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A design-by-treatment interaction model
for network meta-analysis with random
inconsistency effects

Dan Jackson,** Jessica K. Barrett,? Stephen Rice,” Ian R. White?
and Julian P. T. Higgins®®

Network meta-analysis is becoming more popular as a way to analyse multiple treatments simultaneously
and, in the right circumstances, rank treatments. A difficulty in practice is the possibility of ‘inconsistency’
or ‘incoherence’, where direct evidence and indirect evidence are not in agreement. Here, we develop a
random-effects implementation of the recently proposed design-by-treatment interaction model, using these
random effects to model inconsistency and estimate the parameters of primary interest. Our proposal is a
generalisation of the model proposed by Lumley and allows trials with three or more arms to be included in
the analysis. Our methods also facilitate the ranking of treatments under inconsistency. We derive R and /2
statistics to quantify the impact of the between-study heterogeneity and the inconsistency. We apply our model
to two examples. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

Keywords: inconsistency; mixed treatment comparisons; multiple treatments meta-analysis; network meta-
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1. Introduction

Meta-analysis is well established in medical statistics. Typically, meta-analyses involve pairwise
comparisons of two treatments, but, because it is usually important to consider more than two treat-
ment alternatives when making decisions in practice, network meta-analysis has attracted much interest
in recent years. In network meta-analysis, multiple treatments are included in the meta-analysis, using
data from trials that compare at least two of these treatments. Network meta-analysis offers the advan-
tage of being able to compare any treatments included in the network, including those that have not been
compared directly, and, in the right circumstances, allows the full set of treatments to be ranked. How-
ever, all the usual issues surrounding the application of meta-analysis apply in the network meta-analysis
setting and may even be exacerbated when more than two treatments are analysed simultaneously [1].
Furthermore, the more complicated statistical modelling required in network meta-analysis presents
problems. For example, Song et al. [2] identify a variety of methodological problems associated with
network meta-analysis, including ‘an unclear understanding of underlying assumptions’, the ‘use of
inappropriate or flawed methods’ and ‘inadequate comparison or inappropriate combination of direct
and indirect evidence’.

Perhaps, the biggest statistical challenge facing network meta-analysis is a problem that has been
called inconsistency or incoherence [3-7]. This arises when treatment effects obtained from direct
evidence and indirect evidence (or from two different types of indirect evidence) do not agree.
Inconsistency is problematic statistically, because models must incorporate it and, conceptually, because
it is less clear what estimates of treatment effect mean when the sources of evidence are observed to
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be inconsistent. Methods for network meta-analysis began by distinguishing between direct and indirect
sources of evidence and then combining across them [8]. This led naturally to the idea of ‘node splitting’
[9-11], where inferences are split depending on whether the information comes from studies that provide
direct or indirect information about a particular effect. Node splitting aims to explore in detail where
inconsistency may lie, and should be conducted after a global assessment of inconsistency. Here, we
adopt an alternative modelling approach, where instead of splitting nodes, we introduce a further source
of variation to allow for inconsistency in the network. A case for treating the inconsistency parameters
as fixed effects (separate parameters that are assumed to be unrelated) is made by Higgins et al. [7] who
argue that the common distribution assumption implicit in the random-effects formulation is implausible.
This is, they argue, because ‘each inconsistency parameter has its own interpretation and some may be a
priori more likely to be nonzero than others’. One important practical advantage of using fixed effects for
the inconsistency parameters is that the resulting model can be fitted as a multivariate meta-regression
[12]. However, using fixed effects for the inconsistency parameters makes ranking treatments across
all designs a challenging task, and sensitivity analyses involve using multiple sensitivity parameters to
describe the inconsistency.

In contrast, the approach we adopt here is to introduce inconsistency parameters into the model as
random effects, so that the inconsistency across evidence sources is conceptualised as additional varia-
tion, in the same way as heterogeneity across studies is conceptualised as variation in a conventional
random-effects meta-analysis [13]. Modelling the inconsistency parameters as following a common
(random-effects) distribution is at best a strong assumption and at worst a wrong one. However, it offers
a useful modelling framework because it facilitates the ranking of treatments under inconsistency and
sensitivity analyses in terms of a single sensitivity parameter (the inconsistency variance). Perhaps most
importantly, our random-effects formulation of the design-by-treatment interaction model enables us to
estimate average treatment effects across all designs, rather than the design-specific treatments effects
we obtain when using fixed effects for the inconsistency parameters [12]. We return to the case for and
against using random effects for the inconsistency parameters in the discussion.

