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Abstract: Fe3O4@SiO2 core-shell nanoparticles (NPs) were synthesized with the co-precipitation
method and functionalized with NH2 amino-groups. The nanoparticles were characterized by X-ray,
FT-IR spectroscopy, transmission electron microscopy, selected area electron diffraction, and vibrating
sample magnetometry. The magnetic core of all the nanoparticles was shown to be nanocrystalline
with the crystal parameters corresponding only to the Fe3O4 phase covered with a homogeneous
amorphous silica (SiO2) shell of about 6 nm in thickness. The FT-IR spectra confirmed the appearance
of chemical bonds at amino functionalization. The magnetic measurements revealed unusually
high saturation magnetization of the initial Fe3O4 nanoparticles, which was presumably associated
with the deviations in the Fe ion distribution between the tetrahedral and octahedral positions in
the nanocrystals as compared to the bulk stoichiometric magnetite. The fluorescent spectrum of
eosin Y-doped NPs dispersed in water solution was obtained and a red shift and line broadening (in
comparison with the dye molecules being free in water) were revealed and explained. Most attention
was paid to the adsorption properties of the nanoparticles with respect to three dyes: methylene blue,
Congo red, and eosin Y. The kinetic data showed that the adsorption processes were associated with
the pseudo-second order mechanism for all three dyes. The equilibrium data were more compatible
with the Langmuir isotherm and the maximum adsorption capacity was reached for Congo red.

Keywords: Fe3O4@SiO2; core-shell nanoparticles; magnetic properties; water pollutions; fluorescence;
adsorption

1. Introduction

Silica (SiO2) is frequently used as a support-material in core-shell structures; it does not
only help nanoparticles (NPs) to become stable at certain conditions, but also provides them
an opportunity to be easily modified with other functional groups and, additionally, to be
environmentally compatible. Furthermore, silica coated magnetic NPs can be dispersed
in water without adding other surfactants due to the negative charges on the silica shells.
The fields of application of Fe3O4@SiO2 NPs functionalized with different surfactants, and
more frequently with amines, are different. A number of authors have demonstrated their
effective applications in biology and medicine [1,2], in catalysis [3,4], and, especially, as
effective adsorbents for the removal of pollutants from wastewaters [5–12]. In ref. [1],
the amino modifications of the silica surface of Fe3O4@SiO2 NPs reduced the detrimental
interactions with cellular membranes and prolonged the blood circulation time after in vivo
administration. In ref. [12], the magnetic core-shell Fe3O4@SiO2 NPs synthesized by the
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modified Stöber method and functionalized with amino and carboxyl groups were used as
a nano-adsorbent for scandium ions from aqueous solutions. In refs. [7,9], the synthesized
Fe3O4@SiO2-NH2 nanocomposites were embedded into the polyether-sulfone membranes
with different concentrations via the phase inversion method. Due to the nanocomposite
adsorption properties, the significant enhancement in efficiency of the modified membranes
for the removal of Cd(II) ions and methyl red dye was achieved. A new type of magnetic
fluorescent nanocomposite (Fe3O4@SiO2-NH2/CQDs) was prepared by bonding of carbon
quantum dots (CQDs) with Fe3O4@SiO2-NH2 nanocomposites through amine-carbonyl
interactions and used as a fluorescent probe to detect Cu2+ [13]. The authors of ref. [11]
concluded that the strategy of coating with silica and amino group functionalization of
Fe3O4 nanoparticles is useful for increasing the adsorption capacity. In particular, they
obtained adsorption capacities of 29.3 and 28.6 mg/g for light green and brilliant yellow
anionic dyes, respectively, using Fe3O4@SiO2@NH2 NPs, while 12.1 and 9.4 mg/g only for
Fe3O4 NPs. Since this line of research is rather new, and the properties and application
possibilities of NPs strongly depend on the details of their synthesis, the search for optimal
synthesis conditions and the study of the properties of the functionalized particles by
various methods can be considered as an urgent task.

