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Abstract

Background: The gliotransmitters released from astrocytes are deemed to play key roles in the glial cell-neuron
communication for normal function of the brain. The gliotransmitters, such as glutamate, ATP, D-serine, neuropeptide Y, are
stored in vesicles of astrocytes and secreted following the inositol 1,4,5-trisphosphate (IP3)-induced intracellular Ca2+

releases. Yet studies on the identity of the IP3-dependent intracellular Ca2+ stores remain virtually unexplored.

Principal Findings: We have therefore studied the potential existence of the IP3-sensitive intracellular Ca2+ stores in the
cytoplasm of astrocytes using human brain tissue samples in contrast to cultured astrocytes that had primarily been used in
the past. It was thus found that secretory granule marker proteins chromogranins and secretogranin II localize in the large
dense core vesicles of astrocytes, thereby confirming the large dense core vesicles as bona fide secretory granules.
Moreover, consistent with the major IP3-dependent intracellular Ca2+ store role of secretory granules in secretory cells,
secretory granules of astrocytes also contained all three (types 1, 2, and 3) IP3R isoforms.

Significance: Given that the secretory granule marker proteins chromogranins and secretogranin II are high-capacity, low-
affinity Ca2+ storage proteins and chromogranins interact with the IP3Rs to activate the IP3R/Ca2+ channels, i.e., increase
both the mean open time and the open probability of the channels, these results imply that secretory granules of astrocytes
function as the IP3-sensitive intracellular Ca2+ store.
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Introduction

Astrocytes are now known to secrete a number of signaling

molecules that participate in the cell-to-cell communication,

involving both neurons and glial cells [1–7]. Of these signaling

molecules, ATP, glutamate, D-serine, neuropeptide Y (NPY),

called gliotransmitters, are known. These gliotransmitters are

stored in secretory vesicles in astrocytes and are released in a Ca2+-

dependent regulatory secretory pathway [8–16]. There exist

generally two types of secretory vesicles in astrocytes, one being

the translucent small synaptic-like vesicles and the other the large

dense-core vesicles (LDCV) [11,17–19]. Analogous to the

neurotransmitters stored in synaptic vesicles of neurons, small

signaling molecules of astrocytes are traditionally thought to be

stored in small synaptic-like vesicles and released in a regulated

fashion, which in turn participate in neuron-glial cell communi-

cation in the brain [4,14,20–27]. However, the large dense core

vesicles were also shown to contain a variety of small and large

molecules that are of importance in cell-to-cell communication

[10,19,28–30].

Similar to other secretory cells, the regulatory secretory pathway

in astrocytes is shown to depend on inositol 1,4,5-trisphosphate

(IP3)-mediated Ca2+ release from intracellular Ca2+ stores

[20,22,25,29,31]. In spite of the IP3-dependent intracellular

Ca2+ release that leads to secretion of gliotransmitters, the identity

of the intracellular stores that function as the IP3-sensitive Ca2+

stores has not been addressed except the traditional role of the

endoplasmic reticulum (ER). However, in recent studies it has

been demonstrated that the ER plays only a minor role in the

IP3-dependent Ca2+ mobilization system in the cytoplasm of

neuroendocrine cells [32–34]. Rather secretory granules were

shown to be responsible for .70% of IP3-induced Ca2+ release in

the cytoplasm of the cells in which they exist [32–34]. Secretory

granules are present in virtually all secretory cells and contain by

far the largest amounts of Ca2+ of all subcellular organelles

[35–38]. Further, secretory granules contain the highest concen-

trations of cellular IP3R/Ca2+ channels in neuroendocrine cells

[39], and the IP3R/Ca2+ channels of secretory granules are ,7-

fold more sensitive to IP3 than those of the ER [40], which means

that secretory granules will release Ca2+ in response even to one-

seventh the IP3 concentration that is required to induce Ca2+

release from the ER.

Taken together, these results clearly indicate that in secretory

cells where secretory granules are intrinsically present secretory
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granules function as the major IP3-dependent intracellular Ca2+

store [34]. Indeed, the IP3-mediated Ca2+ release from secretory

granules was shown to be sufficient to initiate exocytotic processes

of insulin-secreting pancreatic b-cells in the absence of external

Ca2+ [41]. Given the pivotal role of secretory granules in the

control of IP3-dependent intracellular Ca2+ concentrations and of

the regulatory secretory processes, it became of critical importance

to clarify the identity of the large dense core vesicles in astrocytes.

