in the absence of the family, quickly drive 
learning. These findings address, for the first time, how motor-relevant properties of multiple objects 
are represented in memory.

Results
Participants performed a lifting task in which they were required to predict the weights of five objects 
positioned around a carousel. Figure 1c shows the load force and vertical hand position in a single 
trial. The traces are color-coded to match the four trial phases depicted in Figure 1b and described 
above. We focused our analyses on the anticipatory force participants produced just prior to releasing 
the object by pressing a button with the non-lifting hand. This anticipatory force provides a precise 
and accurate measure of the participant’s motor memory of the object weight. In the trial shown in 
Figure 1c, the participant underestimated the weight of the object, and as a consequence when the 
participant pressed the button to release the object, the right hand and the object moved downward. 
(Note that the motion of the hand after the release of the object does not provide a robust measure of 
participants’ weight prediction because this motion depends on co-contraction and reflex responses 
in addition to the mismatch between vertical force and weight.)

Motor memories of objects are organized categorically
Our initial experiment was designed to critically evaluate the object families and associative map 
hypotheses by examining how participants learned the weight of a heavier-than-expected outlier 
object. We tested separate groups of participants in the three experimental designs depicted in 
Figure 1d–f. Participants completed a training phase, in which they interacted with the four training 
objects, followed by a test phase, in which the fifth test object was added. All objects were visually 
similar—cylinders of fixed diameter with varying heights.

In the Linear+ group (Figure 1d), the weights of the training objects were linearly related to their 
sizes and the test object was heavier (as denoted by the + sign) than expected based on the training 
objects. The weights and sizes of the training objects ranged from 0.6–1.2  kg and 400–800 cm3, 
respectively, and all had a density of 1.5 g/cm3 (Figure 1d). The size of the test object was 600 cm3, 
which was in the middle of the range of training object sizes. However, the weight of the test object, 
1.2 kg, was equal to the heaviest training object, making it 0.3 kg greater than the weight that would 
be expected if it had the same density as the training objects.

The traces in Figure 2a show the anticipatory force generated for each object as a function of trial 
cycle (one lift of each object) across the training and test phases. The dotted horizontal lines (color-
matched to the force traces) show the weights of the objects, and therefore the ideal anticipatory 
forces that would be generated with perfect learning. Participants in the Linear+ group very quickly 
learned the weights of the training objects. The scaling of forces to object weight observed in the 

https://doi.org/10.7554/eLife.71627
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first trial cycle suggests that participants rapidly learned the density (a family-level parameter) based 
on the first few objects lifted and then used this information, in conjunction with size, to predict the 
weights of the other objects. At the end of the training phase (final eight cycles), anticipatory force 
was strongly correlated with object weight (r = 0.76, 95% CI = [0.66, 0.83]).

The thicker trace and dashed horizontal line, starting at trial cycle 31, show the anticipatory force 
and actual weight of the test object introduced in the test phase. On the first lift of the test object, the 
average anticipatory force was 9.00 N (95% CI = [7.68, 10.32]). This suggests that participants initially 
estimated that the test object would have the same density as the training objects and, therefore, 

Figure 2. Objects are encoded according to the object families hypothesis. (a) Trial-by-trial anticipatory forces for the five objects over the course of the 
Linear+ condition (mean ± SEM). The training objects (thin lines) are experienced from the first trial cycle and the test object (thick line) is introduced 
on trial cycle 31 as the first trial of each cycle. Traces are color-coded with darker shades indicating larger objects and the dashed lines indicate the 
associated actual object weights (thick dashed line shows outlier weight). Rest breaks are indicated by gaps in the traces. (b) Anticipatory forces at the 
end of the test phase for the Linear+ condition (mean ± SEM). The abscissa shows the weights of the training objects and, for the outlier, the expected 
weight based on the family density. The weights of the training objects lie on the dotted unity line. Dashed horizontal line shows the weight of the 
outlier. Regression line shows the average of the participants’ linear regressions ± SEM. (c, d) Same as (a, b) for the Linear++ condition. (e, f) Same 
as (a, b) for the Uncorr+ condition. Note that for each participant, the uncorrelated mapping of size and weight for the training objects was randomly 
selected; the shading in (e) and (f) depicts one mapping. In (f) the outlier is plotted at the expected weight based on the family density in the Linear 
conditions. (g) Single-trial generalization in the first four cycles (Early) and last sixteen cycles (End) of the test phase of the Linear+ condition (mean 
± SEM, see Materials and methods for details). (h, i) Same as (g) for the Linear++ and Uncorr+ conditions. (j) Response times averaged over objects 
in each trial cycle (mean ± SEM). The Linear+ and Linear++ groups are combined in the red trace, as they did not differ on this measure. All SEM are 
across participants.

The online version of this article includes the following source code and figure supplement(s) for figure 2:

Source code 1. Source code for Figure 2 (Linear+, Linear++, and Uncorr+ groups).

Source data 1. Source data for Figure 2 (Linear+, Linear++, and Uncorr+ groups).

https://doi.org/10.7554/eLife.71627
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that its weight would be close to the middle of the training object weights (8.83 N). Consequently, 
they experienced an error of approximately 300 g (~3 N), which is close to the weight of a full can 
of soda and represents fully a third of the anticipated weight. Remarkably, despite this large error, 
participants never learned the test object weight over the 40 cycles in the test phase (40 lifts of the 
test object interspersed with 40 lifts of each training object). That is, the average anticipatory force 
did not increase—remaining at the level predicted by the family—and, therefore, participants did not 
adapt to the actual weight of this pronounced outlier.

We calculated the anticipatory forces at the end of the test phase (final 16 cycles) as a function 
of mass for the four training objects, and as a function of expected mass based on the density of 
the training objects for the test object (Figure 2b). To assess learning at the end of the test phase, 
we compared the average anticipatory force produced for the test object (9.15 N, 95% CI = [8.27, 
10.03]) with the ‘family-predicted weight’ of the test object (9.09 N, 95% CI = [8.64, 9.54]), defined 
as the weight of the test object predicted from the best-fitting regression line through the training 
objects (thereby adjusting for any prediction error on the training objects). We found that the 
anticipatory force was not significantly greater than the family-predicted weight (t(13) = 0.17, p = 
0.43).

The above results support the object families hypothesis by showing that even when the weight of 
an outlier object deviates markedly from its family-predicted weight, it continues to be encoded as 
a family member despite sensory evidence to the contrary. Next, we investigated whether there is a 
threshold to the family effect. We hypothesized that when the discrepancy between actual and family-
predicted weight exceeds some threshold, the object will be encoded as an individual, separate from 
the family, despite its family-like appearance. To probe this threshold, we tested a Linear++ group, 
who completed the same task as the Linear+ group but with an even heavier outlier (hence the ++). 
Specifically, for the Linear++ group, the test object weighed 1.5 kg, making it 600 g heavier than if 
it had the same density as the training objects, and 300 g heavier than the heaviest training object 
(Figure 1e).

Figure 2c shows the average anticipatory force timelines for the Linear++ group. As expected, 
at the end of the training phase, anticipatory force was strongly correlated with object weight (r = 
0.85, 95% CI = [0.72, 0.92]). On the first lift of the test object, participants generated an average 
anticipatory force of 8.13 N (95% CI = [7.19, 9.08]), consistent with the density of the training objects. 
However, in contrast to the Linear+ group, over the following 5–10 cycles, participants increased 
their anticipatory force for the test object, reaching an asymptote just below the actual object weight 
(14.72 N). At the end of the test phase (Figure 2d), the anticipatory force for the test object (13.15 N, 
95% CI = [11.56, 14.74]) was significantly greater (t(8) = 3.34, p = 0.0051) than the family-predicted 
weight (9.65 N, 95% CI = [8.62, 10.68]).

The results of the Linear++ group demonstrate that there is a limit to how deviant an outlier object 
can be, with respect to a known family, before it is ‘kicked out’ of that family and learned as a unique 
individual. That is, when the error signals received from a particular object are sufficiently large, they 
promote the formation of a separate memory. Note that the adaptation to the test object in the 
Linear++ group demonstrates that participants could visually distinguish the test object from the 
neighboring training objects. Thus, we can conclude that the striking failure to learn the test object 
in the Linear+ group is not due to an inability to visually identify the test object amongst the similar-
looking training objects.

Lastly, we designed a third variant of the task, in which the test object was the same size and weight 
as in the Linear+ group but the training objects were not related by any family structure (Figure 1f). 
Specifically, in the Uncorr+ group, the sizes and weights were remapped (separately for each partici-
pant), such that size and weight of the training objects were either completely or close to completely 
uncorrelated (|r| < 0.3). The object families hypothesis makes two key predictions for this condition. 
First, in the absence of structured covariation between visual and mechanical properties within the 
training set (i.e. when the training objects do not share a constant density), participants should be 
forced to form a separate memory for each training object, with no family-level representation. This, 
in turn, should result in slower initial learning of the training objects in comparison to the Linear 
groups, where all four training objects could be encoded as a family with a common density. Second, 
in the absence of a family representation, participants in the Uncorr+ group should be able to learn 
the weight of the 1.2 kg test object, unlike participants in the Linear+ group. In contrast, under the 

https://doi.org/10.7554/eLife.71627
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associative map hypothesis, the results of the Uncorr+ group should not fundamentally differ from the 
Linear+ group.

Figure 2e shows the anticipatory force timelines for the Uncorr+ group. In the earliest trial cycles, 
there was poor differentiation of the object weights, showing that uncorrelated mappings are more 
difficult to learn than linear mappings. Nevertheless, by the end of the training phase the Uncorr+ 
group achieved accuracy comparable to the Linear groups, with anticipatory force being strongly 
correlated with object weight (r = 0.72, 95% CI = [0.62, 0.80]). On the first lift of the test object, partic-
ipants produced 8.85 N (95% CI = [7.62, 10.08]) of anticipatory lift force, which is similar to the mean 
of the training object weights (8.83 N). Moreover, it is similar to the force generated by participants 
in the Linear+ group on their first lift of the test object (9.00 N). Thus, the initial weight estimation 
error for the test object was similar in the Linear+ and Uncorr+ groups. However, as can be seen in 
Figure 2e, during the test phase participants in the Uncorr+ group succeeded in adapting their antic-
ipatory force for the test object. Unlike the Linear groups, the training objects in the Uncorr+ group 
did not have a common density, and therefore we compared the anticipatory force for the test object 
to the average weight of the training objects (as the test object was of intermediate volume). At the 
end of the test phase (Figure 2f), participants’ anticipatory force for the test object (10.48 N, 95% CI 
= [9.50, 11.46]) was significantly greater (t(11) = 4.06, p = 0.00094) than the average force for the 
training objects (8.68 N, 95% CI = [8.44, 8.92]). The learning of the test object observed in the Uncorr+ 
group confirms that the failure to learn the test object in the Linear+ group is due to the structured 
object family, rather than the lack of a sufficient error signal.

The object families hypothesis predicts that when lifting an object that is encoded as a family 
member, the experienced density will update the density estimate for the family, thereby biasing the 
anticipatory force on a subsequent lift of a training (i.e. family) object. Conversely, when lifting a test 
object that is encoded as an individual, the experienced density will not update the family estimate 
and the anticipatory force on a subsequent lift of a training object will be unaffected. Thus, at the 
end of the test phase, the object families hypothesis predicts strong generalization for the 1.2 kg 
outlier, but no generalization for the 1.5 kg outlier. In contrast, the associative map model predicts 
strong generalization for the 1.2 kg outlier, and even stronger generalization for the 1.5 kg outlier. 
To compare these predictions, we analyzed single-trial generalization at the start and end of the test 
phase (Figure 2g–i). Specifically, we examined how the anticipatory force applied to these training 
objects changed when they were lifted immediately after the test object, compared to when they were 
lifted in the final four trial cycles of the training phase, before the test object was introduced. Note 
that we opted to analyze only the trials immediately following the test object because generalization 
is washed out with each subsequent lift of a training object, such that including these subsequent 
trials weakens the analysis. For the Linear+ group (Figure 2g), we found significant generalization 
both at the start (t(13) = 5.47, p = 1.1e−4) and the end of the test phase (t(13) = 5.56, p = 9.2e−5), 
with no significant change (t(13) = 1.68, p = 0.12). That is, at both time points, there was an increase 
in anticipatory force on the trial after the test object, consistent with encoding the test object as a 
family member. For the Linear++ group (Figure 2h), there was significant generalization at the start 
of the test phase (t(8) = 5.61, p = 5.1e−4) that was greatly reduced at the end of the test phase, with 
a significant change over time (t(8) = 3.95, p = 0.0042). This shows that participants initially encoded 
the extreme outlier as a family member, but then formed a separate memory of this object. Note 
that although generalization was dramatically reduced in the Linear++ group, it remained significant 
at the end of the test phase (t(8) = 2.59, p = 0.032). For the Uncorr+ group (Figure 2i), we found 
no evidence of generalization at the start (t(11) = 1.90, p = 0.085) or the end of the test phase (t(11) 
= 0.45, p = 0.66), and no change over time (t(11) = 1.90, p = 0.084), consistent with encoding each 
object individually (Figure 2i).

We also analyzed the response time, defined as the time from object presentation to the button 
press that released the object, which is presumably linked to the time required to estimate the weight 
of the object. For this analysis, we combined the two Linear groups. As shown in Figure 2j, response 
times decreased during the training phase for both the linear and the uncorrelated size-weight 
mappings, but there was a consistent temporal cost associated with movement preparation when size 
and weight were uncorrelated as compared to linearly related. To assess these effects, we defined 
four epochs by splitting both the training and test phases into two equal parts. A two-way repeated-
measures ANOVA on log-transformed response times revealed significant main effects of Group (F(1, 

https://doi.org/10.7554/eLife.71627
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33) = 5.79, p = 0.022) and Epoch (F(3, 99) = 13.039, p = 0.30e−7), but no interaction (F(3, 99) = 0.80, 
p = 0.49). Separate t-tests on each epoch all showed significant Group effects (p < 0.048 in all four 
epochs). These results show that, even at the end of the test phase, encoding each object individually 
resulted in a temporal cost compared to encoding the objects as a family.

The increased response time in the Uncorr+ condition could be a ‘switch cost’ related to loading 
a different category in motor memory. If there is a switch cost then we should observe an increase 
in response time in the Linear++ condition when lifting the outlier after lifting a family member, and 
when lifting a family member after the outlier, as both of these situations involve switching between 
categories. However, we found no evidence of increased response times on these ‘switch trials’. 
We first determined the predicted response times assuming there is no switch cost. These predic-
tions were based on the response times observed when lifting a family member after having lifted 
a family member in the previous trial, that is, where the category did not change (see Materials and 
methods). In the Linear++ condition, the average response time when lifting the outlier after a family 
member group was only 3 ms longer (95% CI = [−156, 159]) than the predicted value, and the average 
response time when lifting a family member after the outlier was 25 ms faster (95% CI = [−129, 79]) 
than the predicted value. Thus, our data provide no evidence for the idea that the large temporal cost 
observed in the Uncorr+ condition is a switch cost. However, our data are consistent with the idea that 
there is a ‘selection cost’ associated with mapping the visual stimulus onto the appropriate category. 
In the Uncorr+ group, participants were required to map each visual stimulus onto one of five cate-
gories in memory, and thus we would expect a substantial selection cost. In contrast, in the Linear++ 
condition, only two categories were involved, and therefore the selection cost may be negligible.

Re-organization of motor memories of objects
In the experiment described above, for the Linear groups we first introduced a set of objects with a 
common density, before adding in a test object, or outlier, with a higher density. We found a strong 
family effect such that participants never learned the weight of a test object that was 300 g heavier 
than expected. A key question is whether exposure to an object family can lead to the reorganization 

Figure 3. A memory of an individual is reorganized when an object family is introduced. (a, c) Trial-by-trial anticipatory forces, as in Figure 2a and c, in 
a ‘reverse’ condition in which the outlier object was learned during the initial training phase, and the family objects were only introduced from trial cycle 
31. Hence, we refer to these as +Linear and ++Linear. As the training phase trial cycles contained only one trial (the outlier), for clarity, the abscissa scale 
is compressed. After the test phase, in a ‘1:1’ phase the test object was presented four times in each trial cycle (rather than once as in the test phase), 
with each family member presented once (eight trials per cycle) such that the participant experienced the test object as often as a family member. For 
the 1:1 phase, we excluded trials from analysis in which the outlier object followed itself. (b, d) Average anticipatory forces at the end of the test phase, 
as in Figure 2b and d, but here plotted by volume.