Our approach to modelling network meta-analytic data is motivated by the recently proposed design-
by-treatment interaction model [7, 12] and by the model proposed by Lumley [6] for the network
meta-analysis of two-arm trials with normally distributed data. Our model is a special case of the design-
by-treatment interaction model and a generalisation of Lumley’s model. It is also closely related to
models for loop inconsistency, which assume that the inconsistency parameters are normally distributed
[5]; as shown by Higgins et al. [7], loop inconsistency models contain a subset of the inconsistency
parameters of the design-by-treatment interaction model, so some reduced forms of our model are loop
inconsistency models. Hence, if the inconsistency is genuinely due to loop inconsistency, then using
the design-by-treatment interaction model, rather than the loop inconsistency model, incurs a loss of
power, and other issues with over-parameterisation could arise. We propose a new model for network
meta-analysis, but we draw inspiration from a variety of different models and approaches. As another
innovation, we also take the recently proposed multivariate heterogeneity statistics [14] and show how
these can be used to quantify the impact of heterogeneity and inconsistency.

Useful properties of our model are its abilities to incorporate trials with three or more arms, to use
exact distributions and to incorporate covariates. The ability to include clinically relevant covariates is
especially useful because these could be used to explain the inconsistency, an important point to which
we return in the discussion. We assume that attempts have been made to account for inconsistency when
presenting our model, where these attempts could include strategies such as introducing covariates or
removing unsatisfactory studies. The rest of the paper is set out as follows. In section 2, we develop our
model and show how it is related to some established models. In section 3, we show how this model
may be estimated and used both in the context of a fully estimation-based procedure and also in the
context of a sensitivity analysis. In section 4, we derive statistics to quantify the impact of the variance
components in our model, and we apply our methods to two example datasets in section 5. We conclude
with a discussion in section 6.

2. The model

Our model is intended for network meta-analysis, where multiple studies make different comparisons
from a set of treatments and some studies may have more than two treatment arms. It is possible
to fit models for network meta-analysis using either contrast-based or arm-based analyses [3]. In an
arm-based analysis, the outcome data are the studies’ treatment arm outcomes, such as mean values. In a
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contrast-based analysis, the outcome data are estimated treatment effects, such as mean differences. Our
proposed model is a special case of the recently developed design-by-treatment interaction model [7,12],
which focusses on the treatment effects. Hence, the model development that follows is most naturally
conceptualised in terms of a contrast-based analysis. Without loss of generality, we take treatment A4 as
the reference treatment and refer to the other treatments as B, C, D and so on. When referring to the
design-by-treatment interaction model, we take the design d as referring only to the set of treatments
compared in a trial [7,12]. For example, if the first design compares treatments A and B only, then d = 1
refers to two-arm trials that compare these two treatments.

2.1. The design-by-treatment interaction model

The design-by-treatment interaction model has recently been proposed by Higgins et al. [7] and has
been implemented using fixed effects for the inconsistency parameters by White et al. [12]. This model
is defined in terms of the treatment effects or ‘contrasts’. See Higgins et al. [7] for a full explanation of
why the design-by-treatment interaction model successfully addresses the complications that arise from
the presence of multi-arm trials in the models proposed by Lu and Ades [5]. In brief, the inconsistency
parameters included in loop inconsistency models depend on the ordering of the treatments: ‘The only
model that contains all the Lu—Ades models (i.e. with all different treatment orderings) appears to be the
design-by-treatment interaction model’ [7].

The design-by-treatment interaction model can be viewed in two ways. From the first viewpoint, we
model the contrasts of all treatments including those not used in particular designs. Thus, for example,
we include a model for the C — D contrast in trials that compare treatments A and B only. These con-
trasts are to be thought of as counterfactual contrasts that would have been observed if these trials had,
counter to fact, also included treatments C and D. Using counterfactual contrasts provides a particularly
simple model form. However, from the second viewpoint, the model can be written to describe only the
contrasts needed in application. These two viewpoints lead to the same likelihood, and the assumptions
about counterfactual contrasts in the first viewpoint are not used in estimation. We use the first viewpoint
in sections 2.1-2.3 and the second viewpoint in sections 2.4-2.6.

From the first viewpoint, we provide a model for all contrasts ,uﬁij , where ,uﬁij denotes the true treat-
ment effect of treatment J relative to the reference treatment A in the 7 th study of design d. We assume
consistency within designs, so //,2,{. = Mﬁij - /L;}il . Before presenting the design-by-treatment interaction
model, we will discuss some special cases of this, in increasing order of complexity, in order to describe
the various components that comprise our model. In our framework, the common-effect and consistent
model assumes that

pai =8
where 47 is the effect of treatment J relative to treatment A. The common-effect and consistent model
therefore assumes that all studies of all designs have the same true treatment effects. The §47 are ¢
parameters of primary interest, which are referred to as the basic parameters [7], where ¢ equals the
total number of treatments in the network minus one. These basic parameters describe the effectiveness
of treatments relative to treatment A. The contrasts ,uﬁij could represent differences in mean responses,
log-odds ratios or any other measure of treatment effect used in meta-analysis.
The random-effects and consistent model assumes that

it =4+ 537

where 8 (’141.] is a study-by-treatment interaction term to reflect between-study heterogeneity. It is conven-
tional to assume that the 8 fij are normally distributed, centred at zero, where the variances of ﬁiJ , with
suitable covariances defined later in the text, provide the between-study variance structure.