For this we first investigated the presence of typical secretory

granule marker proteins, chromogranin B (CGB) and secreto-

granin II (SgII), in astrocytes. Moreover, in view of the highly

concentrated localization of the IP3R/Ca2+ channels in secretory

granules of neuroendocrine cells [39] and of the key role of Ca2+

release through the IP3R/Ca2+ channels in proliferation, migra-

tion, and survival of glioblastoma [42], we have also examined the

potential presence of the IP3Rs in the large dense core vesicles of

astrocytes.

In the present study, we found the localization of two typical

secretory granule marker proteins chromogranin B and secreto-

granin II [43–45] in the large dense-core vesicles of astrocytes,

thereby identifying the large dense-core vesicles as secretory

granules [46–48]. We also found the presence of all three IP3R

isoforms in secretory granules of astrocytes. Hence, in view of the

roles of secretory granules in secretory cells as the major IP3-

sensitive intracellular Ca2+ store, the existence of secretory

granules in glial astrocytes appears to point out the presence and

operation of an IP3-sensitive intracellular Ca2+ store role of

secretory granules in astrocytes.

Materials and Methods

Antibodies
The polyclonal anti-rabbit chromogranin A (CGA), chromo-

granin B (CGB), secretogranin II (SgII) antibodies were raised

against purified intact bovine CGA, CGB and SgII [49,50], and

affinity purified against bovine CGA, recombinant CGB and SgII

[51]. The specificity of the antibodies was confirmed [50,52–54].

IP3R peptides specific to terminal 10–13 amino acids of type 1

(HPPHMNVNPQQPA), type 2 (SNTPHENHHMPPA) and type

3 (FVDVQNCMSR) were synthesized with a carboxy-terminal

cysteine and anti-rabbit polyclonal antibodies were raised. The

polyclonal anti-rabbit antibodies were affinity purified on each

immobilized peptide following the procedure described [55], and

the specificity of each antibody has been confirmed [52].

Monoclonal anti-mouse glial fibrillary acidic protein (GFAP)

antibody (clone G-A-5) was obtained from Sigma-Aldrich (St.

Louis, U.S.A.).

Human tissue samples
The human brain tissue (temporal lobe) samples examined in

this study were obtained from patients undergoing surgical

treatments following written consent in accordance with appro-

priate clinical protocols in the Department of Neurosurgery of

Seoul National University Hospital. The use of samples for the

present study was approved by the Institutional Review Board of

Seoul National University Hospital (IRB approval number 0806-

006-246).

Immunogold electron microscopy
For the electron microscopic study of human brain tissues, the

tissue samples were minced into small pieces (,1 mm3) and fixed

for 2 h at 4uC in PBS containing 0.1% glutaraldehyde, 4%

paraformaldehyde immediately after surgical removal. After three

washes in PBS, the tissues were postfixed with 1% osmium

tetroxide on ice for 2 h, and washed three times in PBS. The

tissues were then embedded in Epon 812 after dehydration in an

ethanol series. After collection of the ultrathin (70 nm) sections on

Formvar/carbon-coated nickel grids, the grids were stained with

2.5% uranyl acetate (7 min) and lead citrate (2 min). For

immunogold labeling experiments, the ultrathin sections that

had been collected on Formvar/carbon-coated nickel grids were

floated on drops of freshly prepared 3% sodium metaperiodate for

40 min. After etching and washing, the grids were placed on 50 ml

droplets of buffer A (phosphate saline solution, pH 8.2, containing

4% normal goat serum, 1% BSA, 0.1% Tween 20, 0.1% sodium

azide) for 1 h. The grids were then incubated for 3 h at room

temperature in a humidified chamber on 50 ml droplets of

polyclonal anti-rabbit CGB or SgII antibody appropriately diluted

in solution B (solution A but with 1% normal goat serum), followed

by rinses in solution B. The grids were reacted with the 15-nm

gold-conjugated goat anti-rabbit IgG, diluted in solution A.

Controls for the specificity of CGB- or SgII-specific immunogold

labeling included 1) omitting the primary antibody, 2) replacing

the primary antibody with the preimmune serum, and 3) adding

the primary antibody in the excess presence of purified CGB or

SgII.