The present work is devoted to the study of the morphology, magnetic and adsorption
properties of Fe3O4 NPs obtained by the co-precipitation method and then coated with
amorphous silica to produce Fe3O4@SiO2 core-shell NPs, which was functionalized by an
amine group to fabricate Fe3O4@SiO2-NH2 nanocomposites. The methylene blue (MB),
Congo red (CR) and eosin Y (EY) were selected as the typical organic cation and anion
pollutants to test the ability of the prepared composite for the adsorptive removal of organic
pollutants from water. The study of the fluorescent properties of eosin Y-doped NPs was
also carried out.

2. Materials and Methods
2.1. Synthesis Procedure

Ferrous sulfate heptahydrate (FeSO4·7H2O) (>99%) was obtained from Sigma-Aldrich,
ethanol (CH3CH2OH) (>95%) was obtained from Fullin Nihon Shiyaku Biochemical Ltd.,
tetraethyl orthosilicate (Si(OC2H5)4, TEOS) (>99%) and ammonia solution (28–30 wt.%
NH3) were purchased from Acros Organics. Potassium nitrate (KNO3) (>99%) was pur-
chased from Wako Pure Chemical Industries, Ltd. Sodium hydroxide pellets was obtained
from PanReac AppliChem. Poly(sodium 4-styrene-sulfonate) solution (30 wt.%) in water
was purchased from Aldrich. All the chemicals were used without further purification.
Several stages were used to synthesize nanocomposites.

Magnetic NPs, Fe3O4, were produced by co-precipitation, hydrolysis of iron sulfate
under Ar flow. In the typical synthesis, a mixture of the basic solution is 0.02 mol KNO3
and 0.2 mol NaOH in 50 mL of ultrapure water, previously deoxygenated, was prepared
under Ar and, then was added dropwise to the Fe (II) solution (one is 0.25 M, the other
is 0.75 M, and mixed together), under Ar and at 90 ◦C. The black precipitate formed was
stirred over 1 h at 90 ◦C, then, washed thoroughly with ethanol. Silica coating of the
magnetite nanoparticles was performed via the Stöber process. First, Fe3O4 NPs (200 mg)
were dispersed in ethanol (150 mL) and kept immersed in a water bath over 15 min under
sonication. Then, an ammonia solution (6 mL) and TEOS (200 µL) were slowly added
to the Fe3O4 suspension. Finally, the SiO2 coated particles were collected magnetically
using an NdFeB magnet, and the isolated powders were washed thoroughly with ethanol
(sample Fe3O4@SiO2). The amino functionalization of silica coated NPs was made in the
same manner as is mentioned above, replacing TEOS to (3-aminopropyl)-triethoxysilane
(APTES) (sample Fe3O4@SiO2-NH2). At last, eosin Y was attached to the amino silanized
magnetic nanoparticles covalently. First, Fe3O4@SiO2-NH2 NPs (200 mg) were dispersed
in ultrapure water (50 mL) and over 15 min were exposed to sonication. The 0.2 mmol
eosin Y and catalyst were added to the NPs suspension under stirring during 1 h, then,
washed thoroughly with ethanol (sample Fe3O4@SiO2-NH2-EY).
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2.2. Characteristic Methods

The crystal structure of the NPs was characterized by X-ray diffraction measurements
using a Bruker D8 Advance diffractometer (Cu Kα radiation, 40 kV, 25 mA, λ = 1.5418 Å)
(Bruker Optik GmbH, Ettlingen, Germany).

The morphology and microstructure of the NPs were investigated using transmission
electron microscopy (TEM). TEM experiments were performed with a JEM-2100 (JEOL
Ltd., Tokyo, Japan) microscope operating at the accelerating voltage of 200 kV (Siberian
Federal University) and JEOL JEM-1230 microscope (JEOL Ltd., Tokyo, Japan) operated at
an accelerating voltage of 80 kV (Precision Instruments Center of NPUST). Selected-area
electron diffraction (SAED) was used to determine the structure of the NPs.

Fourier transform infrared absorption (FT-IR) spectra were recorded with a VER-
TEX 70 (Bruker Optik GmbH, Ettlingen, Germany) spectrometer in the spectral region
of 400 ÷ 4000 cm−1 with the resolution 4 cm−1. The spectrometer was equipped with a
Globar as the light source and a wide band KBr beam splitter and RT-DLaTG as the detector
(Bruker Optik GmbH). For the measurements, round tablet samples of about 0.5 mm thick
and of 13 mm in diameter containing NPs were prepared as follows: nanopowders in
amount lower than 0.001 g were thoroughly ground with 0.14 g of KBr; the mixtures were
formed into tablets which were subjected to cold pressing at 10,000 kg.