Finally, the design-by-treatment interaction model assumes that

it =47 4 5 + o g

where a)“l‘” is a design-by-treatment interaction term to reflect inconsistency (variability between

designs). The a)(}“ , which we refer to as the inconsistency parameters, allow inconsistency within the
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network, but if all a)“i‘” = 0, then the consistency assumption is satisfied. Equation (1) is given as
Equation (3) by Higgins et al. [7]. The design-by-treatment interaction model implies that

nai = (84 =84 + (B3 = Bai') + (037 —3") @

where §44 = ,BA."1 = a);A = 0, so that Equation (2) simplifies to Equation (1) when / = A. Hence,
model (2), with these constraints, describes the design-by-treatment interaction model. Equation (2) is a
statement concerning the assumptions made about the studies’ true treatment effects and does not incor-
porate within-study sampling variation. Further within-study distributional assumptions are also needed
to specify the likelihood, as we explain in section 2.6.

The a)(‘}f terms mean that different contrasts for each treatment comparison are allowed for every
design, and these terms model the inconsistency in the network [7]. This allows, for example, for the
average contrasts in trials involving treatments A and B only to be different to those in trials involv-
ing treatments A, B and C. This is often plausible. For example, a treatment might be investigated
and discounted by earlier trials, so that the trials comparing treatments A and B only would tend to be
performed more recently. Differences in study practices and patient populations over time could then
also result in different contrasts between the two designs. However, we do assume that the consistency
equations apply to the average treatment effects across all designs and studies.

2.2. Modelling the between-study heterogeneity

In order to apply the design-by-treatment interaction model, we must specify the distributional
assumptions made about the form of the heterogeneity and the inconsistency parameters. We model
the heterogeneity using one of the simplest models that has been proposed

Bai ~Nc (0.Zp) S

where X g denotes a square matrix where the entries on the leading diagonal are rg and all other entries

are rg /2, Bgi = (/8;14’5 B gl.c, .. )T and N, denotes a multivariate normal distribution in ¢ dimensions.
This form of X g is justified by the assumption that the heterogeneity variance is the same for all treat-
ment comparisons for every study [3]. We do, however, agree with Salanti et al. [3] that this assumption
‘may sometimes be difficult to defend’, and so, we return to the possibility of alternative, and more
general, models for the heterogeneity in the discussion.

2.3. Modelling the inconsistency parameters

Our proposed model for the inconsistency parameters is an innovation of our proposed methodology.
As explained in the introduction, we use random effects for the inconsistency parameters [5, 6], and we
assume that

wg~N:(0,X,) 4)

T . . .
where wy; = (wﬁB,w:}C, ) and X, denotes a square matrix where the entries on the leading

diagonal are t2 and all other entries are t2/2. This form of X, is justified in a very similar way to
the assumed form of X g in the previous subsection; we assume that the inconsistency variance across
designs is the same from all treatment comparisons. The inconsistency variance raz) quantifies the extent
of the inconsistency in the network as a whole, and specific inconsistency parameters describe where
particular inconsistencies arise. If t2 = 0, then there is no inconsistency, and the model simplifies to a
consistency model.

The w(‘i‘” are of interest because their estimates can be used to explore any inconsistencies in the
network. These inconsistencies occur where treatment effects in particular designs differ from the aver-
age across all designs. In order to explain why inconsistencies occur, the model alone is not enough,
and detailed knowledge of the design and conduct of the trials, including their risk of bias, is crucial.
The model using fixed effects for the inconsistency parameters proposed by White et al. [12] can also
be used to explore inconsistencies and may be considered preferable to the proposed model in situa-
tions where identifying inconsistencies is the primary aim. This is because the approach of White et al.
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does not make the strong assumption that the a)“i‘” are normally distributed, so that inferences cannot

be driven by this distributional assumption. A complication, however, is that the interpretation of fixed-
effect inconsistency terms depends on the parameterisation used [12]. This is not the case here because
we place exchangeable inconsistency parameters on all treatments in all designs.

Together, Equations (3) and (4) provide a random-effects model that incorporates both between-study
heterogeneity and inconsistency, where the extent of these two sources of variation is described by the
parameters rf, and t2, respectively. The true effects from separate studies of the same design are not inde-
pendent because they share the same inconsistency parameter. However, the true effects from trials of
different designs are independent. We ignore any possible structure in the inconsistency parameters; for
example, in some situations, it may be plausible that particular inconsistency parameters are more alike
than others. This possibility is not taken into account when assuming that the inconsistency parameters
are exchangeable.