For double immunogold labeling, the grids were incubated for

3 h at room temperature in a humidified chamber on 50 ml

droplets of monoclonal anti-mouse glial fibrillary acidic protein

(GFAP) antibody appropriately diluted in solution B (solution A

but with 1% normal goat serum), followed by rinses in solution B.

The grids were then reacted with the 10-nm gold-conjugated goat

anti-mouse IgG, diluted in solution A. After extensive washes in

PBS, the grids were then incubated with polyclonal anti-rabbit

either CGB or SgII antibody as described above, followed by

rinses in solution B. The grids were reacted with the 15-nm gold-

conjugated goat anti-rabbit IgG, diluted in solution A. After

washes in PBS and deionized water, the grids were stained with

uranyl acetate (7 min) and lead citrate (2 min). Following washing

in deionized water and drying the samples were examined with a

JEOL JEM-1011 electron microscope.

Distribution analysis of chromogranin B, secretogranin II,
and IP3R isoforms in astrocytes

Astrocytes are distinguished from other cells by the shapes

and sizes of the cell and the nucleus. However, the presence of

intermediate filaments in the cytoplasm is the exclusive hallmark of

astrocytes [56,57]. The intermediate filaments express glial

fibrillary acidic protein (GFAP) and are not found in other

neighboring cells [56–59]. Localization of CGB and SgII in

secretory granules of human astrocytes was examined by analyzing

the number of CGB-, and SgII-labeling gold particles localized per

mm2 area of secretory granule and mitochondria (Table 1).

However, localization of each IP3R isoform was examined by

analyzing the number of each IP3R isoform-labeling gold particles

per mm membrane of secretory granule and mitochondria

(Table 2). Approximately 35–80 secretory granules and 30–60

mitochondria from 20–26 electron micrographs obtained from 5

different human tissue samples were used in the analysis of each

group as described in the respective table.

Results

Analogous to the large dense-core vesicles of neurons glial

astrocytes have also the large dense-core vesicles, yet studies on the

number, location, and function of the large dense-core vesicles in

astrocytes are generally lacking. In our attempt to study the

LDCVs of astrocytes, we first examined the number and location

Ca2+ Signaling in Astrocytes
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of these vesicles in the cell (Fig. 1). In contrast to more abundant

synaptic-like vesicles, there were fewer LDCVs and generally 0–4

LDCVs were observed in a picture image covering ,6 mm2 of

astrocytes (Fig. 1). It was nevertheless appeared that the cell

processes were more likely to contain the large dense-core vesicles

than the cell body.

To determine whether these LDCVs express the secretory

granule marker proteins, the expression of the two major granin

proteins chromogranin B (Fig. 2A) and secretogranin II (Fig. 2B)

was investigated by immunogold electron microscopy using

affinity-purified CGB and SgII antibodies. As shown in Fig. 2A,

chromogranin B-labeling gold particles were localized inside the

large dense-core vesicles, showing the expression of CGB in the

LDCVs, but they were absent in mitochondria. It was further

shown that secretogranin II-labeling gold particles localize in the

LDCVs as well while being absent in mitochondria (Fig. 2B),

indicating the expression of SgII in the large dense-core vesicles.

The expression of two typical secretory granule marker proteins

CGB and SgII not only identifies the LDCVs as genuine secretory

granules but also demonstrates the presence of secretory granules

in glial astrocytes. Being the major residents of secretory granules

the chromogranins and secretogranins pass through the ER and

Golgi before entering the granules. Hence, the CGB- and SgII-

labeling gold particles were also found in the ER. But the granin

proteins are known to be absent in mitochondria [51,60].

Furthermore, in light of the presence of the intermediate

filaments in the cytoplasm of astrocytes, but not in neurons or

other glial cells [56,57], and of the exclusive expression of glial

fibrillary acidic proteins (GFAP) in the intermediate filaments of

astrocytes [56–59], we have also carried out double immunogold

labeling experiments using both the GFAP- and CGB- or SgII-

specific antibodies (Fig. 3). As shown in Fig. 3A, the GFAP-

labeling gold particles (10 nm) localized exclusively to the

intermediate filaments, but not to secretory granules or other

structures, while the CGB-labeling gold particles (15 nm) localized

to the LDCVs, thereby confirming not only the identity of these

Table 1. Distribution of the chromogranin B- and secretogranin II-labeling gold particles in secretory granules of human
astrocytes.