The magnetic properties were measured with the vibrating sample magnetometer
Lakeshore 7400 series VSM (Lake Shore Cryotronics, Inc., Westerville, OH, USA).

The excitation and fluorescence spectra were measured on a Fluorolog 3–22 spectroflu-
orometer (Horiba Jobin Yvon, Edison, NJ, USA). The obtained spectra were corrected for
sensitivity of PMT, reabsorption effects and background. The quartz cells with the cross
sections of 10 × 10 mm2 were used to investigate the solutions for L-geometry of excitation.
All the measurements were carried out at room temperature.

The absorption spectra were recorded with a UV/VIS circular dichroism spectrometer
SKD-2MUF (OEP ISAN, Moscow, Russia). Quartz cells with the optical path length of
5 mm were used.

3. Results and Discursion
3.1. NPs Structure and Morphology

The XRD patterns (Figure 1) revealed that the parent NPs and magnetic cores of all
the nanocomposites were of the spinel ferrite crystal structure with the parameters of the
most intense peaks corresponding to the Fe3O4 phase (PDF Card # 04-005-4319).
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The TEM images (Figure 2a–d) revealed NPs of predominantly rectangular shape with
the average size of 25 ± 5 nm (Figure 2e). At the same time, a small amount of ellipsoidal
NPs with the sizes of about 10 nm and rectangular NPs of a larger size can be noticed.
The almost ideal crystal structure of the initial Fe3O4 NPs is seen very well in the HRTEM
image in Figure 3a. As a result of the silica coating, the initial NPs became covered with
a homogeneous amorphous silica shell, 6–7 nm thick seen especially well in the HRTEM
image (Figure 3b). Functionalization with NH2 and further doping with eosin Y led to
some blurring of the HRTEM image (Figure 3c,d). The selected area electron diffraction
(SAED) patterns also shown in Figure 3c,d confirm the presence of the Fe3O4 crystalline
core in all NPs.
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Figure 3. HRTEM image and selected area electron diffraction (SAED) of Fe3O4 (a,b) and Fe3O4@SiO2-
NH2 (c,d) NPs, respectively.
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The FT-IR spectra (Figure 4) show the appearance of new bands upon the transi-
tion Fe3O4 → Fe3O4@SiO2 → Fe3O4@SiO2-NH2 → Fe3O4@SiO2-NH2-EY evidencing the
appearance of chemical bonds. In the spectrum of pure Fe3O4 NPs, the strong band at
580 cm−1 is due to Fe-O stretching vibrations in accordance with other authors [9,11,13].
This band is observed in the spectra of all the samples. The wide asymmetric band at
1094 cm−1 appeared in the spectrum of the Fe3O4@SiO2 sample and is seen in the spectra of
two next samples having a SiO2 shell. This band can be related to the asymmetric stretching
vibrations of Si-O-Si. An analogous band was observed and interpreted equally by all
the authors studying Fe3O4@SiO2 NPs [9,11,13]. Symmetric Si-O-Si stretching vibrations
were associated in [9] with the weak band near 808 cm−1. The same weak band is seen
at 800 cm−1 in Figure 4. At the same time, the authors of ref. [13] associated the band at
797 cm−1 with the Si-O-Fe stretching vibrations proving the presence of a chemical bond
between the magnetic core and silica shell [9]. Only minor changes appear in the spectra of
the Fe3O4@SiO2-NH2 and Fe3O4@SiO2-NH2-EY samples. The appearance of a wide band
near 3430 cm−1 is a more noticeable feature characteristic of the NH2 amino group [14]. A
small amount of covalently attached eosin Y in comparison with Fe3O4@SiO2-NH2 NPs
does not allow one to clearly see changes in the bending and stretching vibrations of the
amino groups.
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3.2. NPs Magnetic Properties