We interpret the basic parameters as representing the average treatment effects across all
studies and designs. An advantage of our framework is that it can easily be extended to incorporate
more complicated forms of X g and X, in situations where these are feasible. We return to this issue in
the discussion.

8AJ

2.4. Using the model to describe network meta-analysis datasets with two-arm trials

As explained earlier, the design-by-treatment interaction model (2) describes counterfactual contrasts,
so we now take only those needed in application and hence adopt the second viewpoint. If all studies are
two-arm trials, then we only need a single contrast from model (2) for each trial. Let §; denote §4J _gAl
where / and J are the arms that are included in design d. Then the contrast from model (2) used for the

ith trial of design d is 8¢ + Ba; + Wa, where Bgi ~ N (0,3 ) and Wy ~ N (0,72). If 2 = 0 and nor-
mal within-study distributions are assumed, then this is a conventional model that assumes consistency
and can be fitted as a standard intercept-free meta-regression model [12].

More generally, but continuing to assume normal within-study distributions, our model is a reparam-
eterisation of the model proposed by Lumley [6, p. 2317], where our 2 and t§ are denoted as w? and

272 by Lumley. Like us, Lumley uses a contrast-based analysis, but he uses two random heterogeneity
terms, which are presumably intended to reflect the presence of heterogeneity in the two treatment arms.
These two heterogeneity terms can be absorbed into a single random effect for the contrast, where this
random effect need not result from equal heterogeneity variances in both arms.

2.5. Using the model to describe network meta-analysis datasets where trials have more than two arms

Let ¢z denote the number of linearly independent contrasts estimable from design d, so that ¢; equals
the number of treatment arms in design d minus one. In order to take a subset of ¢4 contrasts from (2)
that conveniently describe the data, for each design, we take a ‘baseline’ treatment arm B;. We then
compute the effects of the other treatments relative to the baseline treatment arm. Other contrasts also
estimable from design d can be obtained as linear combinations of this subset of contrasts [3]. Hence,
these contrasts are sufficient, and the same likelihood function is obtained regardless of the baseline
groups used. Thus, we use the ¢4 contrasts from design d

pgt! = (64 = 545) 4 (B4 — B0 ) + (01 - 0p™) )

where the /Lglf’ T in Equation (5) are a subset of the contrasts from (2), where the J are restricted to the
¢4 ‘non-baseline’ treatments included in design d.

To model the data, we need the distributions of the heterogeneity and inconsistency components in
(5). Let ﬂiﬁ denote the subvector of 8 ;;, of length ¢4, containing the ;l‘iij described in (5). Assumption

(3) and the assumed form of X g means that

’ AB
Bai =By, _lﬂdi 4~ Ne, (0, Zﬂ) (6)
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where 1 is the vector of length c; where every entry is one. Similarly, let w;l denote the subvector of
® 4, of length ¢4, containing the a)‘}“ from (5). Assumption (4) and the assumed form of X, means that

Wi=w,—10)% ~ N, (0,2,) )
so that
Rgi=8a+Bsi +Wy (8)

where p4; is the vector of length c; containing the ;Lgfj from (5) and §4 is the vector of length ¢y

containing the corresponding §47 — §484 also from (5). We define a)fdj = (a);l‘“ — a);Bd ) so that

these terms are the entries of W ;. Equation (8), with the distributional assumptions in (6) and (7), mod-
els all contrasts in the data and so provides our basis. Equations (6) and (7) describe the between-study
heterogeneity and the inconsistency, respectively.

2.6. The proposed model for normally distributed and binary data

Equations (6), (7) and (8) only describe the true treatment effects, and further within-study distributional
assumptions are needed to model outcome data. For multivariate normal outcome data from multi-arm
studies, our model for the treatment effects in a contrast-based analysis is

Yiyi=8a+Byi +W4+teau )

where Y 4; is the vector of estimated treatment effects and €4; is multivariate normal with within-study
covariance matrix S z;. Because the estimates of treatment effect share a common baseline treatment
group, the within-study covariances (the non-diagonal entries of S 4;) are nonzero, and it is important
that these are not ignored in the analysis [15]. Model (9) is a multivariate extension of Lumley’s model
[6] and can also be thought of as a generalisation of a particular type of loop inconsistency model,
because the design-by-treatment interaction model contains additional inconsistency parameters to loop
inconsistency models [7]. For normally distributed data, or where a normal approximation is used for
other types of data, model (9) is assumed in a contrast-based analysis.