Chromogranin Ba Secretogranin IIb

Number of gold particles/
area viewed (mm2)

Gold
particles/mm2

Number of gold particles/
area viewed (mm2)

Gold
particles/mm2

Secretory granule 64/5.17 12.38 37/3.59 10.31

Mitochondria 6/16.06 0.37 2/10.23 0.20

a26 images from three different tissue preparations were used.
b21 images from three different tissue preparations were used.
doi:10.1371/journal.pone.0011973.t001

Table 2. Distribution of the IP3R1-, IP3R2 and IP3R3-labeling gold particles in secretory granule membranes of human astrocytes.

IP3R1a IP3R2b IP3R3c

Number of gold
particles/Length (mm)

Gold
particles/mm

Number of gold
particles/Length (mm)

Gold
particles/mm

Number of gold
particles/Length (mm)

Gold
particles/mm

Secretory granule
membrane

39/44.739 0.872 53/90.387 0.586 50/69.556 0.719

Mitochondrial
membraned

2/56.158 0.035 1/43.971 0.022 1/56.061 0.018

a20 images from four different tissue preparations were used.
b20 images from three different tissue preparations were used.
c22 images from four different tissue preparations were used.
dOnly the length of the outer membranes is used.
doi:10.1371/journal.pone.0011973.t002

Figure 1. Electron micrographs showing the secretory granule-
like vesicles (large dense-core vesicles) in astrocytes of brain
tissues. Human brain tissues were examined by electron microscope
and secretory granule-like vesicles (large dense-core vesicles) of
astrocytes were shown. SG, secretory granule-like vesicles; ax, axon;
fm, filament. Bar = 200 nm.
doi:10.1371/journal.pone.0011973.g001
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cells as astrocytes but also the presence of secretory granules in

astrocytes. In addition, the presence of GFAP-labeling intermedi-

ate filaments has also been demonstrated along with the SgII-

labeling secretory granules (Fig. 3B), thus further identifying the

secretory granule-containing cells as astrocytes.

In clear distinction from small synaptic-like vesicles, these

secretory granules are large with diameters of 300–400 nm,

though it is not uncommon to see larger granules with diameters of

.400 nm. Nevertheless, the size is generally comparable to

secretory granules of typical neuroendocrine chromaffin cells of

human and bovine [60], but is markedly bigger than those of rat or

mouse. Moreover, as it is often the case with secretory granules of

other secretory cells some secretory granules appear to lack the

electron dense intragranular contents, thus looking more trans-

parent in some regions of the granules than others (cf, Fig. 2A).

These granules with partly transparent inside may represent

vesicles that are either endocytosed (recycled) recently or in the

process of maturation (loading).

The relative distribution of the CGB- or SgII-labeling gold

particles in secretory granules and mitochondria of human

astrocytes is summarized in Table 1. As shown in Table 1, the

number of CGB-labeling gold particles per mm2 of secretory

granule area in astrocytes was 12.38 while that per mm2 of

mitochondria was 0.37, a background number, thus clearly

demonstrating the presence of CGB in secretory granules. Similar

to CGB, the number of SgII-labeling gold particles per mm2 of

secretory granule area in astrocytes was 10.31 while that per mm2

of mitochondria was 0.20 (Table 1), a background number, again

clearly indicating the presence of SgII in secretory granules. Our

approximate estimation of the number of the CGB- and SgII-

labeling gold particles per unit area of secretory granules and of

the ER appeared to suggest relatively higher concentrations of

CGB and SgII in secretory granules than in the ER of astrocytes,

as was the case in chromaffin cells [60].

Moreover, in view of the presence of the IP3R/Ca2+ channels

in secretory granules [52,55,61,62], and of secretory granules

serving as the major IP3-sensitive intracellular Ca2+ stores in

secretory cells, the possibility of secretory granules of astrocytes

functioning as an IP3-sensitive intracellular Ca2+ store of

astrocytes also arose. Therefore, to investigate the possibility of

astrocyte secretory granules serving as an IP3-sensitive intracel-

lular Ca2+ store, we examined the potential expression of the

IP3Rs in secretory granules of astrocytes (Figures 4–6). Given the

presence of all three isoforms of IP3Rs in secretory granules of

secretory cells we examined the presence of three isoforms of

IP3Rs in the astrocyte secretory granules by immunogold elec-

tron microscopy using the IP3R1-, IP3R2-, and IP3R3-specific

antibodies (Figures 4–6).