The magnetic measurements (Figure 5) show very narrow hysteresis loops with mag-
netic saturation in the external magnetic field near 3 kOe and coercive force of about 100 Oe.
The saturation magnetization Ms value of the initial Fe3O4 NPs is exceptionally high, sig-
nificantly higher than the one presented by other authors for Fe3O4 NPs, for example [11]
and even higher than in bulk Fe3O4 samples, 92 emu/g at room temperature [15]. The
redistribution of Fe ions between the oppositely magnetized tetrahedral and octahedral
sublattices in magnetite NPs caused, for example, by the technological conditions can
be one of the reasons of the observed Ms increase. Since the resulting magnetization of
the sample is due to the difference between the magnetic moments of Fe ions occupying
octahedral and tetrahedral positions, the Fe ion deficiency in tetrahedral position can be
responsible for an increase of the sample magnetization.
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The surface modifications lead to the Ms decrease. However, it remains quite high. A
similar decrease in the saturation magnetization of Fe3O4 NPs coated with silica compared
to the initial Fe3O4 nanoparticles was noted by a number of authors. For example, in ref. [11]
Ms was equal to 38, 23, and 11 emu/g for Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@NH2 NPs,
correspondingly; in ref. [16]—80, 31 and 20 emu/g for Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2-
NH2 NPs respectively.

The decrease in magnetization of NPs after coating with silicon oxide (curve 2 in
Figure 5) can be caused by a number of factors. First of all, when determining the magneti-
zation value, the whole particle mass was taken into account including the silica shell. In
addition, the shell can affect the spin state of the magnetic core surface layers. However,
the addition of the amino groups and then eosin Y resulted in an increase in magnetization.
Such a behavior of the magnetization was not previously observed in the above-cited and
other works. It is possible that, in the process of amino functionalization, cation redistribu-
tion between the sublattices continued. This question needs special consideration.

3.3. Application of Synthesized NPs as Fluorescent Probes

The development of hybrid nanoparticle technology, synthesized fluorescent nanopar-
ticles with encapsulated quantum dots [17], or dyes [18] have attracted great interest in
recent years. Despite the excellent brightness and photostability of quantum dots for
imaging applications, the risk of systemic toxicity remains high due to the incorporation of
heavy metals. Thus, dye-doped nanoparticles still appear very promising. The simulta-
neous combination of fluorescent and magnetic properties of NP imaging would greatly
benefit in the diagnostics and monitoring of living cells and organisms [19,20].

The spectral properties of the synthesized EY-doped Fe3O4@SiO2@NH2 dispersed
in water solution are presented in Figure 6a. The fluorescence spectrum turned out to
be independent of the excitation wavelength and NPs give the green emission with the
maximum at 542 nm with the excitation maximum at 515 nm. The fluorescent spectrum of
EY-doped NPs dispersed in solution displays a red shift of 6 nm and 40 % broadening as
compared with the dye molecules free in water in Figure 6b. On the contrary, the maximum
of the excitation spectrum (measured at 580 nm) shows a slight blue shift of 1 nm and 30%
broadening. The reasons for the observed spectral changes could include the change in
the ionic form of the EY molecules and polarity decrease in the microenvironment. In the
water solution, pH 6, most of the EY molecules are in the dianionic form. When attached
to the amino groups in NPs, the dye changes its ionic form to the anionic or even neutral
one and the spectral properties of these forms are different, on the one hand [21]. On other
hand, as the solvent polarity decreases, the red shift in the emission of EY is observed [22].
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3.4. Application of Synthesized NPs for Dye Adsorption
3.4.1. Adsorption Kinetics

The spectral properties of two anionic (eosin Y (EY) and Congo red (CR), and one
cationic) methylene blue (MB) dyes were used to find out the adsorption capacity of
amino-functionalized Fe3O4@SiO2 core-shell magnetic NPs in distilled water (measured
pH 5.5) at 25 ◦C. The dye concentration was determined by absorbance at the wavelength
corresponding to the maxima in the spectra of 490 nm for eosin Y, 505 nm for CR, and
664 nm for MB.