The online version of this article includes the following source code and figure supplement(s) for figure 3:

Source code 1. Source code for Figure 3 (+Linear and ++Linear groups).

Source data 1. Source data for Figure 3 (+Linear and ++Linear groups).

https://doi.org/10.7554/eLife.71627
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of an existing memory of an individual object. To address this question, we tested two new groups of 
participants on conditions in which the test object was experienced before the four common-density 
‘family’ objects. Note that we used the same family and test objects as in our first experiment. We 
refer to these groups as the +Linear and ++Linear groups to denote the reversed order in which 
participants encountered the test object and the family objects. In the initial training phase, partici-
pants in the +Linear group lifted the 1.2 kg test object, and the ++Linear group lifted the 1.5 kg test 
object. For both groups, the four family objects were then introduced in the test phase.

As expected, both groups quickly and accurately learned the weight of the test object when it 
was presented individually during the training phase (Figure 3a and c). However, at the start of the 
test phase (beginning at trial cycle 31), it is evident that participants in both groups began to treat 
the outlier and the four family objects as a single family. Specifically, the estimated weight of the test 
object (i.e. the anticipatory force) decreased towards the family-predicted weight. At the same time, 
the estimated weights of the family members were initially overestimated. These results show that 
even brief exposure to an object family can reorganize the memory of a previously learned individual 
object, such that it is assimilated into the family.

Following this assimilation of the test object, or outlier, into the family, the pattern of results is 
strikingly similar to that observed in our first experiment. Specifically, participants in the +Linear group 
never fully re-learned the actual weight of the outlier, whereas participants in the ++Linear group 
adapted their anticipatory force to the actual weight. At the end of the test phase (Figure 3b), the 
anticipatory force for the outlier in the +Linear group (10.01 N, 95% CI = [9.18, 10.84]) was not signifi-
cantly greater (t(10) = 1.23, p = 0.12) than the family-predicted weight (9.49 N, 95% CI = [9.11, 9.86]). 
Thus, participants in the +Linear group did not re-learn the actual weight of the outlier after it was 
assimilated into the family. Therefore, the +Linear group, like the Linear+ group, exhibited a strong 
family effect. In the ++Linear group, the anticipatory force for the outlier at the end of the test phase 
(12.76 N, 95% CI = [11.14, 14.39]) was significantly greater (t(10) = 4.19, p = 0.00093) than the family-
predicted weight (9.76 N, 95% CI = [9.47, 10.04]). Thus, as was the case for the Linear++ group, the 
++Linear group exhibited learning (or re-learning) of the more extreme outlier.

The failure to learn the weight of the outlier in the Linear+ and +Linear groups could be due to the 
fact that the higher density outlier was lifted only once for every four lifts of the family objects. Thus, 
after the test phase we included a ‘1:1’ phase where the relative frequency with which the outlier 
and family objects were experienced was equivalent. Specifically, this phase consisted of ten cycles 
in which the outlier object was lifted four times per cycle and each family member was lifted only 
once, for a total of eight lifts per cycle with the outlier and family members randomly interleaved. As 
shown in Figure 3a, in the +Linear group there was minimal impact on learning in the 1:1 phase. In 
the ++Linear group, increasing the relative frequency of outlier lifts in the 1:1 phase did not further 
improve the separation between the anticipatory force for the outlier and its family-predicted weight. 
These findings demonstrate that the family effect cannot be accounted for by the greater relative 
frequency of the family objects.

Category boundaries are flexible
In the first two experiments, we showed that participants failed to learn the weight of a test object, 
or outlier, that was 300 g (or 33%) greater than the weight predicted by the density of the family, but 
did learn the weight when the test object exceeded this weight by 600 g (or 67%). This suggests that 
there is a boundary, between these two weights, that determines whether the object is encoded as 
a family member or as a separate individual. A fundamental question is whether such boundaries are 
fixed or flexible. Research on both perceptual and conceptual categorization has shown that cate-
gory boundaries may depend on within-category variability (Rips, 1989; Huttenlocher et al., 2000; 
Clayards et al., 2008), and that category labeling can exhibit hysteresis whereby the point at which 
the perceived category changes depends on the direction of change (Williams et al., 1986; Hock 
et al., 1993; Poltoratski and Tong, 2014). To examine this issue in relation to object categorization, 
we recruited two new groups of participants who initially experienced the same conditions as the 
Linear+ and Linear++ groups from our first experiment. That is, both groups completed a training 
phase in which they lifted the four family objects, followed by a test phase in which the test object was 
initially either 1.2 or 1.5 kg for 20 trial cycles. However, we then gradually changed the test object’s 
weight by steps of 50  g every eight trial cycles. In the Linear➚ group, the weight was gradually 

https://doi.org/10.7554/eLife.71627
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increased from 1.2 to 1.5 kg and in the Linear➘ group, the weight was gradually decreased from 1.5 
to 1.2 kg.

The anticipatory force data for the Linear➚ and Linear➘ groups (Figure 4a and c) contain several 
features that replicate the key findings from our first experiment. First, both groups quickly and accu-
rately learned the weights of the training objects, with anticipatory forces that were strongly correlated 
with actual object weights by the end of the training phase (r = 0.81, 95% CI = [0.73, 0.87] in Linear➚; 
r = 0.84, 95% CI = [0.77, 0.89] in Linear➘). Second, in both groups the anticipatory force generated 
on the first lift of the test object was close to the middle of the weights of the family objects (9.40 N, 
95% CI = [8.10 10.70] in Linear➚; 8.07 N, 95% CI = [5.93, 10.22] in Linear➘). Third, at the end of the 
initial 20 cycles of the test phase, during which the test object weight remained at its initial value, 
learning of the 1.2 kg test object was not significant (Linear➚: t(8) = −0.58, p = 0.71), whereas learning 
of the 1.5 kg test object was significant (Linear➘: t(8) = 2.15, p = 0.032).

For the Linear➚ group, the anticipatory force for the test object does appear to have slightly 
increased as its weight increased. However, the anticipatory force at the end of the test phase 
(11.02 N, 95% CI = [9.44, 12.60]) was not significantly greater (t(8) = 1.81, p = 0.054) than the family-
predicted weight (9.72 N, 95% CI = [9.43 10.01]), and was still substantially less than the actual weight 
(14.72 N; Figure 4b). Thus, despite the fact that the test object weighed 1.5 kg at the end of the test 
phase, it was not ‘kicked out’ of the family, in contrast to the equally heavy test object experienced by 
the Linear++ group in our first experiment. A direct comparison between the Linear➚ and Linear++ 
groups showed a significant difference in the anticipatory force for the outlier object at the end of the 
test phase (t(16) = 2.20, p = 0.043).

As noted above, and as expected based on the Linear++ group, participants in the Linear➘ group 
increased their anticipatory force for the 1.5 kg test object from the start of the test phase, before its 
weight began decreasing. Then, as the anticipatory force increased and the actual weight of the test 
object gradually decreased, these two forces became closely matched, and remained so until the end 
of the test phase (Figure 4c). At the end of the test phase, the anticipatory force (11.69 N, 95% CI 
= [10.35, 13.03]) was significantly greater (t(8) = 4.35, p = 0.0012) than the family-predicted weight 
(9.20 N, 95% CI = [8.65, 9.75]) and indistinguishable from the actual weight (11.77 N; Figure 4d). Thus, 
once a separate memory was formed for the test object, it continued to be encoded as an individual 

Figure 4. Family boundary depends on history of sensorimotor experience. (a) Trial-by-trial anticipatory forces (same format as Figure 2a) in an 
‘increasing’ condition (Linear➚) in which the outlier starts at the weight of the Linear+ group on trial cycle 31 and increases gradually to the weight of 
the Linear++ condition. (b) Anticipatory forces at the end of the test phase (same format as Figure 2b). (c,d) Same as (a,b) for a ‘decreasing’ condition 
(Linear➘) in which the outlier starts at the weight of the Linear++ condition and decreases gradually to the weight of the Linear+ condition.

The online version of this article includes the following source code and figure supplement(s) for figure 4:

Source code 1. Source code for Figure 4 (Linear➚ and Linear➘ groups).

Source data 1. Source data for Figure 4 (Linear➚ and Linear➘ groups).

https://doi.org/10.7554/eLife.71627


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Cesanek et al. eLife 2021;10:e71627. DOI: https://doi.org/10.7554/eLife.71627 � 11 of 29

even when its weight deviation decreased to the level ( + 300 g, or 33%) that the Linear+ group 
failed to learn. A direct comparison between the Linear➘ and Linear+ groups showed a significant 
difference in the anticipatory force for the outlier object at the end of the test phase (t(21) = −3.68, p 
= 0.0014). Overall, the results from both groups demonstrate that the threshold for categorizing an 
object as either a family member or an individual object is flexible and depends on past sensorimotor 
experience. Mechanisms that could potentially give rise to these effects are discussed below.

All-or-nothing learning of outlier weight
According to the object families hypothesis, an outlier object is encoded categorically as either a 
family member or an individual. As a consequence, a given participant should either fully learn the 
weight of an outlier object or not learn at all, depending on their particular threshold for ‘kicking 
out’ an object from a family. Assuming that the threshold weight at which an outlier is kicked out of a 
family varies across participants, the object families hypothesis predicts that for certain outliers, there 
will be a bimodal distribution of estimated weights across participants (separating learners from non-
learners). In contrast, the associative map hypothesis predicts that partial learning will be observed 
and that, assuming learning rates across participants are normally distributed, there will be a unimodal 
distribution in the amount of learning, regardless of the weight of the outlier.

With the aim of examining distributions across participants, we performed a web-based experi-
ment in which we recruited a large number of participants (N = 196), divided into four groups that 
varied in how the outlier deviated from a linear family. As in our first experiment, we tested groups 
who were presented with an outlier object that was heavier (Linear+) or much heavier (Linear++) than 
the weight predicted by the density of the training objects. In addition, to assess the generality of 
our findings, we tested groups who were presented with an outlier that was lighter (Linear-) or much 
lighter (Linear--) than the weight predicted by the density of the training objects.

Based on the object families hypothesis, we expected that the participants in the groups with less 
deviant outliers (Linear+ and Linear-) would form a single distribution of non-learners, with anticipa-
tory forces centered on the family-predicted weight. In contrast, we predicted that participants in the 
more deviant outlier groups (Linear++ and Linear--) would cluster into distinct distributions of learners 
and non-learners, with anticipatory forces centered on the actual and family-predicted weights of the 
outlier, respectively.

The web-based task was designed to closely mirror the laboratory task. The visual scene consisted 
of five cylindrical objects each with a spring attached to its top (Figure 5a). The objects were clamped 
in place by a ring that rotated before each trial to bring one of the objects to the foremost position. 
Participants used their mouse or trackpad to stretch the spring upwards in an attempt to generate a 
lifting force on the object that matched its weight (trial phase 1). Then, they pressed a key with their 
other hand to release the clamp (trial phase 2). From this point on, the object’s motion was simulated 
as a mass-spring-damper system, thus providing visual feedback about the participant’s performance. 
If the spring was stretched too much (or too little), the object would rise (or fall) and then oscillate 
until coming to rest (Figure 5a, rightmost panel). The oscillation time depended on the mismatch 
between the estimated and actual object weight, creating a natural time penalty. Note that although 
the exact nature of the sensory information in the web-based task differs from the laboratory task, 
both are fundamentally motor control tasks as they test how individuals translate sensory information 
into continuous motor commands to achieve an action goal.

The results for the Linear+ and Linear++ groups in the web-based experiment (Figure 5b and e) 
were very similar to those observed for the corresponding groups in our first experiment. This indi-
cates that similar learning processes were engaged despite the use of visual dynamics without haptic 
feedback (Danion et al., 2012). On average, the Linear+ group did not learn the outlier, whereas the 
Linear++ group exhibited substantial, but not complete, learning. Our analysis, however, focused 
on the distributions of anticipatory forces for the outlier object at the end of the test phase (final 
five cycles) across participants in each group (Figure 5c and f). For each distribution, we fit a single-
Gaussian and a two-Gaussian mixture model (blue and green curves, respectively). To compare these 
models, we computed the difference in the Akaike Information Criteria (ΔAIC), with positive values 
in favor of the two-Gaussian mixture, and we report the relative likelihood for the favored model. 
As expected, for the Linear+ group, in which learning of the weight of the outlier was not observed, 
the single-Gaussian model was favored (ΔAIC = −4.6; relative likelihood = 10.0). In contrast, for the 
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Figure 5. Individual differences show that outliers are either fully learned or not learned at all. (a) Web-based lifting experiment. (1) Five visually similar 
objects were clamped onto a ring, which rotated to bring the target object to the front. Participants clicked and dragged upward using their mouse or 
trackpad to stretch a spring, thereby applying a lifting force to the object. (2) When ready, they pressed a key on the keyboard with their other hand to 
release the object from the ring. The object and spring were simulated as a mass-spring-damper providing visual feedback about performance, with 
greater errors giving rise to larger oscillations, which also took longer to decay. As in the laboratory experiments, the goal was to prevent the object 
from moving after the key press. Right column shows the spring length (i.e. lift force, gray) and object position (orange) traces for an example trial in 
which the anticipatory force was less than the object weight. (b, e, h, k) Trial-by-trial anticipatory forces (formatted as in Figure 2a) for four conditions: 
two with a heavy outlier (Linear+ and Linear++, as in Figure 2) and the others with a lighter (Linear-) or much lighter (Linear--) outlier. (c, f, i, l) 
Histograms show the distribution across participants of the average anticipatory force for the outlier object at the end of the test phase. Blue and green 
curves show the fits of a single-Gaussian and a two-Gaussian mixture model, respectively. (d, g, j, m) Anticipatory forces at the end of the test phase (as 
in Figure 2b). The mean of each Gaussian component of the two-Gaussian mixture model is plotted as a green square, with standard error estimated 
via parametric bootstrap.

The online version of this article includes the following source code and figure supplement(s) for figure 5:

Source code 1. Source code for Figure 5 (web-based experiment).

Source data 1. Source data for Figure 5 (web-based experiment).

https://doi.org/10.7554/eLife.71627
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Linear++ group, the distribution was clearly bimodal, separating participants who either did or did 
not learn the outlier weight. This bimodal distribution was better captured by the two-Gaussian model 
(ΔAIC = 7.0, relative likelihood = 33.1).

For the Linear+ and Linear++ groups, the average anticipatory forces applied to the five objects 
at the end of the test phase are shown by the filled circles in Figure 5d and g. The mean of each 
Gaussian component of the two-Gaussian mixture is shown as a green square. In the Linear++ group, 
the greater of these two means (8.48 N, 95% CI = [7.98, 8.89])—representing the learners—lies almost 
perfectly on the actual outlier weight (dashed line, 8.83 N), whereas the lesser of the two means 
(5.43 N, 95% CI = [4.91, 6.08])—representing the non-learners—is very close to the family-predicted 
weight (4.91 N, 95% CI = [4.79, 5.03]). Surprisingly, although the single-Gaussian model was favored 
for the Linear+ group, one can nevertheless see two peaks in the two-Gaussian model (6.59 N, 95% CI 
= [5.58, 7.18] and 4.93 N, 95% CI = [3.66, 5.28]) that, respectively, closely match the actual weight 
(6.87 N) and family-predicted weight (4.93 N, 95% CI = [4.72, 5.13]) of the outlier. Thus, while most 
participants in the Linear+ group did not learn the outlier weight at all, there was a small subgroup 
who fully learned this weight.