However, and with a little extra effort, the design-by-treatment interaction model can also be applied in
the context of an arm-based analysis. Here, we further use study-specific fixed effects for the arm-level
parameters in the baseline treatment arms or for the average arm-level parameter across all treatment
arms. The arm-level parameters in the other trial arms are then defined using the appropriate contrasts
from (8). Upon making an appropriate distributional assumption, the observed data in all trial arms are
modelled using these arm-level parameters. Arm-based analyses therefore facilitate using exact distribu-
tions in the likelihood for non-continuous data. For example, for binary data and a logistic link function,
we assume that the number of events in treatment arm J, r L{ i is distributed as

rc{i ~ Bin (”éi’ ”({i)

where ng ; 1s the number of patients in this treatment arm and

} B, J
logit (n({i) =agi +u,!

where «g; denotes the log odds of an event in the baseline treatment arm in the ith study of design d.

3. Estimation

We perform both contrast-based and arm-based analyses in section 5. Only the treatment effects are
available to us for all studies in our first example (i.e. not all arm-level data are available), so here, we
use a contrast-based analysis. This example involves continuous outcome data, so the direct use of model
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(9), which assumes multivariate normality, is perfectly natural. However, we use an arm-based analysis
for our second example, where the necessary arm-level binary outcome data are available, so that bino-
mial distributions can be used directly. We use WinBUGS [16] as a convenient tool for fitting our model
because it is quite a complicated mixed, and possibly generalised, linear model. WinBUGS is therefore
a natural environment for fitting models of this type, but our use of WinBUGS to fit Bayesian models
comes at the price of issues surrounding prior sensitivity and checking convergence diagnostics.

By adopting a Bayesian approach, the probabilistic ranking of the treatments follows more naturally
than in a classical framework [12]. To rank the treatments, at each iteration of the Markov chain Monte
Carlo MCMC), we record which treatment is most effective, that is, which basic parameter is the largest.
If all basic parameters are of the same sign and indicate that the reference treatment A is most effective,
then we take treatment A as most effective. The proportion of MCMC iterations in which treatments are
the most effective gives the probabilities that they are most effective. These probabilities can then be used
to rank the treatments. The supplementary material contains sections of WinBUGS code, described as
‘probabilities of being the best treatment’, which show the calculations used when performing this rank-
ing. This method for ranking the treatments could be extended by calculating the probabilities that each
treatment is the second most effective, the third most effective and so on, so that the surface under the
cumulative ranking (SUCRA) line for each treatment can be calculated [17]. By using the basic parame-
ters to rank the studies in this way, the ranking is an average across designs, and design-specific rankings
may differ. By modelling the inconsistency parameters as random effects, we are able to perform ranking
without making the assumption of consistency, but we return to this issue in the discussion.

Our arm-based analyses using WinBUGS are similar to other Bayesian meta-analyses [18,19] in many
respects. We give all location parameters vague (normal with very small precision) prior distributions,
and uniform prior distributions from O to 5 were used for g and 7,,. Prior sensitivity to apparently vague
priors for the between-study variance can be considerable in univariate random-effects meta-analysis
[20], and this can also be anticipated to be the case for the variance structure in more complex mod-
els such as ours. Hence, our choice of prior distributions should be taken as providing some indicative
results. Very large burn-ins of 30 000 were used to ensure convergence, which was checked by running
three chains at different starting values and using WinBUGS’ implementation of the Gelman—Rubin
convergence statistic, as modified by Brooks and Gelman [21], which were stable in all instances. For
inference, enough iterations were used to ensure that all Monte Carlo standard errors were around 0.005
(the maximum for all parameters monitored was 0.0069). We are therefore confident in quoting results
to two decimal places. Our WinBUGS code, which has been adapted from code provided by Dias et al.
[10,22,23], is provided in the supporting information that accompanies the paper. An alternative to using
WinBUGS for fitting the proposed model would be to develop a computer program for fitting models of
this kind, perhaps using maximum likelihood or restricted maximum likelihood. Purpose built programs
and packages using classical methods to fit meta-analytic models with specific forms of random-effects
structures have been developed [24-26]. Because our model is a concrete proposal for a model for net-
work meta-analysis, developing suitable computer software for fitting it routinely could be an important
next step; the ranking of the treatments could be performed in a classical framework using the type of
procedure proposed by White et al. [12].

An alternative to estimating the full model is to perform a sensitivity analysis using raz, as the sen-
sitivity parameter. If ré = 0, then all inconsistency parameters are zero, and the model reduces to a
model that assumes consistency, as commonly assumed in practice [2]. However, as 15 increases, we
can determine how the inferences depend on the assumed extent of the inconsistency. This type of sen-
sitivity analysis is likely to be especially useful in situations with limited data relative to the number
of parameters to estimate. This is because, in such situations, data provide little information about the
extent of the inconsistency so that the resulting estimation of the full model would be very imprecise.
We illustrate this idea using our second example in section 5.