For a typical experiment shown schematically in Figure 7, 3 mg of adsorbent was
dispersed in 1.5 mL of the dye aqueous solution at the initial concentration of the dye
C0 = 30 mg/L. The solution was placed in an ultrasonic bath for 10 min for intensive
mixing. Then, a magnetic nanoadsorbent was separated from the solution by applying a
magnetic field and the absorption spectra of the solution were measured. The shaking and
magnetic separation was repeated multiple times to obtain kinetic curves. The value of the
adsorption capacity qt (mg/g) of NPs was calculated as follows

qt =
(C0 − Ct)V

m
, (1)

where C0 and Ct (mg/L) are the initial concentration and concentration of the dye at
the contact time t, V (L) is the volume of the solution; and m (g) is the mass of the
adsorbent (NPs).
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The effect of the contact time on the adsorption of Fe3O4@SiO2-NH2 NPs is shown
in Figure 8 for the dyes at the same initial concentration of C0 = 30 mg/L. At the ini-
tial stage of adsorption kinetics, the amount of the adsorbed dye onto the magnetic
NPs increases rapidly due to a large number of vacant active sites on the surface of
the amino-functionalized silica coated magnetic NPs. After that, these surface sites are
gradually occupied, so the adsorption rate decreases until the adsorption equilibrium
is established. The time to reach the equilibrium adsorption for the anionic dyes on
Fe3O4@SiO2-NH2 NPs is much faster than for the cationic dye: 60 min for EY, 100 min for
CR, and more than 300 min for MB. The other adsorbent Fe3O4@SiO2@NH2@Zn−TDPA
NPs [TDPAT = 2,4,6-tris(3,5-dicarboxyl phenylamino)-1,3,5-triazine] showed the similar
time of 120 min both for the cationic MB and anionic CR dye [23]. The adsorption of CR by
the Fe3O4@SiO2 nanospheres achieved the equilibrium only after 5 h [24]. The equilibrium
adsorption for initial concentration of C0 = 30 mg/L was measured after 24 h of contact of
NPs with the dye solution. The equilibrium adsorption capacity qe of CR (11.6 mg/g) is
higher than that of EY (7.2 mg/g) and MB (9.8 mg/g).

A quantitative understanding of the adsorption is possible with the help of kinetic
models. The adsorption kinetics of the dyes on the magnetic NPs was described by the
kinetic models of the pseudo-first order:

ln(qe − qt) = ln qe − k1t (2)

and of the pseudo-second order:

t
qt

=
1

k2 q2
e
+

t
qe

, (3)

where qe and qt (mg/g) are the amounts of the dye at equilibrium and at contact time
t, respectively; k1 (1/min) and k2 (g/(mg min)) are the adsorption rate constants of the
reaction of the pseudo-first and pseudo-second orders, respectively.
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The curve-fitting plots of the adsorption ability of the dyes by Fe3O4@SiO2-NH2 NPs
using the two kinetic models are shown in Figure 9, and the fitted parameters with the
correlation coefficients R2 are summarized in Table 1. The R2 values for the pseudo-second
order kinetic model (R2 = 0.995–0.999) were higher than those of the pseudo-first order
model (R2 = 0.903–0.970). In addition, the calculated values of qe (Table 1) determined by the
pseudo-second order model are more consistent with the measured values of qe than that
of the pseudo-first-order model. These results prove that the adsorption process of these
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dyes on Fe3O4@SiO2-NH2 NPs completely followed a the pseudo-second order kinetic
model, suggesting that adsorption is dependent on the amount of the solute adsorbed on
the surface of the adsorbent and the amount of active sites. It should be noted that the
dye adsorption kinetics on magnetic nanoparticles is most often described in terms of the
pseudo-second order model [23–30].
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Table 1. Kinetic parameters (Equations (2)–(4)) for the adsorption of the dyes (initial C0 = 30 mg/L) on Fe3O4@SiO2-NH2

NPs at 25 ◦C.