The same pattern of results was observed for the Linear- and Linear-- groups (Figure 5i–j and l–m). 
For the Linear- group, the distribution of anticipatory forces for the outlier object at the end of the test 
phase were best fit by the single-Gaussian model (ΔAIC = −3.7, relative likelihood = 6.4), whereas the 
two-Gaussian model was preferred for the Linear-- group (ΔAIC = 29.3, relative likelihood = 2.3e + 6). 
For the Linear-- group, the means of the two components of the two-Gaussian model (1.05 N, 95% CI 
= [0.91, 1.22] and 4.10 N, 95% CI = [3.47, 4.68]) were, respectively, very close to the actual weight 
(0.98 N) and family-predicted weight (4.58 N, 95% CI = [4.36 4.79]) of the outlier. As was the case for 
the Linear+ group, the two-Gaussian mixture model fit to the Linear- group picked out a cluster of 
non-learners and a smaller cluster of learners, whose means (3.08 N, 95% CI = [2.75, 3.77] and 4.26 N, 
95% CI = [4.07, 4.73]) respectively correspond to the actual weight (2.94 N) and family-predicted 
weight (4.66 N, 95% CI = [4.52, 4.79]) of the outlier. Overall, the results of this large-sample web-
based experiment clearly support the object families hypothesis over the associative map hypothesis. 
At the level of single participants, the outlier was either encoded as a family member, in which case lift 
errors were ignored, or it was identified as a distinct individual, in which case lift errors drove complete 
learning of the outlier’s weight.

Notably, similar bimodality was also observed in the laboratory experiments. Revisiting these 
data, we applied the same mixture model analysis to individual participants’ final outlier learning 
(i.e. the difference between the anticipatory force produced for the outlier and the family-
predicted weight of the outlier). To obtain sufficient sample sizes to fit the models, we combined 
participants from the Linear+ and +Linear groups, and from the Linear++ and ++Linear groups. 
The two-Gaussian model outperformed the single-Gaussian model for the combined Linear+ and 
+Linear group (ΔAIC = 13.3, relative likelihood = 772.8) and the resulting clustering yielded 20 
non-learners and five learners. In the combined Linear++ and ++Linear group, the two-Gaussian 
model outperformed the single-Gaussian model (ΔAIC = 9.8, relative likelihood = 134.3), with 
the resulting clustering yielding six non-learners and 14 learners. When considering only the non-
learners in the combined Linear+ and +Linear group, the anticipatory force produced for the outlier 
at the end of the test phase (8.98 N, 95% CI = [8.50, 9.47]) was very similar to the family-predicted 
weight (9.33 N, 95% CI = [8.97, 9.68]), as expected. Strikingly, when considering the small subset 
of learners in the combined Linear+ and +Linear group, the anticipatory force for the outlier at 
the end of the test phase was 11.71 N (95% CI = [11.34, 12.08]), showing that these participants 
fully learned the actual weight of the outlier (11.77 N). The same pattern of all-or-nothing learning 
in the two clusters was found for the combined Linear++ and ++Linear group. Specifically, the 
anticipatory force for the outlier produced by non-learners (10.17 N, 95% CI = [8.94, 11.40]) was 
very similar to the family-predicted weight (10.52 N, 95% CI = [9.50, 11.54]). Note that the family-
predicted weight is slightly increased for the non-learners in these conditions. This is because the 
family shifted to partially accommodate the extreme weight of the outlier, but it was not kicked 
out of the family. The anticipatory force produced by the learners in the combined Linear++ and 
++Linear group (14.12 N, 95% CI = [13.39, 14.86]) was very similar to the actual weight of the 
outlier (14.72 N). Thus, these results strengthen our main conclusion that memories of the motor 
properties of objects are organized categorically.

https://doi.org/10.7554/eLife.71627
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Discussion
We have examined how the mechanical properties of objects we interact with are represented in 
memory. In a series of experiments, we provide evidence that ‘motor memories’ of objects are orga-
nized in terms of families. More specifically, we show that when encountering a set of new objects 
whose size and weight covary, participants have a strong propensity to encode the objects as a family. 
The consequence of this encoding is that an object that appears to be part of a previously learned 
family, but is an outlier in terms of weight, may nevertheless be classified as a family member. In this 
case, participants predict the outlier’s weight based on the family and never learn its actual weight. 
This ‘family effect’ on the outlier can be anterograde, such that the family interferes with learning the 
weight of a newly introduced outlier, or retrograde, such that an already-learned outlier weight will 
be forgotten when the family is introduced. We also show that there is a weight threshold at which a 
sufficiently deviant outlier will ‘escape’ the family and be learned as an individual object. Moreover, we 
show that the error experienced when lifting an outlier that is encoded as a family member updates 
the estimated weights of the other family members. However, if the outlier has been learned as an 
individual, such updating is not observed. Additionally, we show that the threshold that determines 
whether an outlier is classified as an individual or a family member depends on recent sensorimotor 
experience.

Two broad approaches have been used in motor control to examine how dynamics, experienced 
during arm and hand movements, are represented in memory. The first approach involves applying 
novel dynamics, or ‘force fields’, to the hand. Typically this has been done by asking participants to 
move a handle, which is attached to a robotic manipulandum and visually represented as a cursor, 
between visual targets located in a horizontal plane. This work has focused on the reference frame 
in which individual force fields are represented (Shadmehr and Mussa-Ivaldi, 1994; Krakauer et al., 
2000; Malfait et al., 2002; Davidson et al., 2005; Berniker et al., 2014), and on contextual factors 
that enable people to learn two different force fields that apply forces in opposite directions (Davidson 
et al., 2005; Brashers-Krug et al., 1996; Gandolfo et al., 1996; Krakauer et al., 1999; Karniel and 
Mussa-Ivaldi, 2002; Tong et al., 2002; Caithness et al., 2004; Osu et al., 2004; Nozaki et al., 2006; 
Howard et al., 2008; Addou et al., 2011; Howard et al., 2012; Howard et al., 2013; Sheahan et al., 
2016; Heald et al., 2018; McGarity-Shipley et al., 2020). Although force fields may, arguably, be 
viewed as objects (at least in some contexts; Cothros et al., 2006; Cothros et al., 2009; Kluzik et al., 
2008), this previous work has not examined how memories of multiple objects might be organized. 
The second approach to investigating how dynamics are represented in memory focuses on weight 
prediction when lifting objects, which is critical for dexterous manipulation. This work has shown that 
people can exploit learned associations, or ‘priors’, between size and weight, and between material 
and weight, to estimate the weight of an object (Gordon et al., 1991; Gordon et al., 1993; Baugh 
et al., 2012; Cole, 2008; Buckingham et al., 2009). Although such priors are often useful, for many 
objects that we interact with they do not provide accurate weight predictions. Importantly, once an 
object has been lifted, people can form a long-lasting ‘object-specific’ memory of the object’s actual 
weight (Gordon et al., 1991; Gordon et al., 1993; Baugh et al., 2012; Johansson and Westling, 
1988; Flanagan et al., 2001; Flanagan et al., 2008). However, the question of how motor memories 
of the myriad objects we interact with are represented and organized has not been addressed.

Where in the brain might motor memories of objects be stored? According to a well-known neuro-
anatomical framework for understanding visual processing in the primate brain, the dorsal visual 
pathway, in parietofrontal cortex, supports visual processing for action, whereas the ventral visual 
pathway, in ventrotemporal cortex, supports visual processing for perception (Goodale and Milner, 
1992). This framework arose primarily from studies examining reaching and grasping movements 
directed towards objects, where the relevant object properties (e.g. size, shape, location) can be 
directly appreciated through vision. The control of these actions involves mapping these visual features 
onto motor commands to move and shape the hand (Salinas and Abbott, 1995; Arbib, 1981; Jean-
nerod, 1981; Pouget and Snyder, 2000), and there is abundant evidence that parietofrontal cortex is 
engaged in such computations (Jeannerod et al., 1995; Rizzolatti and Luppino, 2001; Castiello and 
Begliomini, 2008; Grafton, 2010; Battaglia-Mayer and Caminiti, 2018). However, as emphasized 
above, skilled object manipulation requires knowledge of mechanical properties, which cannot be 
directly appreciated through vision and must instead be estimated based on object memories linking 
visual and mechanical properties. Some evidence suggests that such memories could involve parietal 
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and premotor regions of the dorsal pathway (Chouinard et al., 2005; Jenmalm et al., 2006; Choui-
nard et al., 2009; Freedman and Assad, 2009; van Nuenen et al., 2012). However, the maintenance 
of durable memory representations of objects is more commonly associated with the ventral visual 
pathway (Bruce et al., 1981; Ungerleider and Haxby, 1994; Riesenhuber and Poggio, 1999; Grill-
Spector et al., 2001; Erez et al., 2016). Given that category selectivity is a well-established organiza-
tional feature of ventrotemporal cortex (Kriegeskorte et al., 2008; Grill-Spector and Weiner, 2014), 
it seems plausible that the ventral pathway also plays a role in categorizing the mechanical properties 
of objects. Consistent with this view, it has been shown that, in the context of lifting, object weight is 
represented in the lateral occipital complex (LOC) (Gallivan et al., 2014), an object-selective ventral 
region also known to be active during reaching and grasping (Culham et al., 2003; Monaco et al., 
2014). On the other hand, LOC does not appear to represent object mass that can be inferred when 
simply viewing objects interacting (Schwettmann et al., 2019).

Beyond the dorsal and ventral visual pathways, several other candidate brain regions may be 
involved in learning object families in the service of dexterous manipulation. For instance, predictive 
encoding of object weight has also been demonstrated in single-cell recordings of Purkinje neurons 
(Allan et  al., 2015; Mason et  al., 2006), which may arise from cerebellar internal models of the 
dynamics of different types of objects (Wolpert and Flanagan, 2001; Imamizu et al., 2000; Bursztyn 
et al., 2006). Likewise, there is considerable evidence from human imaging studies and non-human 
primate neurophysiological studies for the role of prefrontal cortex and the striatum in perceptual 
category learning (Freedman et al., 2001; Ashby and Maddox, 2005; Reber et al., 1998; Vogels 
et al., 2002; Seger and Miller, 2010; Antzoulatos and Miller, 2011; Antzoulatos and Miller, 2014; 
Bowman and Zeithamova, 2018; Raz and Saxe, 2020), but it remains unknown whether these areas 
are also recruited in organizing objects based on their learned motor properties.

Current theories of motor learning often focus on graded generalization of learning across various 
stimulus and motor parameters as a revealing feature of the underlying computations (Krakauer et al., 
2000; Thoroughman and Shadmehr, 2000; Donchin et al., 2003; Ingram et al., 2017). In particular, 
graded patterns of generalization have been taken as evidence that motor learning fundamentally 
involves associating contextual features of a movement with the target motor parameters in a contin-
uous multi-dimensional space, often termed an associative map. The theoretical significance of our 
study is that it provides multiple, converging pieces of evidence for a fundamentally different type of 
organization—motor memories of objects are organized categorically, into families. Our key result is 
the family effect itself, wherein an outlier object is persistently encoded as a family member, despite 
greatly deviating from its expected weight. In contrast, the prediction of an associative map account 
is that these outliers would eventually be learned, since they are visually and haptically discriminable 
from the family (as shown by the accurate learning in the Uncorr+ condition).

In our experiments, we generally observed incomplete learning of the outlier when averaging 
anticipatory forces across participants. At first glance, partial learning could be explained by an asso-
ciative map model where the neighboring objects reduce the estimated weight of the outlier by 
local generalization. However, seemingly partial learning is also consistent with the object families 
hypothesis. In particular, partial learning in the group averages could result from averaging together a 
subgroup of highly accurate learners with a separate subgroup of complete non-learners, who differ in 
their threshold for reclassifying the outlier as an individual. This latter interpretation was confirmed by 
our large-sample, web-based experiment, which revealed that individual differences in outlier learning 
followed an all-or-nothing pattern. At the end of the experiment, participants had either learned to 
classify the outlier as a unique individual and accurately estimated its weight, or they still encoded it 
as a family member and incorrectly estimated its weight based on the family representation.

We found remarkably similar results in the laboratory and web-based tasks. These two motor tasks 
are similar in that they both involve translating sensory information into continuous motor commands 
to achieve an action goal. However, the precise nature of the sensory information used for control 
differs between the tasks, with the laboratory task primarily relying on haptic feedback and the web-
based task relying on visual feedback. Our web-based task required participants to map their weight 
predictions onto an arm movement that set the visual length of a spring. This ‘visual’ lifting is similar to 
many motor tasks in which the initial conditions of an interaction are likewise adjusted based on visual 
feedback; for example, when aiming in archery, lining up a putt in golf, or pulling back the plunger to 
launch a pinball. In these examples, the motor error is also provided strictly through visual feedback 
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as in our web-based task. The fact that we observe similar categorical encoding in both the laboratory 
task and the web-based task demonstrates the generalizability of our findings.

Our generalization results also favor a categorical organization of motor memory over a contin-
uous, associative map. We found that the way that the outlier object was classified—either as a family 
member or an individual—had a dramatic effect on outlier-to-family generalization. When the outlier 
object was classified as a family member, strong generalization was observed, whereas when it was 
classified as an individual, generalization was substantially reduced. This qualitative change in general-
ization was observed across participants in different conditions, as well as within the same participants 
who, during learning, reclassified the outlier from a family member to an individual. These results 
strongly support the idea that motor memories of objects are organized categorically, rather than 
continuously, which would predict graded generalization as a function of error magnitude and sensory 
similarity. By eliciting separate visual classification of the outlier and the family objects, we were able 
to suddenly ‘shut off’ inter-object error generalization.

We also found that when the weight of the outlier was gradually increased from 1.2 to 1.5 kg, partic-
ipants generally failed to learn its weight, even though it reached the same weight as the outlier that, 
when introduced abruptly, was learned. One interpretation of this finding is that first experiencing the 
1.2 kg outlier, and then experiencing incrementally increasing weights, broadened the category by 
increasing the within-category variability, as shown in perceptual and conceptual categorization (Rips, 
1989; Huttenlocher et al., 2000; Clayards et al., 2008). Another possible account for this finding is 
that category labels are ‘sticky’, and that once the test object was labeled as a family member, there 
was resistance to relabeling it as an individual, similar to the hysteretic effects reported in perceptual 
categorization (Williams et al., 1986; Hock et al., 1993; Poltoratski and Tong, 2014). However, it 
seems plausible that the 1.5 kg outlier was initially labeled as a family member as participants’ antici-
patory forces on the first lift of this object were based on the density of the family. If so, then relabeling 
occurred when this extreme outlier was learned, arguing against the ‘stickiness’ account. On the other 
hand, the stickiness hypothesis could account for the results we observed when the outlier weight was 
initially set to 1.5 kg and then gradually decreased to 1.2 kg. In this case, participants initially learned 
the extreme outlier and continued to accurately predict its weight—and hence to categorize it as an 
individual—even as its weight decreased to a level that, when introduced abruptly, was not learned. 
Alternatively, it is possible that learning the extreme 1.5  kg outlier as a distinct individual object 
caused the category boundary for the training objects to contract, such that a 1.2 kg outlier remained 
outside the learned family, perhaps because the individuated outlier effectively forms a competing 
category. Note that work on sensorimotor adaptation has shown that participants do not become 
aware of visual or force perturbations that are introduced gradually (Kagerer et al., 1997; Malfait 
and Ostry, 2004; Klassen et al., 2005; Saijo and Gomi, 2010; Criscimagna-Hemminger et al., 2010; 
Roemmich and Bastian, 2015). Since participants adapt to these gradually increasing perturbations, 
they never see large errors, which presumably explains why they do not become aware of the pertur-
bation. In contrast, in our experiment with a gradually increasing outlier weight, participants did not 
adapt (i.e. they continued to predict the outlier weight based on the family density). Thus, they expe-
rienced larger and larger errors, ultimately experiencing the same error that drove learning when the 
1.5 kg outlier was introduced abruptly. The reason that participants learned the 1.5 kg outlier when 
introduced abruptly, but not when introduced gradually, may be that they are sensitive to the change 
in error, as opposed to error per se.