Consistent with the presence of the IP3Rs in secretory granules

of other secretory cells [52,55,61,62] and following the nature of

the IP3Rs being the membrane protein [63], the IP3R1-labeling

gold particles were localized in the membranes of secretory

granules of astrocytes (Fig. 4, A and B). Keeping with the known

absence of the IP3Rs in mitochondria there were no IP3R1-

labeling gold particles in mitochondria. Further, astrocyte

secretory granules were also shown to localize the type 2 IP3R

(IP3R2)-labeling gold particles (Fig. 5, A and B) and the type 3

IP3R (IP3R3)-labeling gold particles (Fig. 6, A and B). As was the

case in the IP3R1, the IP3R2- and the IP3R3-labeling gold

particles were localized primarily along the membranes of

secretory granules, but were absent in mitochondria.

The IP3R1-, IP3R2- and IP3R3-labeling results are summarized

in Table 2. The number of IP3R1-labeling gold particles per mm of

secretory granule membrane was 0.872 while that of mitochondria

was 0.035, a value considered to be background, clearly demon-

strating the presence of IP3R1 in secretory granule membranes of

astrocytes, but not in mitochondrial membranes (Table 2).

Further, the number of IP3R2-labeling gold particles per mm of

secretory granule membrane was 0.586 while that of mitochondria

was 0.022, a value close to virtual zero, which again demonstrated

the presence of IP3R2 in secretory granule membranes of

astrocytes, but not in mitochondrial membranes (Table 2). Similar

to the results shown for IP3R1 and IP3R2, the number of IP3R3-

labeling gold particles per mm of secretory granule membrane was

0.719 while that of mitochondria was 0.018, a value considered to

be background. This result also showed the localization of IP3R3

in secretory granule membranes, but not in mitochondrial

membranes (Table 2). Interestingly, these results that confirmed

the presence of all three isoforms of IP3Rs in secretory granules of

astrocytes are in complete agreement with the results obtained

with secretory granules of typical neuroendocrine chromaffin cells

[39,52,60].

In line with the previous results on secretory granules that

showed the presence of Ca2+ storage proteins chromogranins A

and B, and secretogranin II, and the IP3R/Ca2+ channels

[41,52,55,62,64], the above results show that astrocyte secretory

granules are also equipped with the necessary machinery that is

required to function as a major IP3-sensitive intracellular Ca2+

store.

Discussion

Although astrocytes are not traditionally regarded as secretory

cells, it is nonetheless evident that they store a variety of molecules

that are secreted in a regulated manner and participate in the

signaling pathways in the brain. Hence, in spite of the dearth of

information regarding exocytosis in glial cells compared to

neurons, exocytotic activity in astrocytes is deemed essential in

the astrocyte-to-neuron communication that is increasingly

considered important for normal function of the brain. Astrocytes

are known to contain many gliotransmitters such as glutamate,

ATP, D-serine, and regulatory peptides neuropeptide Y (NPY)

and atrial natriuretic peptide (ANP) [4,10,14,19–28,30], and these

are secreted in a Ca2+-dependent regulated exocytotic pathway.

The regulated exocytosis in all secretory cells is generally

controlled by the cytoplasmic Ca2+ concentrations ([Ca2+]c), and

a sudden increase of cytoplasmic Ca2+ concentration is the trigger

signal for exocytotic processes.

Large molecules such as regulatory peptides NPY and ANP are

primarily stored in the LDCVs [9,10,19,28,30] while small

molecules are stored in the small synaptic-like vesicles [4,14,20–

27] although some such as ATP and glutamate are found in both

Figure 2. Immunogold electron microscopy showing the localization of CGB and SgII in secretory granule-like vesicles (large dense-
core vesicles) in astrocytes of brain tissues. Astrocytes from human brain tissues were immunolabeled for CGB (A) and SgII (B) (15 nm gold)
with the affinity purified CGB and SgII antibodies, respectively. The CGB- or SgII-labeling gold particles (indicated by arrows) were primarily localized
in the secretory granule-like vesicles (SG) with some in the endoplasmic reticulum (er), but not in the mitochondria (M). In the control experiments
without the primary antibodies no gold particles were seen in the secretory granule-like vesicles (not shown). Bar = 200 nm.
doi:10.1371/journal.pone.0011973.g002
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types of vesicles [10,27–30]. Glutamate has been thought to be