Kinetics Parameters EY CR MB

Pseudo-first order model

k1 (1/min) 0.074 ± 0.012 0.025 ± 0.002 0.0057 ± 0.0003

qe (mg/g) 10.2 ± 3.4 8.7 ± 1.4 5.3 ± 1.2

R2 0.903 0.964 0.970

Pseudo-second order model

k2 (g/(mg min)) 0.023 ± 0.005 0.0034 ± 0.0005 0.0019 ± 0.0002

qe (mg/g) 7.5 ± 0.6 12.6 ± 0.9 10.2 ± 0.8

R2 0.999 0.995 0.999

Intraparticle diffusion model

ki1 (mg/(g min0.5)) 0.37 ± 0.07 0.93 ± 0.06 0.60 ± 0.03

C1 (mg/g) 4.0 ± 0.6 2.1 ± 0.3 0.11 ± 0.03

R2 0.938 0.988 0.986

ki2 (mg/g min0.5) 0.04 ± 0.01 0.11 ± 0.02 0.024 ± 0.006

C2 (mg/g) 6.7 ± 0.2 10.0 ± 0.3 8.9 ± 0.2

R2 0.873 0.929 0.902

The intraparticle diffusion model is often used to identify diffusion mechanisms [23,25–28,30,31].
In this model, the rate of intraparticle diffusion is a function of t0.5 and can be determined
as follows:

qt = kit0.5 + C, (4)

where ki is the intraparticle diffusion rate constant, (mg/g.min0.5). C is the intercept of the
linear curve. According to the model proposed by Weber and Morris [32], the adsorption
process is controlled only by intraparticle diffusion if the plot is a straight line and passes
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through the origin. Otherwise, if the plot is multilinear or does not pass the origin, more
than one diffusion mechanism might determine the adsorption process and adsorption is
related to diffusion within the particles.

As shown in Figure 10, at least two stages are observed for anionic CR, EY as well
as for the cationic MB dye, and thus, two or more diffusion mechanisms can affect the
adsorption. The first stage refers to the transport of the dye molecules from the solution
to the external surface of NPs. This stage is completed after up to 60 min for EY, 90 min
for CR, and 240 min for MB. The second stage corresponds to the diffusion of the dye
molecules within the micropores of Fe3O4@SiO2-NH2 NPs. The high initial absorption
rates ki1 of the first stage (Table 1) are observed for all the dyes, indicating a fast initial
dye removal process and the predominant role of external surface diffusion, especially,
for CR. Extremely low adsorption rates ki2 (8–25 fold less than for the first stage) shows a
negligible proportion of intraparticle diffusion of the dye molecules within the micropores
of NPs. A similar two-stage adsorption process was observed for MB onto B-Fe3O4@C
NPs [28], for CR and MB dyes onto Fe3O4@SiO2@NH2@Zn−TDPA NPs [23], and for EY
onto Fe3O4/polypyrrole composites [30].
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3.4.2. Adsorption Isotherms

Two adsorption isotherm models (Langmuir and Freundlich) were applied to under-
stand the adsorbate–adsorbent interaction. The Langmuir equation was defined as follows

qe =
qmax KLCe

KLCe + 1
, (5)

where qe (mg/g) is the amount of the dye adsorbed at the equilibrium, qmax represents the
maximum adsorption capacity (mg/g), KL is the Langmuir adsorption constant (L/mg),
and Ce is the equilibrium concentration of the adsorbed dye (mg/L).

The Freundlich equation is expressed as:

qe = KFC1/n
e , (6)

where KF is the Freundlich adsorption constant (L/mg); the dimensionless constant 1/n
is an empirical parameter related to the isotherm shape. Based on the 1/n values, the
adsorption process can be classified as irreversible (1/n = 0), favorable (0 < 1/n < 1), or
unfavorable (1/n > 1) [33].
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The Langmuir model illustrates the formation of a homogeneous adsorbed monolayer,
while the adsorbed molecules do not interact with each other. The Freundlich model
considers the existence of a more complicated multilayered structure.

Based on the results presented above, we have chosen the anionic CR dye for further
investigation owing to its highest capacity and shortest time of the adsorption process.
The adsorption isotherm models were used to describe the equilibrium between the ad-
sorbed CR on the surface of Fe3O4@SiO2-NH2 NPs (Figure 11). The obtained parameters
are presented in Table 2. According to the correlation coefficients, the Langmuir model
(R2 = 0.967) coincided with the experimental data much better than the Freundlich model
(R2 = 0.789), which indicates that the homogeneous and monolayer adsorption is the domi-
nant adsorption in the case of CR. Although the 1/n value is lower than 1 and indicates
that the adsorption of CR is favorable, the R2 values of the Freundlich isotherm do not
fall within the acceptable range. In contrast to our results, the adsorption isotherm of CR
on Fe3O4@SiO2@Zn-TDPAT NPs was satisfactorily described both by the Langmuir and
Freundlich models [23].