Although the formation of motor memories has historically been viewed as a largely implicit 
process, recent research on motor learning and adaptation has emphasized the role of explicit 
processes. For example, when reaching under a visuomotor rotation, participants often learn to use 
an explicit re-aiming strategy to reduce movement errors (Mazzoni and Krakauer, 2006; Anguera 
et al., 2010; Fernandez-Ruiz et al., 2011), and can quickly recall and implement this strategy when 
re-exposed to the rotation at a later time (Taylor et al., 2014; Huberdeau et al., 2015). In the context 
of object manipulation, it is clear that people often have explicit knowledge of the weights of objects 
they interact with. That is, if asked, people can provide an estimate of the weight of an object. When 
lifting familiar objects, these estimates can be quite accurate, although research on weight illusions 
shows that these estimates are biased by expected weight (Flanagan and Beltzner, 2000; Flanagan 
et al., 2008). However, whether and, if so, how explicit knowledge is used when generating lift forces 
is unclear. In the current study, we did not ask participants to provide verbal estimates of the weights 
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of the objects before lifting them. We suspect that these estimates would have been consistent with 
the actual forces produced when lifting. Requiring participants to provide such estimates, however, 
may also alter the category boundary used to classify objects as family members or individuals. The 
use of explicit knowledge is believed to require working memory and previous research has shown 
that greater working memory resources are required when lifting unusually weighted objects than 
when lifting normally weighted objects (Baugh et al., 2016; Flanagan et al., 2008). Based on these 
findings, we speculate that when participants lift objects that are encoded as a family, this categor-
ical encoding is largely implicit, requiring little to no explicit processing. In contrast, we suspect that 
explicit processing does contribute to encoding an object that is similar in appearance to the family 
as an outlier. Likewise, explicit processing may be required when learning the weights of multiple indi-
vidual objects, as in our Uncorr+ condition. In this condition, response times were significantly greater 
than the Linear conditions, consistent with the notion that explicit processes were engaged. In general, 
as people become more experienced at classifying objects into separate families, the contribution of 
explicit knowledge will likely diminish and lifting will become more implicit and automated. As noted 
above, object manipulation tasks engage multiple sensorimotor and cognitive processes, including 
categorization, and can depend on implicit and explicit memories. From our perspective, any form of 
memory engaged in a motor control task can be considered as a ‘motor memory’, whether that is an 
explicit declarative memory or an implicit procedural memory.

By showing that dexterous object manipulation relies on learned representations of categories 
(and individuals), our findings open the door for future work that connects theories of human category 
learning, developed in the context of perception and cognition, with theories of motor control. The 
vast literature on category learning has identified and debated a variety of key issues, including why 
certain categorizations are harder to learn than others (Ashby and Maddox, 2005; Shepard et al., 
1961), whether category knowledge is encoded using prototype, exemplar, or decision-bound repre-
sentations (Posner and Keele, 1968; Medin and Schaffer, 1978; Ashby and Townsend, 1986), and 
how the relative contributions of explicit ‘rule-based’ and implicit ‘information-integration’ processes 
are modulated by the relevant perceptual dimensions and category structure of a stimulus domain 
(Ashby and Maddox, 2005; Ashby et al., 1998; Ashby and Maddox, 2011). A detailed review of 
how the pertinent findings from this literature might inform our understanding of dexterous object 
manipulation (and vice versa) is well beyond the scope of this article, but it is nonetheless clear 
that there is a pressing need for greater attention to these connections. However, focusing more 
narrowly on accounting for the present findings, it is notable that many existing process-level (i.e. 
trial-by-trial) models of category learning posit a mechanism that allows for the creation of a new 
category in memory when an observation deviates sufficiently from previously learned categories 
(Ashby and Maddox, 2005; Hartigan, 1975; Carpenter and Grossberg, 1987; Clapper and Bower, 
1991; Anderson, 1991; Love et al., 2004; Vanpaemel et al., 2005). These various treatments can 
all be viewed as instances of non-parametric Bayesian models that leverage the hierarchical Dirichlet 
process, a statistically principled approach to clustering data into a theoretically infinite number of 
components (Teh et al., 2005; Griffiths et al., 2007). A recent motor control model has been devel-
oped based on this approach (Heald et al., 2020). However, at present this model cannot account for 
our results because there is no mechanism through which the visual properties of the objects—which 
are encoded as discrete cues—can be linked together to form a family.

In general, learning a family of objects based on covarying size and weight, as in this study, is 
presumably just one example of a more general tendency to compactly encode the covariability of 
observable sensory features and latent mechanical properties. Previous work has shown that people 
can learn more complex ‘structures’ in motor control tasks (e.g. visuomotor rotations and skews), but 
has not distinguished between categorical and associative representations (Braun et al., 2009; Braun 
et al., 2010). Categorical encoding amounts to carving the sparse, high-dimensional space of senso-
rimotor information into circumscribed, lower-dimensional object categories, providing a number 
of benefits. First, it allows for more robust interpolation and extrapolation from past sensorimotor 
experience by shoehorning ambiguous new items into predictable categories. Second, it reduces the 
temporal costs associated with specifically identifying objects, which would involve deeper traversal 
into object memory. Third, when working with multiple objects from the same family, this strategy 
conserves working memory resources that would otherwise be expended on object individuation. 
Lastly, categorical organization also conserves long-term memory resources by maintaining only 
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abstract descriptions of relevant family structure, rather than a detailed map of all sensorimotor prop-
erties, helping to address the curse of dimensionality. In contrast, although learning about individual 
objects may increase accuracy in some circumstances, this would come at the cost of significantly 
increased demands on attention (for visual recognition), cognitive control (for switching between 
memories), and memory (for storage). Therefore, in combination with context-sensitive reflexes 
and other rapid corrective mechanisms, a categorical memory of object properties affords tradeoffs 
between accuracy and memory that can be balanced as needed to support our unmatched ability to 
skillfully manipulate many different kinds of objects.

Materials and methods
We first describe the in-laboratory experiments before describing the web-based experiments.

Laboratory experiments
Participants
A total of 80 participants (42 males, 38 females) aged 18–45 years old (median 24) were recruited for 
the laboratory experiments. Participants were right-handed according to the Edinburgh handedness 
questionnaire, and reported that they had normal or corrected-to-normal vision and no prior diag-
nosis of a movement disorder. They were compensated at a rate of $17 per hour. All experiments 
were conducted in accordance with the 1964 Declaration of Helsinki, following protocol approved by 
the Columbia University Institutional Review Board. Written informed consent was obtained from all 
participants prior to their participation.

Apparatus
Experiments were performed using a 3BOT three-dimensional robotic manipulandum and an Oculus 
Rift DK2 (Menlo Park, CA) virtual reality headset, as well as a 2-button USB response pad (The Black 
Box ToolKit Ltd., Sheffield, UK). The position of the 3BOT handle was measured using optical encoders 
sampled at 5 kHz, and torque motors allowed forces (also updated at 5 kHz) to be generated on the 
handle. Participants sat on a height-adjustable stool in front of a tabletop workspace and grasped 
the 3BOT handle with their right hand (Figure 1a). The virtual reality headset was rigidly fixed to an 
aluminum crossbeam and angled downwards by 30°. Stereoscopic visual stimuli were rendered on the 
headset using custom OpenGL routines and the Psychophysics Toolbox (Kleiner et al., 2007). Audi-
tory cues were provided through Sennheiser HD201 (Old Lyme, CT) over-ear headphones.

Task
In our object ‘lifting’ task, the participant generates an upward force on an object that is initially fixed 
to the surface beneath it, such that the object cannot move. The participant then presses a button, at 
which time the surface disappears, releasing the object so that it is then free to move. The goal for the 
participant is to match the upward force to the weight of the object so that the object does not move 
when it is released. Participants performed this lifting task with five cylinders of equal radius (4.61 cm), 
but of different heights (6, 7.5, 9, 10.5, and 12 cm), leading to five equally spaced volumes (400, 500, 
600, 700, and 800 cm3). Each cylinder was shaded, from smallest to largest, between orange and red 
according to the Munsell color system (Hue: 10 R, Value/Chroma: 3/10, 4/12, 5/14, 6/16, and 7/16). 
All objects were visible throughout the task, except during rest breaks. The objects were positioned 
evenly around the edge of a gray, semi-transparent carousel with a radius of 20 cm (Figure 1b). The 
weight of each object varied across the experimental conditions (see below).

Before each trial, the 3BOT moved the participant’s hand passively to a start position 11 cm in front 
of and 19 cm below the cyclopean eye (in gravity-oriented space) and clamped it there by a simulated 
stiff spring (spring constant: 4000 N m−1, damping coefficient: 2 N m s−1, both acting in all directions). 
The participant saw a stereoscopically rendered view of the five objects and the circular carousel 
(Figure 1b). The carousel rotated smoothly (750 ms) to bring a target object to the front and a 500 ms 
tone then signaled the start of the trial. Note that at this point, the hand (i.e. the center of the 3BOT 
handle) was located at the center of the base of the target object. The participant then generated 
an upward lifting force on the object (i.e. against the simulated stiff spring) attempting to match its 
weight. When ready, the participant pressed a button with their left hand that caused a portion of the 
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carousel below the object to open, thus releasing the object so that it was free to move. The phys-
ical interaction between the hand and the object was then simulated haptically using the 3BOT. We 
simulated the object as a point-mass acted upon by gravity and attached by a stiff, damped spring 
(acting in all three dimensions) to the center of the handle. The spring constant was 4000 N m–1 and 
the damping coefficient was 2 N m s−1 with gravity set at −9.81 m s–2. We updated the location of the 
object both haptically and visually and generated the appropriate forces on the hand. This method 
produces a stable, compelling haptic percept of a handheld inertial mass. If the anticipatory force was 
more or less than the weight of the object then the handle would move upward or downward, respec-
tively, until corrective motor commands re-stabilized the arm posture. To encourage accurate perfor-
mance, thin horizontal gray bars (2 mm radius, purely visual and not haptic) were visible just above and 
below the target object from the start of the trial (not depicted in Figure 1b). If the object remained 
between the horizontal bars for 500 ms, the bars disappeared, and the participant completed the trial 
by raising the object at least 3 cm above the start position and replacing it on the carousel, where 
a virtual haptic surface was now simulated to allow full unloading of lift forces prior to the next trial. 
However, if the object crossed one of the bars, it turned red and a white-noise audio burst was played. 
The object had to be brought back within the bars before they would disappear, and only then could 
the participant complete the trial by raising and replacing the object on the carousel. The distance 
of the bars from the top and bottom edges of the object (i.e. the amount of tolerated object move-
ment) varied according to the participant’s performance: the demarcated region became 1 mm larger 
following an trial where the object crossed a bar, up to a maximum tolerated deviation of ±13 mm 
(this was also the initial width), and became 1 mm smaller after five consecutive trials where the object 
stayed within the bars, down to a minimum tolerated deviation of ±2 mm.

Feedback was also provided in the form of a per-trial score that depended on the absolute error 
between the anticipatory force at the moment of the button press and the required force to support 
the object, with score = max(0, 100–13*|error|). The participant’s cumulative score was displayed 
throughout the experiment. The five highest-scoring previous participants’ scores from the same 
condition were displayed in a leaderboard beside their own score. This leaderboard was initially 
seeded based on the score of a pilot run, which was multiplied by 1, 0.9, 0.8, 0.75, and 0.7 to produce 
five scores. These seed scores were erased one by one as data were collected from the first five partic-
ipants in each condition.

Paradigm
Linear+ condition
Fifteen participants (of an initial sample of 30) were randomly assigned to the Linear+ condition; 
the other fifteen were assigned to the Uncorr+ condition (see below). The training objects (the two 
smallest and two largest objects by volume) weighed 600, 750, 1050, and 1200 g, respectively, corre-
sponding to a constant density of 1.5 g cm−3 (Figure 1d). The test object (or ‘outlier’) was the mid-size 
cylinder and weighed 1200 g, corresponding to a density of 2.0 g cm−3.

All participants were informed that the purpose of the experiment was to test their ability to learn 
and recall the weights of a novel set of objects. The Linear+ condition began with a 120-trial training 
phase in which the participant interacted only with the four training objects. The order of presen-
tation was pseudo-randomized in cycles where each object was presented once before any object 
was repeated, and subject to the additional constraint that the first object presented in one cycle 
could not be the same as the last object presented on the previous cycle. Following training, the test 
object (also called the outlier object when introduced amongst a linear object family) was introduced 
for a 200-trial test phase. During the test phase, in each five-trial cycle, the test object was always 
presented first, followed by the four training objects in pseudo-random order, but subject to the 
additional constraint that for every four cycles, each of the four training objects would be presented 
immediately after the test object (i.e. on the second trial of the cycle) exactly once.

To reduce the effects of fatigue, participants were required to take occasional 30 second breaks. 
During these breaks, participants stopped holding the 3BOT handle, came out of the virtual reality 
headset, and were encouraged to stretch their right arm and hand. These breaks occurred after trials 
60, 120, and 200. The experiment had a total of 320 trials and lasted approximately 45 minutes.

Prior to the experiment, the experimenter demonstrated the task by performing 10 or 15 trials of 
a familiarization condition while the participant watched. The visual scene was displayed on a nearby 
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monitor so the participant could follow along. The participant then completed 30 trials of task familiar-
ization, where the object stimuli were three spheres (5 cm radius) that were blue, red, and green (7.5B 
6/8, 7.5 R 6/18, 7.5 GY 6/10) and weighed 500, 900, and 1300 g, respectively. During task familiar-
ization, the experimenter could choose to display or hide a bar graph that showed the real-time load 
force on the handle. This visual aid helped participants calibrate to the range of forces they would be 
asked to produce in the experiment, and prevented them from producing unnecessarily large forces. 
Approximately ten familiarization trials were performed with full view of this visual feedback, followed 
by approximately ten trials with short glimpses of the feedback prior to the button press, followed by 
approximately ten trials without the visual feedback as in the actual experiment.

Uncorr+ condition
Fifteen participants were randomly assigned to the Uncorr+ condition. The Uncorr+ condition was 
similar to the Linear+ condition, except the four training object weights (600, 750, 1050, and 1200 g) 
were assigned randomly to the four training objects (Figure 1f), subject to the constraint that the 
absolute value of the Pearson correlation coefficient between volume and mass could not exceed 0.3. 
The test object had the same weight as in the Linear+ condition.

Linear++ condition
In the Linear++ condition, we recruited participants until we obtained a sample size of 9 after excluding 
non-learners. The Linear++ condition was identical to the Linear+ condition, except the outlier object 
weighed 1500 g (rather than 1200 g; Figure 1e).

+Linear condition
In the +Linear condition, we recruited participants until we obtained a sample size of 11 after excluding 
non-learners. In the +Linear condition, the experiment began with a 30-trial training phase where 
participants interacted only with the test object which weighed 1200 g. This was followed by a 200-
trial test phase identical to the Linear+ condition in which all five objects were lifted in each cycle. This 
was followed by the 1:1 phase, which was a block of 10 cycles where, in each cycle, the test object was 
presented four times and each of the four family objects was lifted once, for a total of ight trials per 
cycle. To limit the number of consecutive presentations of the test object in the 1:1 phase, we pseudo-
randomized the trial sequence such that consecutive presentations of the test object occurred exactly 
13 times, while presentations of the test object with one, two, or three intervening trials from the 
last presentation of the test object occurred exactly 15, 8, and three times, respectively. The +Linear 
condition had a total of 310 trials and rest breaks occurred after trials 90 and 190.

++Linear condition
The ++Linear condition was identical to the +Linear condition except the outlier object weighed 
1500 g (rather than 1200 g).

Linear➚ condition
In the Linear➚ condition, we recruited participants until we obtained a sample size of 9 after excluding 
non-learners. The Linear➚ condition was identical to the Linear+ condition except that the outlier 
object’s weight (initially 1200 g) was iteratively increased by 50 g on trials 221, 261, 301, 341, 381, and 
421, up to a maximum of 1500 g. The length of the test phase was also increased to 340 trials, leading 
to a total of 460 trials. Rest breaks occurred after trials 60, 120, 220, 300, and 380.