4. R and I? statistics for the impact of between-study heterogeneity
and inconsistency

Multivariate R and /2 statistics can be computed as explained by Jackson et al. [14]. A classical approach
was used when originally developing these statistics, but here, we adopt Bayesian estimation. Hence, we
use the normal approximations to credible regions, whereas Jackson et al. used the (approximate) covari-
ance matrices of the estimated effects, but otherwise, the same type of procedure is adopted. In situations
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where Bayesian and maximum likelihood analyses are in good numerical agreement, R and 12 statis-
tics very similar to those in the succeeding discussions would be obtained when using likelihood-based
methods.

In order to quantify the impact of the between-study heterogeneity and inconsistency, we fit three
models: the ‘common-effect and consistent’” model (‘L’Ig =T, = O), the ‘random-effects and consistent’
model (z, = 0) and the ‘random-effects and inconsistent’ (or full) model. We denote the volumes of
the normal approximations to the 95% (or any other probability) credible regions for all ¢ basic param-
eters from these three models as Ve, Vre and Vg7, and the covariance matrices of these normal
approximations as Ccc, Cgrc and Cgy, respectively.

The R statistic comparing a model with an additional source (or sources) of variation to an alternative,
reduced model is given by the cth root of the ratio of the volumes of the credible regions resulting from
these two models, where the model with additional variation appears in the numerator.

For example, using the normal approximations to the credible regions, the R statistic comparing the
‘random-effects and inconsistent’ and ‘random-effects and consistent’ models is given by

VRI )UC 1 nl/2e
(VRC (| RC|)

where |-| denotes the matrix determinant and /2 = (R* — 1) /R?. These R and I statistics quantify the
impact of the inconsistency on the random-effects model, where the term ‘impact’ refers to the effect that
the inclusion of the extra source of variability (the inconsistency) has on the precision of the estimated
treatment effects. These /2 statistics are interpreted in the same way as conventional /2 statistics [14]
and are subject to the same issues as the conventional univariate one [27]. We follow the convention of
presenting 1?2 statistics as percentages. This type of investigation could be extended by examining par-
ticular combinations of treatment effect parameters in the way described by Jackson et al. [14], so that
the impact of the variance components on some, rather than all, basic parameters may also be quantified.
The aforementioned R statistic can be interpreted as the factor by which posterior standard deviations
are increased on allowing for inconsistency, averaged over all possible treatment contrasts.

As explained by Jackson et al. [14], |Ccc |V . |Cre|Y¢ and [Cgy|Y/¢ are the squares of geometric
means of posterior standard deviations of the basic parameters from the three models. Hence, we calcu-
late the quantities |Ccc|'/2¢, |Cre|/?¢ and |Cgy|'/?¢ as average posterior standard deviations of the
estimated basic parameters resulting from these three models.

Lu and Ades [5] also assess how big the inconsistency is in relation to the heterogeneity. In our nota-
tion, they calculate the posterior probability that 7, > 4. We quantify the impact of the inconsistency
using our R and /2 statistics and use deviance information criterion (DIC) statistics [5,28] to quantify the
strength of evidence that inconsistency is present. Methods for assessing the extent of the heterogeneity
and inconsistency based on a generalisation of Cochran’s Q statistic [14] have also recently been devel-
oped for network meta-analysis [29,30]. The appropriate use of this type of statistic, in conjunction with
the model proposed here, is a possible avenue for further work.

5. Applications

In this section, we illustrate our methodology using two contrasting examples. The supplementary
material contains the WinBUGS code used for both examples.

5.1. Application one: osteoarthritis of the knee

The dataset [31], which has subsequently been updated [32], consists of 87 trials of 38 designs, each com-
paring a subset of 22 treatments for pain relief for osteoarthritis of the knee (OAK). Most trials contain
two arms, except for 10 three-arm trials and one four-arm trial. Outcomes are continuous measurements,
and the standardised mean difference of pain at the end of the trial is used to compare treatments, where
a negative treatment effect indicates benefit. A network diagram is shown in Figure 1. Note that most of
the trials in the network involve comparisons with either standard care or placebo.

Trial arm data are not available for all trials, and we therefore fit the model using a contrast-based
approach. For multi-arm trials, the estimates of within-study covariances are not available, so the oft-
diagonal entries of S 4; are unknown to us. We therefore use an approximate formula for the within-study
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Figure 1. Network diagram for the osteoarthritis of the knee data. Node size is proportional to the number of

trials including the treatment, and multi-arm trials are shown as closed loops. Treatments are A: standard care, B:

placebo, C: no medication, D: acupuncture, E: balneotherapy, F: braces, G: aerobic exercise, H: muscle exercise,

I: heat treatment, J: insoles, K: tai chi, L: weight loss, M: sham acupuncture, N: ice/cooling, O: interferential, P:
laser, Q: manual, R: NMES, S: PES, T: PEMF, U: static magnets, V: TENS.

covariances, given by the reciprocal of the number of patients in the baseline group. This approximation
takes the pooled variance s2 as fixed and common to all treatment arms; denoting the means in each of
the three arms as Y7, Y, and Y3, where Y; is the mean in the baseline arm common to two standardised
mean differences, we take Cov ((Y2 — Y1) /s, (Y3 — Y1) /s) = (1/s2) Var (Y1), which gives our approx-
imation. For one trial, only treatment contrasts were available, and two arms were in the same treatment
category. The two treatment contrasts from this trial were treated as treatment effects from a multi-arm
trial with a shared random effect contributing to each treatment effect.