Nanomaterials 2021, 11, x FOR PEER REVIEW 12 of 15 
 

 

(R2 = 0.789), which indicates that the homogeneous and monolayer adsorption is the dom-
inant adsorption in the case of CR. Although the 1/n value is lower than 1 and indicates 
that the adsorption of CR is favorable, the R2 values of the Freundlich isotherm do not fall 
within the acceptable range. In contrast to our results, the adsorption isotherm of CR on 
Fe3O4@SiO2@Zn-TDPAT NPs was satisfactorily described both by the Langmuir and 
Freundlich models [23]. 

  
Figure 11. Adsorption isotherms of CR on magnetic NPs at 25 °C. 

Table 2. Adsorption isotherm parameters (Equations (5) and (6)) for Congo red at 25 °C. 

Langmuir Model Freundlich Model 
qmax, mg/g KL, L/mg R2 1/n KF, L/mg R2 

24 ± 1 0.21 ± 0.04 0.967 0.18 ± 0.04 0.010 ± 0.002 0.789 

The adsorbents based on Fe3O4@SiO2 nanoparticles for the removal of the anionic CR 
and cationic MB dyes are summarized in Table 3. The maximum adsorption capacity qmax 
of the synthesized amino-functionalized Fe3O4@SiO2 core-shell magnetic nanoparticles is 
comparable to other analogous adsorbents [10,23,24,29,34]. 

As is seen from Table 3, the adsorption efficiency can further be improved by the 
surface modification of NPs. It should be emphasized that the pH and ionic strength of 
the aqueous solution [23] as well as the temperature [24] could also significantly influence 
the efficiency of the dye adsorption on NPs due to the involvement of different adsorption 
mechanisms including electrostatic and hydrophobic interactions, hydrogen bonding, van 
der Waals forces, etc. The measured zeta potential of the Fe3O4@mSiO2-NH2 nanoparticles 
vs. pH showed [35] that the isoelectric point was at 5.9 due to the amino-functionalization, 
denoting that the modified nanoparticles would be positively charged at pH < 5.9 and 
negatively charged at pH > 5.9. Under the conditions of our experiment (the initial pH 
5.5), the surface of the magnetic NPs had a slightly positive charge. Table 3 indicates that 
the maximum adsorption capacity qmax is close for both anionic CR and cationic MB dyes, 
so the electrostatic interactions are not only responsible for the adsorption of the dyes on 
NPs. 

  

Figure 11. Adsorption isotherms of CR on magnetic NPs at 25 ◦C.

Table 2. Adsorption isotherm parameters (Equations (5) and (6)) for Congo red at 25 ◦C.

Langmuir Model Freundlich Model

qmax, mg/g KL, L/mg R2 1/n KF, L/mg R2

24 ± 1 0.21 ± 0.04 0.967 0.18 ± 0.04 0.010 ± 0.002 0.789

The adsorbents based on Fe3O4@SiO2 nanoparticles for the removal of the anionic CR
and cationic MB dyes are summarized in Table 3. The maximum adsorption capacity qmax
of the synthesized amino-functionalized Fe3O4@SiO2 core-shell magnetic nanoparticles is
comparable to other analogous adsorbents [10,23,24,29,34].

As is seen from Table 3, the adsorption efficiency can further be improved by the
surface modification of NPs. It should be emphasized that the pH and ionic strength of
the aqueous solution [23] as well as the temperature [24] could also significantly influence
the efficiency of the dye adsorption on NPs due to the involvement of different adsorption
mechanisms including electrostatic and hydrophobic interactions, hydrogen bonding, van
der Waals forces, etc. The measured zeta potential of the Fe3O4@mSiO2-NH2 nanoparticles
vs. pH showed [35] that the isoelectric point was at 5.9 due to the amino-functionalization,
denoting that the modified nanoparticles would be positively charged at pH < 5.9 and
negatively charged at pH > 5.9. Under the conditions of our experiment (the initial pH 5.5),
the surface of the magnetic NPs had a slightly positive charge. Table 3 indicates that the
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maximum adsorption capacity qmax is close for both anionic CR and cationic MB dyes, so
the electrostatic interactions are not only responsible for the adsorption of the dyes on NPs.