Linear➘ condition
The Linear➘ condition was identical to the Linear➚ condition except that the outlier initially weighed 
1500 g and its weight was iteratively decreased by 50 g to 1200 g.

Analysis
Data preprocessing
The anticipatory force was taken as the average force applied in the upward direction over the final 
ten samples (10 ms) of the clamp phase (Figure 1c, trial phase 2). Response times were measured 
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as the duration from trial onset (defined as the beginning of trial phase 2, when the object carousel 
stopped rotating) to the button press.

We excluded 322 anticipatory forces (1.15%) that were less than or equal to 1 N (typically due 
to an accidental button press) or more than 3.5 scaled median absolute deviations away from the 
median anticipatory force applied by a given participant for a given object. Similarly, we excluded 
392 response times (1.40%) that, following a log transformation, were more than 3.5 scaled median 
absolute deviations from the median log-transformed response time. We then imputed the mean 
anticipatory force or reaction time produced on non-outlying trials by other participants for the same 
object, cycle, and condition.

We also excluded participants (and hence recruited additional participants) who failed to learn the 
weights of the training objects, as the goal of the experiment was to observe how learning of a new 
object is affected by existing knowledge of object weights. Non-learners were defined as those whose 
anticipatory forces during the final 15 cycles of the training phase did not show a highly significant (α 
= 0.01) positive correlation with the weights of the objects. In the Uncorr+ group, three participants 
were excluded by this criterion. In the Linear+ and Linear➚ groups, one participant from each group 
was excluded by this criterion. This criterion was not applied in the +Linear and ++Linear groups 
because the training phase involved only the test object.

Statistical analysis
In most motor learning experiments, there are between eight and twelve participants per experi-
mental group. This sample size provides sufficient power to detect the large effects typical of motor 
learning experiments, where the effect of interest is observed in most if not all participants. As this 
was a new experimental paradigm, in the first two experimental groups (Linear+ and Uncorr+) we 
recruited a sample size of fifteen. In the Uncorr+ group, we observed significant learning of the outlier 
object with a large effect size (Cohen’s d = 1.17). Based on this value, we adopted a sample size of 
nine for the Linear++, Linear➚, and Linear➘ groups, aiming to achieve a statistical power exceeding 
0.90 in our one-tailed t-tests of outlier learning. In the +Linear and ++Linear conditions, we could not 
exclude individual participants as non-learners as in the other conditions (see above). We therefore 
estimated a slightly reduced effect size for sample size estimation (Cohen’s d = 1.00), leading us to 
adopt a sample size of eleven in order to achieve at least 0.90 power in these groups. Post-hoc power 
analyses of groups with significant outlier learning confirmed that we achieved the desired power 
(Uncorr+: 0.98, Linear++: 0.92, ++Linear: 0.96, Linear➘: 0.99).

In the Linear+, Linear++, Uncorr+, Linear➚, and Linear➘ groups, learning of the training set at the 
end of the training phase was measured using the Pearson correlation between actual object weight 
and anticipatory force on trials between trial cycles 23 and 30. The Fisher z-transformation was used 
to compute 95% confidence intervals.

To assess learning of the test object relative to the training objects, we compared the anticipatory 
force for the test object to the force that would be expected based on the anticipatory forces for the 
four training objects (i.e. the ‘family-predicted’ weight). To do this, we fit a linear regression to the 
anticipatory forces for the training objects as a function of volume in the final 16 trial cycles of the 
test phase. We calculated the family-predicted weight of the test object based on the regression and 
the test object’s volume. Note that because the test object’s volume was always in the middle of the 
training objects, the family-predicted weight is equivalent to the mean anticipatory force produced 
for the four training objects, hence the logic is also appropriate for the Uncorr+ condition. We used 
one-tailed t-tests to evaluate the null hypothesis that the test object weight would not be learned. 
One-tailed tests are justified because failure to learn the test object weight is a directional hypothesis, 
which includes the case where the anticipatory force for the test object does not differ from the family-
predicted weight, as well as the case where it is less than the family-predicted weight. In the Linear➚ 
and Linear➘ groups, we also conducted this analysis for the final four trial cycles of the initial portion 
of the test phase during which the test object weight did not change.

In the first experiment, we analyzed how lifting the test object generalized to the training objects 
in the subsequent trial (Figure 2g–i). For this analysis, we focused only on trials that immediately 
followed a lift of the test object (i.e. the second trial of each trial cycle), as any generalization would 
only be reduced in the third, fourth, and fifth trials of each cycle due to washout from lifting the 
training objects. Generalization was measured by comparing the anticipatory force on these trials, 
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during either the early test phase (trial cycles 31–34) or the end of the test phase (trial cycles 55–70), 
with the average anticipatory force at the end of the training phase (trial cycles 27–30), and expressed 
as a percentage of the difference between the actual and expected weight of the test object (2.94 N 
in Linear+ and Uncorr+ versus 5.89 N in Linear++). Due to the constrained trial order in the test 
phase (see Paradigm), all four training objects contribute equally to this analysis. For each group, we 
conducted two-tailed t-tests on this generalization metric in each portion of the test phase, and also 
on the change in this generalization metric from the early portion to the late portion of the test phase.

In the first experiment, we conducted a two-way repeated-measures ANOVA on log-transformed 
response times, with factors Group (two levels: Linear+ combined with Linear++ versus Uncorr+) and 
Epoch (four levels: trial cycles 1–15, 16–30, 31–50, 51–70), and performed four follow-up one-tailed 
t-tests to examine whether the main effect of Group was present in all four Epochs individually. In each 
of these groups, we also tested for single-trial generalization at the start (first four cycles) and the end 
(final sixteen cycles) of the test phase, as well as the change from start to end, using two-tailed t-tests. 
In the Linear++ group, where we observed learning of separate categories, we analyzed whether 
response times were longer on trials involving a category switch (i.e. trials with the test object or trials 
immediately after the test object). Not surprisingly, participants in our experiments took longer to 
generate larger anticipatory forces. To account for this uninteresting component of the response time, 
we fit a linear regression to response time as a function of object weight using data from ‘non-switch’ 
trials in the Linear+ and Linear++ conditions (i.e. excluding trials with the test object and immediately 
subsequent trials). This allowed us to determine the predicted response time, based solely on weight, 
which we then compared to the actual response time to test for additional temporal costs (e.g. asso-
ciated with switching categories). We found a significant slope of 26.2 ms per Newton of anticipatory 
force. Thus, when analyzing test object trials in the Linear++ condition, we computed the predicted 
response time as the average response time for the family objects in ‘non-switch’ trials during the test 
phase plus 154 ms, as the test object was 5.89 N heavier than the average family object weight. When 
analyzing trials immediately after the test object, we computed the predicted response time as the 
average response time for the family objects in ‘non-switch’ trials during the test phase, as the object 
weight in these trials was, on average, equivalent to the average family object weight.

We also directly compared the Linear➚ with the Linear++ group, and the Linear➘ with the Linear+ 
group, using two-tailed, two-sample t-tests on the anticipatory force for the test object in the final 16 
trial cycles of the test phase, when the outlier weight was similar for each pair of groups.

Web-based experiment
For the web-based experiments, we obtained complete data associated with 196 unique Amazon 
Mechanical Turk Worker IDs (135 males, 60  females, 1 non-binary) aged 19–70  years old (median 
31.5). These workers were paid $1.50 upon successful submission of a complete dataset, and received 
an additional bonus payment determined by dividing their final score by 100 (max bonus = $0.01/trial 
= $1.60). Of these participants, 185 individuals reported using their right hand to control their input 
device and 11 reported using their left hand. They were not screened for visual impairment or prior 
diagnosis of movement disorder.

The web-based experiments were designed so that they could only be completed by individuals 
using the Google Chrome web browser, in full-screen mode and with pointer lock enabled, on a 
computer with graphics hardware that supports WebGL 2.0, and with a mouse (172 participants) or 
trackpad (24 participants). Dimensions of the full-screen window displaying the task ranged from 
(1093, 576) to (2560, 1410) pixels; actual monitor sizes were not collected.

The objects in the web-based experiments had radii of 2 cm and heights of 3, 4, 5, 6, and 7 cm. 
They were arranged around a gray metallic ring, had springs attached to their tops, and were rendered 
via perspective projection to a camera 40 cm behind and 10 cm above the top-center of the foremost 
object. Since there was no haptic interface, feedback about object weight was provided through 
vision of the simulated dynamics of a spring-mass-damper system (Figure  5a). In the web-based 
Linear++, Linear+, Linear-, and Linear-- conditions, the training objects always weighed 300, 400, 600, 
and 700 g, while the test object weighed 900, 700, 300, or 100 g, respectively.

Trials of the web-based experiments were similar to the laboratory experiment, but simplified. 
There were no auditory cues, haptic feedback, bars above and below the object, or a leaderboard. 
Each trial consisted of two main phases (Figure 5a): the clamp phase (trial phase 1), in which the 

https://doi.org/10.7554/eLife.71627


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Cesanek et al. eLife 2021;10:e71627. DOI: https://doi.org/10.7554/eLife.71627 � 23 of 29

participant clicked and dragged to stretch the spring on top of the object, and the release phase, 
which was triggered by pressing the Shift key with the spring stretched to a certain distance, and 
portrayed a simulation of the spring-mass-damper dynamics that would result from the initial condi-
tions created by the spring length (spring constant: 1, damping coefficient: 0.01). The per-trial score y 
was related to the spring-length error in centimeters e by y = max(0, 1−e2/2.25)*100. The duration of 
the release phase in seconds t (i.e. the inter-trial interval, which serves as a time penalty) was modu-
lated according to the spring-length error: t = min(0.4*e2, 12). This time penalty was correlated with, 
but not exactly equal to, the decay time of the oscillations in the visual feedback of the spring.

Participants received task familiarization through a single, repeatable demo trial that provided an 
instructed walkthrough of a single trial with the largest of the four training objects. The total number 
of trials was reduced by half compared to the in-laboratory Linear+ condition, with 60 training trials 
and 100 test trials. Rest breaks were not required.

The anticipatory force was measured as the amount of force exerted on the object by the visually 
simulated spring on the final frame of the clamp phase (Figure 5a, trial phase 1). Non-learners were 
defined as those whose anticipatory forces for the training objects during the final five cycles of the 
training phase or the final five cycles of the test phase did not show a mild positive correlation with 
the simulated weights (α = 0.10). Forty-seven participants were excluded from the four groups of the 
web-based experiment by this criterion, resulting in sample sizes of 37, 36, 37, and 39 individuals, 
respectively, in the Linear++, Linear+, Linear-, and Linear-- groups. This high rate of exclusion was not 
due to task difficulty, but to the fact that many participants in the web-based experiment adopted 
strategies that minimized effort at the expense of time and accuracy. Additionally, we excluded as 
outliers any anticipatory forces that were more than four scaled median absolute deviations from the 
median anticipatory force applied by a given participant to a given object, resulting in 1398 exclusions 
(4.46%).

To estimate required sample sizes for the web-based experiments, we simulated bimodal distri-
butions of ‘learners’ and ‘non-learners’ with different sample sizes and calculated the proportion of 
simulations in which the two-Gaussian mixture model outperformed the single Gaussian model. We 
estimated that the learner and non-learner group means would be separated by 3.5 standard devia-
tions, and we assumed that learners and non-learners are normally distributed, have equal variance, 
and occur in equal proportions. We found that a sample size of 36 participants led the two-Gaussian 
model to be correctly favored by AIC in 85 % of our simulations.

We analyzed the distributions of anticipatory forces produced for the outlier in the final five cycles of 
the test phase. We fit both a single-Gaussian and a two-Gaussian mixture model using the R package 
mclust (R Development Core Team, 2020; Fraley and Raftery, 2002), and estimated confidence 
intervals on the fit parameters by parametric bootstrap with 10,000  samples. Model comparisons 
based on AIC and BIC yielded the same pattern of results; we report only AIC in the text. The same 
analysis of bimodality was conducted for the laboratory experiments by combining the Linear+ and 
+Linear groups in one analysis, and the Linear++ and ++Linear groups in another analysis. For the 
laboratory experiments, we fit the single-Gaussian and two-Gaussian models to the distributions of 
the difference between anticipatory force for the outlier and the family-predicted weight of the outlier 
in the final 16 trial cycles of the test phase.

All source data, analysis code, and figure generation code is available in the supplementary files.

Acknowledgements
We thank Ian Howard for the design of the 3BOT manipulandum.

Additional information

Funding

Funder Grant reference number Author

National Institutes of 
Health

R01NS117699 Daniel M Wolpert

https://doi.org/10.7554/eLife.71627


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Cesanek et al. eLife 2021;10:e71627. DOI: https://doi.org/10.7554/eLife.71627 � 24 of 29

Funder Grant reference number Author

National Institutes of 
Health

U19NS104649 Daniel M Wolpert

Natural Sciences and 
Engineering Research 
Council of Canada

J Randall Flanagan

Canadian Institutes of 
Health Research

J Randall Flanagan

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Evan Cesanek, Conceptualization, Formal analysis, Investigation, Methodology, Project administra-
tion, Software, Validation, Visualization, Writing – original draft, Writing – review and editing; Zhaoran 
Zhang, Writing – review and editing; James N Ingram, Resources, Software, Writing – review and 
editing; Daniel M Wolpert, Conceptualization, Methodology, Resources, Supervision, Writing – orig-
inal draft, Writing – review and editing; J Randall Flanagan, Conceptualization, Methodology, Super-
vision, Writing – original draft, Writing – review and editing

Author ORCIDs
Evan Cesanek ‍ ‍ http://orcid.org/0000-0002-5335-6604
Zhaoran Zhang ‍ ‍ http://orcid.org/0000-0002-4192-4088
James N Ingram ‍ ‍ http://orcid.org/0000-0003-2567-504X
Daniel M Wolpert ‍ ‍ http://orcid.org/0000-0003-2011-2790
J Randall Flanagan ‍ ‍ http://orcid.org/0000-0003-2760-6005

Ethics
Human subjects: All experiments were conducted in accordance with the 1964 Declaration of Helsinki, 
following protocol approved by the Columbia University Institutional Review Board (IRB-AAAR9148). 
Written informed consent was obtained from all participants prior to their participation.

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.71627.sa1
Author response https://doi.org/10.7554/eLife.71627.sa2

Additional files
Supplementary files
•  Transparent reporting form 

Data availability
All source data, analysis code, and figure generation code is available in the supplementary files.