released from small synaptic-like vesicles of astrocytes. Yet in

recent studies glutamate is also shown to be released from large

dense core vesicles with a diameter of ,310 nm [28,29] in a Ca2+-

and SNARE protein-dependent manner [5,13,16,28]. Another

prominent signal molecule ATP is also released from the LDCVs

in a Ca2+ dependent manner [5,10,27]. Of particular interest is

that secretogranin II, a protein with ,590 amino acids [65–68], is

among the large peptides and proteins that are known to exist and

released in astrocytes in response to increased [Ca2+]c [69–71].

Chromogranins and secretogranins are marker proteins of

secretory granules [43,46–48] that are a signature organelle for

secretory cells. Of these, chromogranins A and B and secreto-

granin II are three major members of the granin family proteins.

Hence the existence of secretogranin II in astrocytes [69–71] has

implied the presence of secretory granules in astrocytes. As shown

in Fig. 2, chromogranin B and secretogranin II are exclusively

localized in the large dense core vesicles, thereby identifying the

LDCVs as bona fide secretory granules. Chromogranins A and B

and secretogranin II are high-capacity, low-affinity Ca2+ storage

proteins, binding 30–93 mol of Ca2+/mol of protein with

dissociation constants (Kd) of 1.5–4.0 mM [52,56,72], thus

enabling secretory granules to store up to ,40 mM Ca2+

[35,36], the highest concentrations of Ca2+ in any subcellular

organelles. These proteins are also released, along with other

secretory granule contents, in response to stimuli that elevate

[Ca2+]c.

The elevation in the cytoplasmic Ca2+ concentrations in

astrocytes is thought to depend on Ca2+ release from intracellular

Ca2+ stores [19,20,22,25,31]. Likewise, NPY release from the

LDCVs is also closely linked to the release of Ca2+ from

intracellular stores [19]. Of particular interest is the observation

that the phospholipase C/inositol phosphate pathway is linked to

the release of Ca2+ from internal Ca2+ stores of astrocytes

[20,22,25,31], thereby specifically implicating IP3-dependent

intracellular Ca2+ stores in the Ca2+-dependent secretory pathway

of these cells. Moreover, in light of the fact that the IP3-senstive

intracellular Ca2+ stores provide sufficient amounts of Ca2+ to

initiate the secretory processes even in the absence of external

calcium [41,73,74], it is imperative to identify the intracellular

Ca2+ stores to understand not only the intracellular Ca2+ control

mechanisms but also the regulated secretory pathway of astrocytes.

Secretory granules of bovine chromaffin cells contain the

highest concentrations of all three isoforms of IP3R3, containing

58–69% of total cellular IP3Rs [39]. In addition, chromogranins A

and B bind directly to the IP3Rs at the intragranular pH 5.5

[75,76] and activate the IP3R/Ca2+ channels, i.e., increase both

the mean open time and the open probability of the channels upon

IP3 binding, 9–42-fold and 8–16-fold, respectively [77–79].

Therefore, given that secretory granules contain the majority of

cellular chromogranins A and B and of all three isoforms of IP3Rs,

and that the coupling between the chromogranins and the IP3Rs

changes the structure of the IP3R/Ca2+ channels to a more

ordered and open-ready state [79] it appears natural for secretory

granules to function as the major IP3-sensitive intracellular Ca2+

store of the cells in which they are localized.