Table 3. Comparison of the adsorption capacity of the Fe3O4@SiO2 core-shell magnetic nanoparticles for the anionic CR
and cationic MB dyes.

Anionic Dye Adsorbent qmax (mg/g) Cationic Dye Adsorbent qmax (mg/g)

CR

Fe3O4@SiO2-NH2 24.0 [This work]

MB

Fe3O4@SiO2-NH2 20 a [This work]

Fe3O4@SiO2-NH2 18.0 [29] Fe3O4@SiO2 31.8 [24]

Fe3O4@SiO2-NH2-MIP b 35.3 [29] Fe3O4@SiO2 32.3 [23]

Fe3O4@SiO2 36.2 [24] Fe3O4@SiO2-CR c 31.4 [34]

Fe3O4@SiO2 14.8 [23] Fe3O4@SiO2@Zn−TDPAT d 58.7 [23]

Fe3O4@SiO2@Zn-TDPAT d 17.7 [23] Fe3O4@SiO2-(CH2)3-IL/Talc e 6.2 [10]
a qmax = qe at C0 = 60 mg/L. b MIP is the molecularly imprinted polymer. c CR is Congo red. d TDPAT is 2,4,6-tris(3,5-dicarboxyl
phenylamino)-1,3,5-triazine. e IL is the ionic liquid.

4. Conclusions

In this study, core-shell magnetic nanoparticles, Fe3O4@SiO2, were synthesized by
silica coating of the initial Fe3O4 NPs via the Stöber process and then functionalized with
amino groups NH2. X-ray and electron diffraction data showed the magnetic core of the
particles to have the magnetite Fe3O4 crystal structure without the presence of any other
phases. Transmission electron microscopy showed predominantly rectangular NPs with
the average size of 25 ± 5 nm in the initial Fe3O4 powder sample. The homogeneous
amorphous silica shells with the thickness of about 7 nm were formed around each initial
NP. The FT-IR spectra confirmed the appearance of the chemical bonds between the silica
shell and magnetic core of NPs as well between the silica and amino group. The magnetic
measurements revealed unusually high saturation magnetization Ms of the initial Fe3O4
NPs even higher than this value of the bulk magnetite crystal. Ms of the functionalized
samples also significantly exceeded Ms of similar samples presented in literature. The high
Ms value can be considered as an advantage of the studied nanomaterials since higher
magnetization requires the use of weaker magnetic fields to control the processes involving
these materials.

The fluorescence spectrum of EY-doped Fe3O4@SiO2@NH2 NPs dispersed in water
solution was studied. NPs gave the green emission with the maximum at 542 nm with
the excitation maximum at 515 nm. The spectrum displayed a red shift of about 6 nm and
40% broadening as compared to the dye molecules free in water while the maximum of
the excitation spectrum (measured at 580 nm) showed a slight blue shift of 1 nm and 30%
broadening. The observed spectral changes were associated with the change in the ionic
form of the EY molecules due to the attachment to the amino groups in NPs.

The dye adsorption capacity and kinetics of the amino-functionalized Fe3O4@SiO2
core-shell magnetic NPs were studied in application to two anionic (eosin Y (EY) and Congo
red (CR), and one cationic) methylene blue (MB) dyes. It was shown that the adsorption
process of these dyes on the studied NPs followed the pseudo-second order kinetic model,
suggesting that sorption is dependent on the amount of the solute adsorbed on the surface
of the adsorbent and the amount of active sites. At least two stages were revealed in the
adsorption time dependence for all three dyes. In the first stage, the transport of the dye
molecules from the solution to the external surface of NPs occurs. The second stage corre-
sponds to the diffusion of the dye molecules within the micropores of NPs. The high initial
absorption rates of the first stage were observed for all the dyes, indicating a fast initial
dye removal process and the predominant role of the external surface diffusion, especially,
for CR. It was shown that the experimental data were fitted to the Langmuir model of the
adsorption processes indicating that the homogeneous and monolayer adsorption was
the dominant adsorption in the considered cases. The maximum adsorption capacity of
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the synthesized amino-functionalized Fe3O4@SiO2 core-shell magnetic nanoparticles is
comparable to other analogous adsorbents presented in literature.
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