References
Addou T, Krouchev N, Kalaska JF. 2011. Colored context cues can facilitate the ability to learn and to switch 

between multiple dynamical force fields. Journal of Neurophysiology 106:163–183. DOI: https://doi.org/10.​
1152/jn.00869.2010, PMID: 21490278

Allan MS, Clause D, Pierre F, John K, Nathalie P. 2015. Comparing Cerebellar and Motor Cortical Activity in 
Reaching and Grasping. Canadian Journal of Neurological Sciences / Journal Canadien Des Sciences 
Neurologiques 20:S53–S61. DOI: https://doi.org/10.1017/S0317167100048538

Anderson JR. 1991. The adaptive nature of human categorization. Psychological Review 98:409–429. DOI: 
https://doi.org/10.1037/0033-295X.98.3.409

Anguera JA, Reuter-Lorenz PA, Willingham DT, Seidler RD. 2010. Contributions of spatial working memory to 
visuomotor learning. Journal of Cognitive Neuroscience 22:1917–1930. DOI: https://doi.org/10.1162/jocn.​
2009.21351, PMID: 19803691

Antzoulatos EG, Miller EK. 2011. Differences between neural activity in prefrontal cortex and striatum during 
learning of novel abstract categories. Neuron 71:243–249. DOI: https://doi.org/10.1016/j.neuron.2011.05.040, 
PMID: 21791284

https://doi.org/10.7554/eLife.71627
http://orcid.org/0000-0002-5335-6604
http://orcid.org/0000-0002-4192-4088
http://orcid.org/0000-0003-2567-504X
http://orcid.org/0000-0003-2011-2790
http://orcid.org/0000-0003-2760-6005
https://doi.org/10.7554/eLife.71627.sa1
https://doi.org/10.7554/eLife.71627.sa2
https://doi.org/10.1152/jn.00869.2010
https://doi.org/10.1152/jn.00869.2010
http://www.ncbi.nlm.nih.gov/pubmed/21490278
https://doi.org/10.1017/S0317167100048538
https://doi.org/10.1037/0033-295X.98.3.409
https://doi.org/10.1162/jocn.2009.21351
https://doi.org/10.1162/jocn.2009.21351
http://www.ncbi.nlm.nih.gov/pubmed/19803691
https://doi.org/10.1016/j.neuron.2011.05.040
http://www.ncbi.nlm.nih.gov/pubmed/21791284


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Cesanek et al. eLife 2021;10:e71627. DOI: https://doi.org/10.7554/eLife.71627 � 25 of 29

Antzoulatos EG, Miller EK. 2014. Increases in functional connectivity between prefrontal cortex and striatum 
during category learning. Neuron 83:216–225. DOI: https://doi.org/10.1016/j.neuron.2014.05.005, PMID: 
24930701

Arbib MA. 1981. Perceptual structures and distributed motor control. Brooks VB (Ed). Handbook of Physiology-
The Nervous System II. American Physiological Society. p. 1449–1480.

Ashby FG, Townsend JT. 1986. Varieties of perceptual independence. Psychological Review 93:154–179. DOI: 
https://doi.org/10.1037/0033-295X.93.2.154, PMID: 3714926

Ashby FG, Alfonso-Reese LA, Turken AU, Waldron EM. 1998. A neuropsychological theory of multiple systems in 
category learning. Psychological Review 105:442–481. DOI: https://doi.org/10.1037/0033-295x.105.3.442, 
PMID: 9697427

Ashby FG, Maddox WT. 2005. Human category learning. Annual Review of Psychology 56:149–178. DOI: https://​
doi.org/10.1146/annurev.psych.56.091103.070217, PMID: 15709932

Ashby FG, Maddox WT. 2011. Human category learning 2.0. Annals of the New York Academy of Sciences 
1224:147–161. DOI: https://doi.org/10.1111/j.1749-6632.2010.05874.x, PMID: 21182535

Battaglia-Mayer A, Caminiti R. 2018. Parieto-frontal networks for eye–hand coordination and movements. Vallar 
G, Coslett HB (Eds). Handbook of Clinical Neurology-The Parietal Lobe. Elsevier. p. 499–524. DOI: https://doi.​
org/10.1016/B978-0-444-63622-5.00026-7

Baugh LA, Kao M, Johansson RS, Flanagan JR. 2012. Material evidence: interaction of well-learned priors and 
sensorimotor memory when lifting objects. Journal of Neurophysiology 108:1262–1269. DOI: https://doi.org/​
10.1152/jn.00263.2012, PMID: 22696542

Baugh LA, Yak A, Johansson RS, Flanagan JR. 2016. Representing multiple object weights: competing priors and 
sensorimotor memories. Journal of Neurophysiology 116:1615–1625. DOI: https://doi.org/10.1152/jn.00282.​
2016, PMID: 27385795

Berniker M, Franklin DW, Flanagan JR, Wolpert DM, Kording K. 2014. Motor learning of novel dynamics is not 
represented in a single global coordinate system: evaluation of mixed coordinate representations and local 
learning. Journal of Neurophysiology 111:1165–1182. DOI: https://doi.org/10.1152/jn.00493.2013, PMID: 
24353296

Bowman CR, Zeithamova D. 2018. Abstract Memory Representations in the Ventromedial Prefrontal Cortex and 
Hippocampus Support Concept Generalization. The Journal of Neuroscience 38:2605–2614. DOI: https://doi.​
org/10.1523/JNEUROSCI.2811-17.2018, PMID: 29437891

Brashers-Krug T, Shadmehr R, Bizzi E. 1996. Consolidation in human motor memory. Nature 382:252–255. DOI: 
https://doi.org/10.1038/382252a0, PMID: 8717039

Braun DA, Aertsen A, Wolpert DM, Mehring C. 2009. Motor task variation induces structural learning. Current 
Biology 19:352–357. DOI: https://doi.org/10.1016/j.cub.2009.01.036, PMID: 19217296

Braun DA, Mehring C, Wolpert DM. 2010. Structure learning in action. Behavioural Brain Research 206:157–165. 
DOI: https://doi.org/10.1016/j.bbr.2009.08.031, PMID: 19720086

Bruce C, Desimone R, Gross CG. 1981. Visual properties of neurons in a polysensory area in superior temporal 
sulcus of the macaque. Journal of Neurophysiology 46:369–384. DOI: https://doi.org/10.1152/jn.1981.46.2.​
369, PMID: 6267219

Buckingham G, Cant JS, Goodale MA. 2009. Living in a material world: how visual cues to material properties 
affect the way that we lift objects and perceive their weight. Journal of Neurophysiology 102:3111–3118. DOI: 
https://doi.org/10.1152/jn.00515.2009, PMID: 19793879

Bursztyn LLCD, Ganesh G, Imamizu H, Kawato M, Flanagan JR. 2006. Neural correlates of internal-model 
loading. Current Biology 16:2440–2445. DOI: https://doi.org/10.1016/j.cub.2006.10.051, PMID: 17174919

Caithness G, Osu R, Bays P, Chase H, Klassen J, Kawato M, Wolpert DM, Flanagan JR. 2004. Failure to 
consolidate the consolidation theory of learning for sensorimotor adaptation tasks. The Journal of 
Neuroscience 24:8662–8671. DOI: https://doi.org/10.1523/JNEUROSCI.2214-04.2004, PMID: 15470131

Carpenter GA, Grossberg S. 1987. ART 2: self-organization of stable category recognition codes for analog 
input patterns. Applied Optics 26:4919–4930. DOI: https://doi.org/10.1364/AO.26.004919, PMID: 
20523470

Castiello U, Begliomini C. 2008. The cortical control of visually guided grasping. The Neuroscientist 14:157–170. 
DOI: https://doi.org/10.1177/1073858407312080, PMID: 18219055

Chao LL, Haxby JV, Martin A. 1999. Attribute-based neural substrates in temporal cortex for perceiving and 
knowing about objects. Nature Neuroscience 2:913–919. DOI: https://doi.org/10.1038/13217, PMID: 
10491613

Chao LL, Martin A. 2000. Representation of manipulable man-made objects in the dorsal stream. NeuroImage 
12:478–484. DOI: https://doi.org/10.1006/nimg.2000.0635, PMID: 10988041

Chouinard PA, Leonard G, Paus T. 2005. Role of the primary motor and dorsal premotor cortices in the 
anticipation of forces during object lifting. The Journal of Neuroscience 25:2277–2284. DOI: https://doi.org/​
10.1523/JNEUROSCI.4649-04.2005, PMID: 15745953

Chouinard PA, Large ME, Chang EC, Goodale MA. 2009. Dissociable neural mechanisms for determining the 
perceived heaviness of objects and the predicted weight of objects during lifting: an fMRI investigation of the 
size-weight illusion. NeuroImage 44:200–212. DOI: https://doi.org/10.1016/j.neuroimage.2008.08.023, PMID: 
18801445

Clapper JP, Bower GH. 1991. Learning and applying category knowledge in unsupervised domains. The 
Psychology of Learning and Motivation 27:65–108.

https://doi.org/10.7554/eLife.71627
https://doi.org/10.1016/j.neuron.2014.05.005
http://www.ncbi.nlm.nih.gov/pubmed/24930701
https://doi.org/10.1037/0033-295X.93.2.154
http://www.ncbi.nlm.nih.gov/pubmed/3714926
https://doi.org/10.1037/0033-295x.105.3.442
http://www.ncbi.nlm.nih.gov/pubmed/9697427
https://doi.org/10.1146/annurev.psych.56.091103.070217
https://doi.org/10.1146/annurev.psych.56.091103.070217
http://www.ncbi.nlm.nih.gov/pubmed/15709932
https://doi.org/10.1111/j.1749-6632.2010.05874.x
http://www.ncbi.nlm.nih.gov/pubmed/21182535
https://doi.org/10.1016/B978-0-444-63622-5.00026-7
https://doi.org/10.1016/B978-0-444-63622-5.00026-7
https://doi.org/10.1152/jn.00263.2012
https://doi.org/10.1152/jn.00263.2012
http://www.ncbi.nlm.nih.gov/pubmed/22696542
https://doi.org/10.1152/jn.00282.2016
https://doi.org/10.1152/jn.00282.2016
http://www.ncbi.nlm.nih.gov/pubmed/27385795
https://doi.org/10.1152/jn.00493.2013
http://www.ncbi.nlm.nih.gov/pubmed/24353296
https://doi.org/10.1523/JNEUROSCI.2811-17.2018
https://doi.org/10.1523/JNEUROSCI.2811-17.2018
http://www.ncbi.nlm.nih.gov/pubmed/29437891
https://doi.org/10.1038/382252a0
http://www.ncbi.nlm.nih.gov/pubmed/8717039
https://doi.org/10.1016/j.cub.2009.01.036
http://www.ncbi.nlm.nih.gov/pubmed/19217296
https://doi.org/10.1016/j.bbr.2009.08.031
http://www.ncbi.nlm.nih.gov/pubmed/19720086
https://doi.org/10.1152/jn.1981.46.2.369
https://doi.org/10.1152/jn.1981.46.2.369
http://www.ncbi.nlm.nih.gov/pubmed/6267219
https://doi.org/10.1152/jn.00515.2009
http://www.ncbi.nlm.nih.gov/pubmed/19793879
https://doi.org/10.1016/j.cub.2006.10.051
http://www.ncbi.nlm.nih.gov/pubmed/17174919
https://doi.org/10.1523/JNEUROSCI.2214-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15470131
https://doi.org/10.1364/AO.26.004919
http://www.ncbi.nlm.nih.gov/pubmed/20523470
https://doi.org/10.1177/1073858407312080
http://www.ncbi.nlm.nih.gov/pubmed/18219055
https://doi.org/10.1038/13217
http://www.ncbi.nlm.nih.gov/pubmed/10491613
https://doi.org/10.1006/nimg.2000.0635
http://www.ncbi.nlm.nih.gov/pubmed/10988041
https://doi.org/10.1523/JNEUROSCI.4649-04.2005
https://doi.org/10.1523/JNEUROSCI.4649-04.2005
http://www.ncbi.nlm.nih.gov/pubmed/15745953
https://doi.org/10.1016/j.neuroimage.2008.08.023
http://www.ncbi.nlm.nih.gov/pubmed/18801445


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Cesanek et al. eLife 2021;10:e71627. DOI: https://doi.org/10.7554/eLife.71627 � 26 of 29

Clayards M, Tanenhaus MK, Aslin RN, Jacobs RA. 2008. Perception of speech reflects optimal use of 
probabilistic speech cues. Cognition 108:804–809. DOI: https://doi.org/10.1016/j.cognition.2008.04.004, 
PMID: 18582855

Cole KJ. 2008. Lifting a familiar object: visual size analysis, not memory for object weight, scales lift force. 
Experimental Brain Research 188:551–557. DOI: https://doi.org/10.1007/s00221-008-1392-y, PMID: 18443767

Collins AM, Quillian MR. 1969. Retrieval time from semantic memory. Journal of Verbal Learning and Verbal 
Behavior 8:240–247. DOI: https://doi.org/10.1016/S0022-5371(69)80069-1

Cothros N, Wong JD, Gribble PL. 2006. Are there distinct neural representations of object and limb dynamics? 
Experimental Brain Research 173:689–697. DOI: https://doi.org/10.1007/s00221-006-0411-0, PMID: 
16525798

Cothros N, Wong J, Gribble PL. 2009. Visual cues signaling object grasp reduce interference in motor learning. 
Journal of Neurophysiology 102:2112–2120. DOI: https://doi.org/10.1152/jn.00493.2009, PMID: 19657075

Criscimagna-Hemminger SE, Bastian AJ, Shadmehr R. 2010. Size of error affects cerebellar contributions to 
motor learning. Journal of Neurophysiology 103:2275–2284. DOI: https://doi.org/10.1152/jn.00822.2009, 
PMID: 20164398

Culham JC, Danckert SL, DeSouza JFX, Gati JS, Menon RS, Goodale MA. 2003. Visually guided grasping 
produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research 153:180–
189. DOI: https://doi.org/10.1007/s00221-003-1591-5, PMID: 12961051

Danion F, Diamond JS, Flanagan JR. 2012. The role of haptic feedback when manipulating nonrigid objects. 
Journal of Neurophysiology 107:433–441. DOI: https://doi.org/10.1152/jn.00738.2011, PMID: 22013237

Davidson PR, Wolpert DM, Scott SH, Flanagan JR. 2005. Common encoding of novel dynamic loads applied to 
the hand and arm. The Journal of Neuroscience 25:5425–5429. DOI: https://doi.org/10.1523/JNEUROSCI.​
0429-05.2005, PMID: 15930392

Donchin O, Francis JT, Shadmehr R. 2003. Quantifying generalization from trial-by-trial behavior of adaptive 
systems that learn with basis functions: theory and experiments in human motor control. The Journal of 
Neuroscience 23:9032–9045 PMID: 14534237., 

Erez J, Cusack R, Kendall W, Barense MD. 2016. Conjunctive Coding of Complex Object Features. Cerebral 
Cortex 26:2271–2282. DOI: https://doi.org/10.1093/cercor/bhv081, PMID: 25921583

Fernandez-Ruiz J, Wong W, Armstrong IT, Flanagan JR. 2011. Relation between reaction time and reach errors 
during visuomotor adaptation. Behavioural Brain Research 219:8–14. DOI: https://doi.org/10.1016/j.bbr.2010.​
11.060, PMID: 21138745

Flanagan JR, Beltzner MA. 2000. Independence of perceptual and sensorimotor predictions in the size-weight 
illusion. Nature Neuroscience 3:737–741. DOI: https://doi.org/10.1038/76701, PMID: 10862708

Flanagan JR, King S, Wolpert DM, Johansson RS. 2001. Sensorimotor prediction and memory in object 
manipulation. Canadian Journal of Experimental Psychology = Revue Canadienne de Psychologie 
Experimentale 55:87–95. DOI: https://doi.org/10.1037/h0087355, PMID: 11433790

Flanagan JR, Bowman MC, Johansson RS. 2006. Control strategies in object manipulation tasks. Current Opinion 
in Neurobiology 16:650–659. DOI: https://doi.org/10.1016/j.conb.2006.10.005, PMID: 17084619

Flanagan JR, Bittner JP, Johansson RS. 2008. Experience can change distinct size-weight priors engaged in lifting 
objects and judging their weights. Current Biology 18:1742–1747. DOI: https://doi.org/10.1016/j.cub.2008.09.​
042, PMID: 19026545

Fraley C, Raftery AE. 2002. Enhanced Model-Based Clustering, Density Estimation, and Discriminant Analysis 
Software: MCLUST. Journal of Classification 20:263–286. DOI: https://doi.org/10.21236/ada459792

Freedman DJ, Riesenhuber M, Poggio T, Miller EK. 2001. Categorical representation of visual stimuli in the 
primate prefrontal cortex. Science 291:312–316. DOI: https://doi.org/10.1126/science.291.5502.312, PMID: 
11209083

Freedman DJ, Assad JA. 2009. Distinct encoding of spatial and nonspatial visual information in parietal cortex. 
The Journal of Neuroscience 29:5671–5680. DOI: https://doi.org/10.1523/JNEUROSCI.2878-08.2009, PMID: 
19403833

Gallivan JP, Cant JS, Goodale MA, Flanagan JR. 2014. Representation of object weight in human ventral visual 
cortex. Current Biology 24:1866–1873. DOI: https://doi.org/10.1016/j.cub.2014.06.046, PMID: 25065755