However, unlike the acidic intragranular milieu of secretory

granules [80,81] the pH of the ER is maintained ,7.4 [82–84],

and at this physiological pH, chromogranin A fails to bind the

IP3Rs directly and only chromogranin B remains bound to the

IP3Rs [75] (Fig. 7). Yet the binding strength of CGB to the IP3Rs

at a near physiological pH 7.5 is significantly weaker than that at

the intragranular pH 5.5 [75,85], and as a result the IP3R/Ca2+

channel-activating effect of CGB at this pH is markedly weaker

than that shown at pH 5.5 [77,78]. As though to reflect accurately

the differences in the physiological conditions of secretory granules

and the ER, the secretory granule IP3R/Ca2+ channels are shown

to be at least 6–7-fold more sensitive to IP3 than those of the ER

[40], which means that secretory granules will be able to release

Ca2+ in response to an IP3 concentration that is lower than one-

seventh that is required to induce IP3-dependent Ca2+ release from

the ER. In other words, the markedly higher IP3 sensitivity of the

secretory granule IP3R/Ca2+ channels indicates that secretory

granules will be able to sense the arrival of IP3 long before the ER

can and respond by releasing the granular Ca2+ ahead of the ER

(Fig. 7). It is highly likely that this Ca2+ would play key roles in

initiating the exocytotic processes by the secretory granules and to

a certain extent by synaptic-like vesicles as well, resulting in the

secretion of ions and gliotransmitters that participate in the cell-to-

cell communication. Moreover, in light of the fact that the

SNARE protein syntaxin 1A and synaptotagmin I have been

shown to exist in secretory granules of chromaffin cells and

interact with chromogranins A and B [86] and that cellubrevin

(VAMP3), synaptobrevin 2 and synaptotagmin were shown to

colocalize with secretory granule markers in anterior pituitary cells

[87], it is highly likely that SNARE proteins also exist in secretory

granules of astrocytes.

Considering that secretory granules are present in all types of

secretory cells (neurons, endo/exocrine cells, and neuroendocrine

cells), the presence of secretory granules in astrocytes is in line with

the already established secretory activity of these cells in the brain.

In particular, the rich presence of chromogranin B and

secretogranin II and the three IP3R isoforms in secretory granules

of astrocytes is in full agreement with the distribution of these

molecules in secretory granules of typical neuroendocrine

chromaffin cells [39,60], which function as the major IP3-sensitive

intracellular Ca2+ stores. Indeed, our preliminary studies show that

IP3 mediates Ca2+ release in cultured astrocytes even in the

condition in which the ER Ca2+ is depleted due to the presence of

thapsigargin (Yoo et al., unpublished results), whereby strongly

suggesting the IP3-dependent Ca2+ release from secretory granules

of astrocytes. Further, in view of the observation that the cell

processes of astrocytes appear to contain more secretory granules

than the cell bodies and that the presence of secretory granules in

the cell processes appears to be fairly common, the fine control of

IP3-dependent Ca2+ signaling mechanism in the cell processes will

be all the more important in controlling the exocytotic activity of

astrocytes through the cell processes, which is vital in cell-to-cell

communication in the brain. Yet the situation will be different in

cultured astrocytes. That secretory granules of cultured astrocytes

appeared to distribute evenly in the cytoplasm [9] may have

resulted from the directionless culture conditions.

Figure 3. Localization of glial fibrillary acidic protein, CGB, and SgII in astrocytes of brain tissues. Expression of glial fibrillary acidic
proteins in the intermediate filaments of astrocytes that contain secretory granules was examined by double immunogold labeling using the
antibodies specific for GFAP and either CGB (A) or SgII (B). (A) The GFAP-labeling gold particles (10 nm) and the CGB-labeling gold particles (15 nm)
are marked by black and white arrows, respectively. Notice that the GFAP-labeling gold particles are exclusively localized in the filaments (fm)
whereas the CGB-labeling particles are limited to secretory granules (SG). (B) The GFAP-labeling gold particles (10 nm) and the SgII-labeling gold
particles (15 nm) are marked by black and white arrows, respectively. Again the GFAP-labeling gold particles are exclusively localized in the filaments
(fm) whereas the SgII-labeling gold particles are localized in secretory granules (SG), but not in mitochondria (M) and axon (ax). Bar = 200 nm.
doi:10.1371/journal.pone.0011973.g003
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The major IP3-sensitive intracellular Ca2+ store role of secretory