The results from fitting the model are given in Table I, where we report the means (estimates) and
standard deviations of posterior distributions; for variance components we also report posterior medi-
ans and 95% credible intervals. We present the two sets of results in Table I, where we do and do not
constrain t2 to be zero. By constraining 72 = 0, we obtain inferences assuming consistency. By com-
paring the results, assuming consistency with those from the full model, the implications of relaxing
the consistency assumption can be assessed. For all reported results, the posterior medians were sim-
ilar to posterior means. The posterior mean of the heterogeneity standard deviation tg is of the same
order of magnitude as the estimated treatment effects. The posterior mean of the inconsistency standard
deviation 7, in the full model is much smaller, suggesting low levels of inconsistency in the network.
Treatment effects suggest that most treatments are more effective than standard care, placebo or no med-
ication, but posterior standard deviations are large because of the sparsity of the evidence in the network.
The treatment rankings suggest that interferential treatment is most likely to be the best, followed by
static magnets.

Because the inconsistency variance 72 is small, the two sets of results in Table I are in good agree-
ment. However, the full model results in (slightly) wider intervals for the estimated treatment effects
because it incorporates a further source of variation that is not modelled when assuming consistency.

The 12 statistics are shown in Table II. These show that the impact of the inconsistency on the random-
effects model is mild (I 2=19 %), which reinforces our conclusions regarding the magnitude of t,, and
the small degree of inconsistency, and the DIC statistic for the consistency model is smaller than the
one for the inconsistency model. The average standard deviations (section 4) of the estimated treatment
effects are 0.15 for the common-effect model assuming consistency, 0.27 for the random-effects model
assuming consistency and 0.30 for the random-effects model with inconsistency. The product of the first
two R statistics shown in Table II is equal to the final R statistic. This is because the R statistics are
scaling factors that describe the relative volumes of the uncertainty intervals so this relationship is geo-
metrically obvious. Less obvious, however, is that this relationship also applies to the ‘complement’ of
the 72 statistics; that is, if we define J2 = (1 -1 2), then these relationships between the R statistics
also apply to the J2 (and so, the J) statistics. The estimated inconsistency parameters are tabulated in
the supplementary materials that accompany the paper.
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Table I. Results for the osteoarthritis of the knee data.

Consistency (72 = 0) Inconsistency (t2 # 0)

Parameter Estimate (SD) P(best) Estimate (SD) P(best)
Treatment
A: Standard care - 0.00 0.00
B: Placebo §AB 0.04 (0.21) 0.00 0.04 (0.23) 0.00
C: No medication §4C 0.60 (0.32) 0.00 0.59 (0.35) 0.00
D: Acupuncture §4D —0.78 (0.16) 0.07 —0.78 (0.19) 0.07
E: Balneotherapy SAE —0.46 (0.26) 0.00 —0.49 (0.30) 0.01
F: Braces §AF —0.15 (0.47) 0.02 —0.15 (0.50) 0.02
G: Aecrobic exercise §4G —0.60 (0.23) 0.03 —0.57 (0.25) 0.03
H: Muscle exercise sAH —0.37 (0.11) 0.00 —0.36 (0.15) 0.00
I: Heat treatment sAl —0.03 (0.31) 0.00 —0.02 (0.33) 0.00
J: Insoles §47 —0.01 (0.36) 0.00 0.00 (0.41) 0.00
K: Tai chi s4K —0.28 (0.29) 0.01 —0.28 (0.34) 0.01
L: Weight loss sAL —0.35 (0.26) 0.01 —0.35 (0.29) 0.01
M: Sham acupuncture §AM —0.25 (0.24) 0.00 —0.28 (0.28) 0.00
N: Ice/cooling §AN —0.25 (0.37) 0.01 —0.25 (0.39) 0.01
O: Interferential 540 —1.11 (0.49) 0.51 —1.11 (0.51) 0.49
P: Laser sAP —0.24 (0.37) 0.00 —0.24 (0.42) 0.01
Q: Manual 549 —0.29 (0.31) 0.01 —0.29 (0.32) 0.01
R: NMES §AR 0.45 (0.56) 0.00 0.45 (0.58) 0.00
S: PES §4S —0.70 (0.33) 0.08 —0.73 (0.36) 0.09
T: PEMF §AT 0.01 (0.32) 0.00 0.01 (0.38) 0.00
U: Static magnets §AU —0.78 (0.58) 0.23 —0.78 (0.61) 0.23
V: TENS sAV —0.63 (0.23) 0.01 —0.61 (0.24) 0.01
Heterogeneity mean (SD) T8 0.43 (0.06) 0.42 (0.06)
median (CI) 0.43 (0.32, 0.56) 0.42 (0.30, 0.56)
Inconsistency mean (SD) Tw 0.14 (0.10)
median (CI) 0.13 (0.00, 0.37)

DIC 132.61 133.23

NMES: neuromuscular electrical stimulation; PES: pulsed electrical stimulation; PEMF: pulsed electro-
magnetic fields; TENS:transcutaneous electrical nerve stimulation.