Gandolfo F, Mussa-Ivaldi FA, Bizzi E. 1996. Motor learning by field approximation. PNAS 93:3843–3846. DOI: 
https://doi.org/10.1073/pnas.93.9.3843, PMID: 8632977

Gauthier I, Tarr MJ, Anderson AW, Skudlarski P, Gore JC. 1999. Activation of the middle fusiform “face area” 
increases with expertise in recognizing novel objects. Nature Neuroscience 2:568–573. DOI: https://doi.org/10.​
1038/9224, PMID: 10448223

Goodale MA, Milner AD. 1992. Separate visual pathways for perception and action. Trends in Neurosciences 
15:20–25. DOI: https://doi.org/10.1016/0166-2236(92)90344-8, PMID: 1374953

Gordon AM, Forssberg H, Johansson RS, Westling G. 1991. Visual size cues in the programming of manipulative 
forces during precision grip. Experimental Brain Research 83:477–482. DOI: https://doi.org/10.1007/​
BF00229824, PMID: 2026190

Gordon AM, Westling G, Cole KJ, Johansson RS. 1993. Memory representations underlying motor commands 
used during manipulation of common and novel objects. Journal of Neurophysiology 69:1789–1796. DOI: 
https://doi.org/10.1152/jn.1993.69.6.1789, PMID: 8350123

Grafton ST. 2010. The cognitive neuroscience of prehension: recent developments. Experimental Brain Research 
204:475–491. DOI: https://doi.org/10.1007/s00221-010-2315-2, PMID: 20532487

https://doi.org/10.7554/eLife.71627
https://doi.org/10.1016/j.cognition.2008.04.004
http://www.ncbi.nlm.nih.gov/pubmed/18582855
https://doi.org/10.1007/s00221-008-1392-y
http://www.ncbi.nlm.nih.gov/pubmed/18443767
https://doi.org/10.1016/S0022-5371(69)80069-1
https://doi.org/10.1007/s00221-006-0411-0
http://www.ncbi.nlm.nih.gov/pubmed/16525798
https://doi.org/10.1152/jn.00493.2009
http://www.ncbi.nlm.nih.gov/pubmed/19657075
https://doi.org/10.1152/jn.00822.2009
http://www.ncbi.nlm.nih.gov/pubmed/20164398
https://doi.org/10.1007/s00221-003-1591-5
http://www.ncbi.nlm.nih.gov/pubmed/12961051
https://doi.org/10.1152/jn.00738.2011
http://www.ncbi.nlm.nih.gov/pubmed/22013237
https://doi.org/10.1523/JNEUROSCI.0429-05.2005
https://doi.org/10.1523/JNEUROSCI.0429-05.2005
http://www.ncbi.nlm.nih.gov/pubmed/15930392
http://www.ncbi.nlm.nih.gov/pubmed/14534237
https://doi.org/10.1093/cercor/bhv081
http://www.ncbi.nlm.nih.gov/pubmed/25921583
https://doi.org/10.1016/j.bbr.2010.11.060
https://doi.org/10.1016/j.bbr.2010.11.060
http://www.ncbi.nlm.nih.gov/pubmed/21138745
https://doi.org/10.1038/76701
http://www.ncbi.nlm.nih.gov/pubmed/10862708
https://doi.org/10.1037/h0087355
http://www.ncbi.nlm.nih.gov/pubmed/11433790
https://doi.org/10.1016/j.conb.2006.10.005
http://www.ncbi.nlm.nih.gov/pubmed/17084619
https://doi.org/10.1016/j.cub.2008.09.042
https://doi.org/10.1016/j.cub.2008.09.042
http://www.ncbi.nlm.nih.gov/pubmed/19026545
https://doi.org/10.21236/ada459792
https://doi.org/10.1126/science.291.5502.312
http://www.ncbi.nlm.nih.gov/pubmed/11209083
https://doi.org/10.1523/JNEUROSCI.2878-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19403833
https://doi.org/10.1016/j.cub.2014.06.046
http://www.ncbi.nlm.nih.gov/pubmed/25065755
https://doi.org/10.1073/pnas.93.9.3843
http://www.ncbi.nlm.nih.gov/pubmed/8632977
https://doi.org/10.1038/9224
https://doi.org/10.1038/9224
http://www.ncbi.nlm.nih.gov/pubmed/10448223
https://doi.org/10.1016/0166-2236(92)90344-8
http://www.ncbi.nlm.nih.gov/pubmed/1374953
https://doi.org/10.1007/BF00229824
https://doi.org/10.1007/BF00229824
http://www.ncbi.nlm.nih.gov/pubmed/2026190
https://doi.org/10.1152/jn.1993.69.6.1789
http://www.ncbi.nlm.nih.gov/pubmed/8350123
https://doi.org/10.1007/s00221-010-2315-2
http://www.ncbi.nlm.nih.gov/pubmed/20532487


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Cesanek et al. eLife 2021;10:e71627. DOI: https://doi.org/10.7554/eLife.71627 � 27 of 29

Griffiths TL, Canini KR, Sanborn AN, Navarro DJ. 2007. Unifying rational models of categorization via the 
hierarchical Dirichlet process. Proceedings of the 29th Annual Conference of the Cognitive Science Society. 
323–328.

Grill-Spector K, Kourtzi Z, Kanwisher N. 2001. The lateral occipital complex and its role in object recognition. 
Vision Research 41:1409–1422. DOI: https://doi.org/10.1016/s0042-6989(01)00073-6, PMID: 11322983

Grill-Spector K, Weiner KS. 2014. The functional architecture of the ventral temporal cortex and its role in 
categorization. Nature Reviews. Neuroscience 15:536–548. DOI: https://doi.org/10.1038/nrn3747, PMID: 
24962370

Hartigan JA. 1975. Clustering Algorithms. John Wiley & Sons.
Heald JB, Ingram JN, Flanagan JR, Wolpert DM. 2018. Multiple motor memories are learned to control different 

points on a tool. Nature Human Behaviour 2:300–311. DOI: https://doi.org/10.1038/s41562-018-0324-5, PMID: 
29736420

Heald JB, Lengyel M, Wolpert DM. 2020. Contextual Inference Underlies the Learning of Sensorimotor 
Repertoires. [bioRxiv]. DOI: https://doi.org/10.1101/2020.11.23.394320

Hock HS, Kelso JA, Schöner G. 1993. Bistability and hysteresis in the organization of apparent motion patterns. 
Journal of Experimental Psychology 19:63–80. DOI: https://doi.org/10.1037//0096-1523.19.1.63, PMID: 
8440989

Howard IS, Ingram JN, Wolpert DM. 2008. Composition and decomposition in bimanual dynamic learning. The 
Journal of Neuroscience 28:10531–10540. DOI: https://doi.org/10.1523/JNEUROSCI.3473-08.2008, PMID: 
18923029

Howard IS, Ingram JN, Franklin DW, Wolpert DM. 2012. Gone in 0.6 seconds: the encoding of motor memories 
depends on recent sensorimotor states. The Journal of Neuroscience 32:12756–12768. DOI: https://doi.org/​
10.1523/JNEUROSCI.5909-11.2012, PMID: 22972999

Howard IS, Wolpert DM, Franklin DW. 2013. The effect of contextual cues on the encoding of motor memories. 
Journal of Neurophysiology 109:2632–2644. DOI: https://doi.org/10.1152/jn.00773.2012, PMID: 23446696

Huberdeau DM, Krakauer JW, Haith AM. 2015. Dual-process decomposition in human sensorimotor adaptation. 
Current Opinion in Neurobiology 33:71–77. DOI: https://doi.org/10.1016/j.conb.2015.03.003, PMID: 25827272

Humphreys GW, Forde EME. 2001. Hierarchies, similarity, and interactivity in object recognition: “Category-
specific” neuropsychological deficits. Behavioral and Brain Sciences 24:453–476. DOI: https://doi.org/10.1017/​
S0140525X01004150

Huth AG, Nishimoto S, Vu AT, Gallant JL. 2012. A continuous semantic space describes the representation of 
thousands of object and action categories across the human brain. Neuron 76:1210–1224. DOI: https://doi.​
org/10.1016/j.neuron.2012.10.014, PMID: 23259955

Huttenlocher J, Hedges LV, Vevea JL. 2000. Why do categories affect stimulus judgment? Journal of 
Experimental Psychology. General 129:220–241. DOI: https://doi.org/10.1037//0096-3445.129.2.220, PMID: 
10868335

Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Pütz B, Yoshioka T, Kawato M. 2000. Human cerebellar 
activity reflecting an acquired internal model of a new tool. Nature 403:192–195. DOI: https://doi.org/10.1038/​
35003194, PMID: 10646603

Ingram JN, Sadeghi M, Flanagan JR, Wolpert DM, Haith AM. 2017. An error-tuned model for sensorimotor 
learning. PLOS Computational Biology 13:e1005883. DOI: https://doi.org/10.1371/journal.pcbi.1005883

Jeannerod M. 1981. Intersegmental coordination during reaching at natural visual objects. Long J, Baddeley A 
(Eds). Attention and Performance IX. Erlbaum. p. 153–169.

Jeannerod M, Arbib MA, Rizzolatti G, Sakata H. 1995. Grasping objects: the cortical mechanisms of visuomotor 
transformation. Trends in Neurosciences 18:314–320 PMID: 7571012., 

Jenmalm P, Schmitz C, Forssberg H, Ehrsson HH. 2006. Lighter or heavier than predicted: neural correlates of 
corrective mechanisms during erroneously programmed lifts. The Journal of Neuroscience 26:9015–9021. DOI: 
https://doi.org/10.1523/JNEUROSCI.5045-05.2006, PMID: 16943559

Johansson RS, Westling G. 1988. Coordinated isometric muscle commands adequately and erroneously 
programmed for the weight during lifting task with precision grip. Experimental Brain Research 71:59–71. DOI: 
https://doi.org/10.1007/BF00247522, PMID: 3416958

Johansson RS, Flanagan JR. 2009. Coding and use of tactile signals from the fingertips in object manipulation 
tasks. Nature Reviews. Neuroscience 10:345–359. DOI: https://doi.org/10.1038/nrn2621, PMID: 19352402

Kagerer FA, Contreras-Vidal JL, Stelmach GE. 1997. Adaptation to gradual as compared with sudden visuo-
motor distortions. Experimental Brain Research 115:557–561. DOI: https://doi.org/10.1007/pl00005727, PMID: 
9262212

Kalish ML, Lewandowsky S, Kruschke JK. 2004. Population of linear experts: knowledge partitioning and 
function learning. Psychological Review 111:1072–1099. DOI: https://doi.org/10.1037/0033-295X.111.4.1072, 
PMID: 15482074

Karniel A, Mussa-Ivaldi FA. 2002. Does the motor control system use multiple models and context switching to 
cope with a variable environment? Experimental Brain Research 143:520–524. DOI: https://doi.org/10.1007/​
s00221-002-1054-4, PMID: 11914799

Kemp C, Tenenbaum JB. 2008. The discovery of structural form. PNAS 105:10687–10692. DOI: https://doi.org/​
10.1073/pnas.0802631105, PMID: 18669663

Klassen J, Tong C, Flanagan JR. 2005. Learning and recall of incremental kinematic and dynamic sensorimotor 
transformations. Experimental Brain Research 164:250–259. DOI: https://doi.org/10.1007/s00221-005-2247-4, 
PMID: 15947919

https://doi.org/10.7554/eLife.71627
https://doi.org/10.1016/s0042-6989(01)00073-6
http://www.ncbi.nlm.nih.gov/pubmed/11322983
https://doi.org/10.1038/nrn3747
http://www.ncbi.nlm.nih.gov/pubmed/24962370
https://doi.org/10.1038/s41562-018-0324-5
http://www.ncbi.nlm.nih.gov/pubmed/29736420
https://doi.org/10.1101/2020.11.23.394320
https://doi.org/10.1037//0096-1523.19.1.63
http://www.ncbi.nlm.nih.gov/pubmed/8440989
https://doi.org/10.1523/JNEUROSCI.3473-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/18923029
https://doi.org/10.1523/JNEUROSCI.5909-11.2012
https://doi.org/10.1523/JNEUROSCI.5909-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22972999
https://doi.org/10.1152/jn.00773.2012
http://www.ncbi.nlm.nih.gov/pubmed/23446696
https://doi.org/10.1016/j.conb.2015.03.003
http://www.ncbi.nlm.nih.gov/pubmed/25827272
https://doi.org/10.1017/S0140525X01004150
https://doi.org/10.1017/S0140525X01004150
https://doi.org/10.1016/j.neuron.2012.10.014
https://doi.org/10.1016/j.neuron.2012.10.014
http://www.ncbi.nlm.nih.gov/pubmed/23259955
https://doi.org/10.1037//0096-3445.129.2.220
http://www.ncbi.nlm.nih.gov/pubmed/10868335
https://doi.org/10.1038/35003194
https://doi.org/10.1038/35003194
http://www.ncbi.nlm.nih.gov/pubmed/10646603
https://doi.org/10.1371/journal.pcbi.1005883
http://www.ncbi.nlm.nih.gov/pubmed/7571012
https://doi.org/10.1523/JNEUROSCI.5045-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16943559
https://doi.org/10.1007/BF00247522
http://www.ncbi.nlm.nih.gov/pubmed/3416958
https://doi.org/10.1038/nrn2621
http://www.ncbi.nlm.nih.gov/pubmed/19352402
https://doi.org/10.1007/pl00005727
http://www.ncbi.nlm.nih.gov/pubmed/9262212
https://doi.org/10.1037/0033-295X.111.4.1072
http://www.ncbi.nlm.nih.gov/pubmed/15482074
https://doi.org/10.1007/s00221-002-1054-4
https://doi.org/10.1007/s00221-002-1054-4
http://www.ncbi.nlm.nih.gov/pubmed/11914799
https://doi.org/10.1073/pnas.0802631105
https://doi.org/10.1073/pnas.0802631105
http://www.ncbi.nlm.nih.gov/pubmed/18669663
https://doi.org/10.1007/s00221-005-2247-4
http://www.ncbi.nlm.nih.gov/pubmed/15947919


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Cesanek et al. eLife 2021;10:e71627. DOI: https://doi.org/10.7554/eLife.71627 � 28 of 29

Kleiner M, Brainard D, Pelli D. 2007. What’s new in Psychtoolbox-3. Perception 36:1–16. DOI: https://doi.org/10.​
1068/v070821

Kluzik J, Diedrichsen J, Shadmehr R, Bastian AJ. 2008. Reach adaptation: what determines whether we learn an 
internal model of the tool or adapt the model of our arm? Journal of Neurophysiology 100:1455–1464. DOI: 
https://doi.org/10.1152/jn.90334.2008, PMID: 18596187

Kourtzi Z, Connor CE. 2011. Neural representations for object perception: structure, category, and adaptive 
coding. Annual Review of Neuroscience 34:45–67. DOI: https://doi.org/10.1146/annurev-neuro-060909-​
153218, PMID: 21438683

Krakauer JW, Ghilardi MF, Ghez C. 1999. Independent learning of internal models for kinematic and dynamic 
control of reaching. Nature Neuroscience 2:1026–1031. DOI: https://doi.org/10.1038/14826, PMID: 10526344

Krakauer JW, Pine ZM, Ghilardi MF, Ghez C. 2000. Learning of visuomotor transformations for vectorial planning 
of reaching trajectories. The Journal of Neuroscience 20:8916–8924. DOI: https://doi.org/10.1523/​
JNEUROSCI.20-23-08916.2000, PMID: 11102502

Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka K, Bandettini PA. 2008. Matching 
categorical object representations in inferior temporal cortex of man and monkey. Neuron 60:1126–1141. DOI: 
https://doi.org/10.1016/j.neuron.2008.10.043, PMID: 19109916

Love BC, Medin DL, Gureckis TM. 2004. SUSTAIN: a network model of category learning. Psychological Review 
111:309–332. DOI: https://doi.org/10.1037/0033-295X.111.2.309, PMID: 15065912