granules has been demonstrated with many other types of

secretory cells, such as chromaffin cells, pancreatic b- and acinar

cells, mast cells and airway goblet cells [41,88–92], and the IP3-

induced intracellular Ca2+ release from secretory granules in the

absence of external Ca2+ has been proven to be sufficient to

initiate the exocytotic processes [41,73,74]. It was further shown

recently that Ca2+ release through the IP3R/Ca2+ channels of

Figure 4. Immunogold electron microscopy showing the localization of IP3R1 in secretory granules in astrocytes. Astrocytes from
human brain tissues were immunolabeled for IP3R1 (15 nm gold) with the affinity purified IP3R1 antibody (A and B). The IP3R1-labeling gold particles
(indicated by arrows) were primarily localized in the membranes of secretory granules (SG) with some in the endoplasmic reticulum (see A), but not
in the mitochondria (M). In the control experiments without the primary antibody no gold particles were seen in secretory granules (not shown). fm,
filament. Bar = 200 nm.
doi:10.1371/journal.pone.0011973.g004
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Figure 5. Immunogold electron microscopy showing the localization of IP3R2 in secretory granules in astrocytes. Astrocytes from
human brain tissues were immunolabeled for IP3R2 (15 nm gold) with the affinity purified IP3R2 antibody (A and B). The IP3R2-labeling gold particles
(indicated by arrows) were primarily localized in the membranes of secretory granules (SG) with some in the endoplasmic reticulum (see A), but not
in the mitochondria (M). In the control experiments without the primary antibody no gold particles were seen in secretory granules (not shown). ax,
axon; fm, filament. Bar = 200 nm.
doi:10.1371/journal.pone.0011973.g005
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secretory granules in pancreatic acinar cells is primarily respon-

sible for the initiation of alcohol-related acute pancreatitis [93].

Therefore, given that the presence of secretory granules in the cell

increases not only the magnitude of IP3-dependent cytoplasmic

Ca2+ release but also the IP3 sensitivity of the cytoplasmic IP3R/

Ca2+ channels of the cell [34], the presence of secretory granules in

astrocytes is expected to contribute to both the large amounts of

Ca2+ released in the cytoplasm and the high IP3 sensitivity of the

cytoplasmic IP3R/Ca2+ channels of astrocytes. In this regard, the

recent studies that showed the requirement of IP3-mediated

intracellular Ca2+ releases for the increased expression and

secretion of fibroblast growth factor-2, which has a size of

Figure 6. Immunogold electron microscopy showing the localization of IP3R3 in secretory granules in astrocytes. Astrocytes from
human brain tissues were immunolabeled for IP3R3 (15 nm gold) with the affinity purified IP3R3 antibody (A and B). The IP3R3-labeling gold particles
(indicated by arrows) were primarily localized in the membranes of secretory granules (SG) with some in the endoplasmic reticulum (see B), but not in
the mitochondria (M). In the control experiments without the primary antibody no gold particles were seen in secretory granules (not shown). ax,
axon; fm, filament. Bar = 200 nm.
doi:10.1371/journal.pone.0011973.g006

Figure 7. A model showing the IP3-induced Ca2+ mobilization from secretory granules and the secretory processes of astrocytes.
The tetrameric IP3R/Ca2+ channels are shown in red and blue columns while chromogranins A and B are shown in open and hatched circles,
respectively. Only can chromogranin B, which interacts with CGA to form a CGA-CGB heterodimer at the pH of ER, couple to the tetrameric IP3Rs in
the ER [75] whereas both chromogranins A and B, which form a CGA2CGB2 heterotetrameric complex at the acidic intragranular pH [94], couple to the
tetrameric IP3Rs in secretory granules [75,77,78]. Stimuli at the cell surface (1) will lead to the production of IP3 at the plasma membrane, which will
serve as the first signal to induce the IP3-dependent Ca2+ release from intracellular Ca2+ stores in the cytoplasm. Yet each intracellular Ca2+ store will
respond differently to IP3 depending on the amount of IP3 produced and the sensitivity of the IP3R/Ca2+ channels to IP3. In light of the significantly
higher sensitivity of the IP3R/Ca2+ channels of secretory granules than those of the ER [40], secretory granules will release Ca2+ (2), ahead of the ER (3),
in response to low IP3 concentrations. This Ca2+ could play essential roles in initiating secretion by synaptic-like vesicles (4) and secretory granules (5),
leading to secretion of the gliotransmitters (6).
doi:10.1371/journal.pone.0011973.g007
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,24 kDa, by astrocytes [31] and the critical role of Ca2+ release

through the IP3R/Ca2+ channels for the proliferation, motility,

and invasion of human astrocyte cancer cells [42] appear to

underscore the importance of the IP3-dependent Ca2+ signaling in

the physiology of astrocytes.
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