Mahon BZ, Caramazza A. 2011. What drives the organization of object knowledge in the brain? Trends in 
Cognitive Sciences 15:97–103. DOI: https://doi.org/10.1016/j.tics.2011.01.004

Malfait N, Shiller DM, Ostry DJ. 2002. Transfer of motor learning across arm configurations. The Journal of 
Neuroscience 22:9656–9660 PMID: 12427820., 

Malfait N, Ostry DJ. 2004. Is interlimb transfer of force-field adaptation a cognitive response to the sudden 
introduction of load? The Journal of Neuroscience 24:8084–8089. DOI: https://doi.org/10.1523/JNEUROSCI.​
1742-04.2004, PMID: 15371509

Mason CR, Hendrix CM, Ebner TJ. 2006. Purkinje cells signal hand shape and grasp force during reach-to-grasp 
in the monkey. Journal of Neurophysiology 95:144–158. DOI: https://doi.org/10.1152/jn.00492.2005, PMID: 
16162833

Mazzoni P, Krakauer JW. 2006. An implicit plan overrides an explicit strategy during visuomotor adaptation. The 
Journal of Neuroscience 26:3642–3645. DOI: https://doi.org/10.1523/JNEUROSCI.5317-05.2006, PMID: 
16597717

McGarity-Shipley MR, Heald JB, Ingram JN, Gallivan JP, Wolpert DM, Flanagan JR. 2020. Motor memories in 
manipulation tasks are linked to contact goals between objects. Journal of Neurophysiology 124:994–1004. 
DOI: https://doi.org/10.1152/jn.00252.2020, PMID: 32816611

Medin DL, Schaffer MM. 1978. Context theory of classification learning. Psychological Review 85:207–238. DOI: 
https://doi.org/10.1037/0033-295X.85.3.207

Mervis CB, Rosch E. 1981. Categorization of Natural Objects. Annual Review of Psychology 32:89–115. DOI: 
https://doi.org/10.1146/annurev.ps.32.020181.000513

Monaco S, Chen Y, Medendorp WP, Crawford JD, Fiehler K, Henriques DYP. 2014. Functional magnetic 
resonance imaging adaptation reveals the cortical networks for processing grasp-relevant object properties. 
Cerebral Cortex 24:1540–1554. DOI: https://doi.org/10.1093/cercor/bht006, PMID: 23362111

Nozaki D, Kurtzer I, Scott SH. 2006. Limited transfer of learning between unimanual and bimanual skills within 
the same limb. Nature Neuroscience 9:1364–1366. DOI: https://doi.org/10.1038/nn1785, PMID: 17028583

Osu R, Hirai S, Yoshioka T, Kawato M. 2004. Random presentation enables subjects to adapt to two opposing 
forces on the hand. Nature Neuroscience 7:111–112. DOI: https://doi.org/10.1038/nn1184, PMID: 14745452

Poltoratski S, Tong F. 2014. Hysteresis in the dynamic perception of scenes and objects. Journal of Experimental 
Psychology. General 143:1875–1892. DOI: https://doi.org/10.1037/a0037365, PMID: 25150947

Posner MI, Keele SW. 1968. On the genesis of abstract ideas. Journal of Experimental Psychology 77:353–363. 
DOI: https://doi.org/10.1037/h0025953, PMID: 5665566

Pouget A, Sejnowski TJ. 1997. Spatial transformations in the parietal cortex using basis functions. Journal of 
Cognitive Neuroscience 9:222–237. DOI: https://doi.org/10.1162/jocn.1997.9.2.222, PMID: 23962013

Pouget A, Snyder LH. 2000. Computational approaches to sensorimotor transformations. Nature Neuroscience 3 
Suppl:1192–1198. DOI: https://doi.org/10.1038/81469, PMID: 11127837

R Development Core Team. 2020. R: A language and environment for statistical computing. 2.6.2. Vienna, 
Austria. R Foundation for Statistical Computing. https://www.R-project.org/

Raz G, Saxe R. 2020. Learning in Infancy Is Active, Endogenously Motivated, and Depends on the Prefrontal 
Cortices. Annual Review of Developmental Psychology 2:247–268. DOI: https://doi.org/10.1146/annurev-​
devpsych-121318-084841

Reber PJ, Stark CEL, Squire LR. 1998. Cortical areas supporting category learning identified using functional 
MRI. PNAS 95:747–750. DOI: https://doi.org/10.1073/pnas.95.2.747, PMID: 9435264

Riesenhuber M, Poggio T. 1999. Hierarchical models of object recognition in cortex. Nature Neuroscience 
2:1019–1025. DOI: https://doi.org/10.1038/14819, PMID: 10526343

Rips LJ. 1989. Similarity, typicality, and categorization. Vosniadou S, Ortony A (Eds). Similarity and Analogical 
Reasoning. Cambridge University Press. p. 21–59.

Rizzolatti G, Luppino G. 2001. The cortical motor system. Neuron 31:889–901. DOI: https://doi.org/10.1016/​
s0896-6273(01)00423-8, PMID: 11580891

https://doi.org/10.7554/eLife.71627
https://doi.org/10.1068/v070821
https://doi.org/10.1068/v070821
https://doi.org/10.1152/jn.90334.2008
http://www.ncbi.nlm.nih.gov/pubmed/18596187
https://doi.org/10.1146/annurev-neuro-060909-153218
https://doi.org/10.1146/annurev-neuro-060909-153218
http://www.ncbi.nlm.nih.gov/pubmed/21438683
https://doi.org/10.1038/14826
http://www.ncbi.nlm.nih.gov/pubmed/10526344
https://doi.org/10.1523/JNEUROSCI.20-23-08916.2000
https://doi.org/10.1523/JNEUROSCI.20-23-08916.2000
http://www.ncbi.nlm.nih.gov/pubmed/11102502
https://doi.org/10.1016/j.neuron.2008.10.043
http://www.ncbi.nlm.nih.gov/pubmed/19109916
https://doi.org/10.1037/0033-295X.111.2.309
http://www.ncbi.nlm.nih.gov/pubmed/15065912
https://doi.org/10.1016/j.tics.2011.01.004
http://www.ncbi.nlm.nih.gov/pubmed/12427820
https://doi.org/10.1523/JNEUROSCI.1742-04.2004
https://doi.org/10.1523/JNEUROSCI.1742-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15371509
https://doi.org/10.1152/jn.00492.2005
http://www.ncbi.nlm.nih.gov/pubmed/16162833
https://doi.org/10.1523/JNEUROSCI.5317-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16597717
https://doi.org/10.1152/jn.00252.2020
http://www.ncbi.nlm.nih.gov/pubmed/32816611
https://doi.org/10.1037/0033-295X.85.3.207
https://doi.org/10.1146/annurev.ps.32.020181.000513
https://doi.org/10.1093/cercor/bht006
http://www.ncbi.nlm.nih.gov/pubmed/23362111
https://doi.org/10.1038/nn1785
http://www.ncbi.nlm.nih.gov/pubmed/17028583
https://doi.org/10.1038/nn1184
http://www.ncbi.nlm.nih.gov/pubmed/14745452
https://doi.org/10.1037/a0037365
http://www.ncbi.nlm.nih.gov/pubmed/25150947
https://doi.org/10.1037/h0025953
http://www.ncbi.nlm.nih.gov/pubmed/5665566
https://doi.org/10.1162/jocn.1997.9.2.222
http://www.ncbi.nlm.nih.gov/pubmed/23962013
https://doi.org/10.1038/81469
http://www.ncbi.nlm.nih.gov/pubmed/11127837
https://www.R-project.org/
https://doi.org/10.1146/annurev-devpsych-121318-084841
https://doi.org/10.1146/annurev-devpsych-121318-084841
https://doi.org/10.1073/pnas.95.2.747
http://www.ncbi.nlm.nih.gov/pubmed/9435264
https://doi.org/10.1038/14819
http://www.ncbi.nlm.nih.gov/pubmed/10526343
https://doi.org/10.1016/s0896-6273(01)00423-8
https://doi.org/10.1016/s0896-6273(01)00423-8
http://www.ncbi.nlm.nih.gov/pubmed/11580891


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Cesanek et al. eLife 2021;10:e71627. DOI: https://doi.org/10.7554/eLife.71627 � 29 of 29

Roemmich RT, Bastian AJ. 2015. Two ways to save a newly learned motor pattern. Journal of Neurophysiology 
113:3519–3530. DOI: https://doi.org/10.1152/jn.00965.2014, PMID: 25855699

Saijo N, Gomi H. 2010. Multiple motor learning strategies in visuomotor rotation. PLOS ONE 5:e9399. DOI: 
https://doi.org/10.1371/journal.pone.0009399, PMID: 20195373

Salinas E, Abbott LF. 1995. Transfer of coded information from sensory to motor networks. The Journal of 
Neuroscience 15:6461–6474 PMID: 7472409., 

Schacter DL, Cooper LA. 1993. Implicit and explicit memory for novel visual objects: structure and function. 
Journal of Experimental Psychology. Learning, Memory, and Cognition 19:995–1009. DOI: https://doi.org/10.​
1037//0278-7393.19.5.995, PMID: 8409854

Schwettmann S, Tenenbaum JB, Kanwisher N. 2019. Invariant representations of mass in the human brain. eLife 
8:e46619. DOI: https://doi.org/10.7554/eLife.46619, PMID: 31845887

Seger CA, Miller EK. 2010. Category learning in the brain. Annual Review of Neuroscience 33:203–219. DOI: 
https://doi.org/10.1146/annurev.neuro.051508.135546, PMID: 20572771

Shadmehr R, Mussa-Ivaldi FA. 1994. Adaptive representation of dynamics during learning of a motor task. The 
Journal of Neuroscience 14:3208–3224. DOI: https://doi.org/10.1523/JNEUROSCI.14-05-03208.1994, PMID: 
8182467

Sheahan HR, Franklin DW, Wolpert DM. 2016. Motor Planning, Not Execution, Separates Motor Memories. 
Neuron 92:773–779. DOI: https://doi.org/10.1016/j.neuron.2016.10.017, PMID: 27817979

Shepard RN, Hovland CI, Jenkins HM. 1961. Learning and memorization of classifications. Psychological 
Monographs 75:1–42. DOI: https://doi.org/10.1037/h0093825

Taylor JA, Krakauer JW, Ivry RB. 2014. Explicit and implicit contributions to learning in a sensorimotor adaptation 
task. The Journal of Neuroscience 34:3023–3032. DOI: https://doi.org/10.1523/JNEUROSCI.3619-13.2014, 
PMID: 24553942

Teh YW, Jordan M, Beal MJ, Blei DM. 2005. Sharing Clusters Among Related Groups: Hierarchical Dirichlet 
Processes. Advances in Neural Information Processing Systems 17. .

Thoroughman KA, Shadmehr R. 2000. Learning of action through adaptive combination of motor primitives. 
Nature 407:742–747. DOI: https://doi.org/10.1038/35037588, PMID: 11048720

Tong C, Wolpert DM, Flanagan JR. 2002. Kinematics and dynamics are not represented independently in motor 
working memory: evidence from an interference study. The Journal of Neuroscience 22:1108–1113 PMID: 
11826139., 

Ungerleider LG, Haxby J. 1994. What’ and ‘where’ in the human brain. Current Opinion in Neurobiology 
4:157–165.

van Nuenen BFL, Kuhtz-Buschbeck J, Schulz C, Bloem BR, Siebner HR. 2012. Weight-specific anticipatory coding 
of grip force in human dorsal premotor cortex. The Journal of Neuroscience 32:5272–5283. DOI: https://doi.​
org/10.1523/JNEUROSCI.5673-11.2012, PMID: 22496573

Vanpaemel W, Storms G, Ons B. 2005. Language Evolution and Computation Bibliography. Proceedings of the 
27th Annual Conference of the Cognitive Science Society. 2277–2282.

Vogels R, Sary G, Dupont P, Orban GA. 2002. Human brain regions involved in visual categorization. 
NeuroImage 16:401–414. DOI: https://doi.org/10.1006/nimg.2002.1109, PMID: 12030825

Warrington EK, Taylor AM. 1978. Two categorical stages of object recognition. Perception 7:695–705. DOI: 
https://doi.org/10.1068/p070695, PMID: 740510

Williams D, Phillips G, Sekuler R. 1986. Hysteresis in the perception of motion direction as evidence for neural 
cooperativity. Nature 324:253–255. DOI: https://doi.org/10.1038/324253a0, PMID: 3785395

Wolpert DM, Kawato M. 1998. Multiple paired forward and inverse models for motor control. Neural Networks 
11:1317–1329. DOI: https://doi.org/10.1016/s0893-6080(98)00066-5, PMID: 12662752

Wolpert DM, Flanagan JR. 2001. Motor prediction. Current Biology 11:729-732. DOI: https://doi.org/10.1016/​
s0960-9822(01)00432-8, PMID: 11566114

Zipser D, Andersen RA. 1988. A back-propagation programmed network that simulates response properties of a 
subset of posterior parietal neurons. Nature 331:679–684. DOI: https://doi.org/10.1038/331679a0, PMID: 
3344044

https://doi.org/10.7554/eLife.71627
https://doi.org/10.1152/jn.00965.2014
http://www.ncbi.nlm.nih.gov/pubmed/25855699
https://doi.org/10.1371/journal.pone.0009399
http://www.ncbi.nlm.nih.gov/pubmed/20195373
http://www.ncbi.nlm.nih.gov/pubmed/7472409
https://doi.org/10.1037//0278-7393.19.5.995
https://doi.org/10.1037//0278-7393.19.5.995
http://www.ncbi.nlm.nih.gov/pubmed/8409854
https://doi.org/10.7554/eLife.46619
http://www.ncbi.nlm.nih.gov/pubmed/31845887
https://doi.org/10.1146/annurev.neuro.051508.135546
http://www.ncbi.nlm.nih.gov/pubmed/20572771
https://doi.org/10.1523/JNEUROSCI.14-05-03208.1994
http://www.ncbi.nlm.nih.gov/pubmed/8182467
https://doi.org/10.1016/j.neuron.2016.10.017
http://www.ncbi.nlm.nih.gov/pubmed/27817979
https://doi.org/10.1037/h0093825
https://doi.org/10.1523/JNEUROSCI.3619-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/24553942
https://doi.org/10.1038/35037588
http://www.ncbi.nlm.nih.gov/pubmed/11048720
http://www.ncbi.nlm.nih.gov/pubmed/11826139
https://doi.org/10.1523/JNEUROSCI.5673-11.2012
https://doi.org/10.1523/JNEUROSCI.5673-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22496573
https://doi.org/10.1006/nimg.2002.1109
http://www.ncbi.nlm.nih.gov/pubmed/12030825
https://doi.org/10.1068/p070695
http://www.ncbi.nlm.nih.gov/pubmed/740510
https://doi.org/10.1038/324253a0
http://www.ncbi.nlm.nih.gov/pubmed/3785395
https://doi.org/10.1016/s0893-6080(98)00066-5
http://www.ncbi.nlm.nih.gov/pubmed/12662752
https://doi.org/10.1016/s0960-9822(01)00432-8
https://doi.org/10.1016/s0960-9822(01)00432-8
http://www.ncbi.nlm.nih.gov/pubmed/11566114
https://doi.org/10.1038/331679a0
http://www.ncbi.nlm.nih.gov/pubmed/3344044

	Motor memories of object dynamics are categorically organized
	Editor's evaluation
	Introduction
	Results
	Motor memories of objects are organized categorically
	Re-organization of motor memories of objects
	Category boundaries are flexible
	All-or-nothing learning of outlier weight

	Discussion
	Materials and methods
	Laboratory experiments
	Participants
	Apparatus
	Task

	Paradigm
	Linear+ condition
	Uncorr+ condition
	Linear++ condition
	+Linear condition
	++Linear condition
	Linear➚ condition
	Linear➘ condition

	Analysis
	Data preprocessing

	Statistical analysis
	Web-based experiment

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References