Two sets of results are shown, those assuming consistency and those allowing for inconsistency. Estimates
are given by posterior means, and P(best) is the probability that each treatment is best (to two decimal
places). Posterior medians and 95% credible intervals are also given for variance parameters.

SD, standard deviation; DIC, deviance information criterion.

Table II. R and /2 statistics for the osteoarthritis of the knee data.

R 1% (%)
Common-effect and consistent — random-effects and consistent 1.81 69
Random-effects and consistent — random-effects and inconsistent 1.11 19
Common-effect and consistent — random-effects and inconsistent  2.01 75

This example shows that our methodology can be applied successfully to a very large network of
treatments. The next example involves fewer treatments, and so, we use this to exhibit further aspects of
our methodology.

5.2. Application two: smoking cessation

As a second example, we apply our methods to a dataset comparing interventions to aid smoking
cessation. These data have been previously analysed by, amongst others, Lu and Ades [5] and
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A B

Figure 2. Network diagram for the smoking cessation data. Node size is proportional to the number of tri-
als including the treatment, and multi-arm trials are shown as closed loops. Treatments are A: no contact, B:
self-help, C: individual counselling and D: group counselling.

Table III. Results for the smoking cessation data.
Consistency (raz) = 0) Inconsistency (‘L’Z) #* O)
Parameter  Estimate (SD)  P(best)  Estimate (SD)  P(best)

Treatment
A: No contact - 0.00 0.00
B: Self-help §A4B 0.49 (0.40) 0.06  0.60 (0.64) 0.09
C: Individual counselling §AC 0.84 (0.24) 0.24  0.95(0.55) 0.25
D: Group counselling §4D 1.10 (0.44) 071  1.24(0.67) 0.66
Heterogeneity mean (SD) 78 0.84 (0.19) 0.85 (0.20)

median (CI) 0.82 (0.55, 1.27) 0.83 (0.55, 1.30)
Inconsistency mean (SD) Tw 0.54 (0.51)

median (CI) 0.40 (0.02, 1.90)
DIC 326.60 326.69

Two sets of results are shown, those assuming consistency and those allowing for inconsistency. Esti-
mates are given by posterior means, and P(best) is the probability that each treatment is best (to two
decimal places). Posterior medians and 95% credible intervals are also given for variance parameters.
SD, standard deviation; DIC, deviance information criterion.

Higgins et al. [7, Table VI]. The data consist of 24 trials comparing four treatments. There are two three-
arm trials, giving a total of eight trial designs. The network diagram is shown in Figure 2. Here, binary
data are available, where the outcome is smoking cessation, for which we use binomial distributions in
an arm-based analysis where the treatment effects are log-odds ratios.

Results from fitting the model are given in Table III. Again, we also report results with 72 constrained
to be zero, so assuming consistency. All interventions are estimated to be better than no contact in both
cases, although posterior standard deviations are large. Allowing for inconsistency results in slightly dif-
ferent posterior means, with differences occurring at the first decimal place. The posterior mean for the
inconsistency standard deviation t,, is moderately large but highly uncertain, suggesting there may be
notable inconsistency within this network. Because it incorporates this extra degree of uncertainty, the
model with inconsistency gives larger posterior standard deviations for treatment effects. However, con-
clusions regarding treatment rankings are similar, with group counselling being the preferred treatment
in both cases.
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Table IV. R and 7 statistics for the smoking cessation data.

R 1?7 (%)
Common-effect and consistent — random-effects and consistent 3.11 90
Random-effects and consistent — random-effects and inconsistent  1.63 63
Common-effect and consistent — random-effects and inconsistent  5.08 96

Table V. Estimated inconsistency
parameters for the smoking cessa-
tion data.
Design  Parameter Estimate (SD)
1:ACD  ofl€ 0.02 (0.56)
0P 029 (0.67)
2:BCD  oBC€ —0.08 (0.56)
wzﬂ) —0.11 (0.57)
3: AB B —0.14(0.57)
4: AC o€ —0.11(0.52)
5: AD wdP 0.42 (0.82)
6: BC B¢ —0.12 (0.57)
7: BD a)%D 0.10 (0.58)
8: CD 0§ —0.04(0.52)

Estimates are given by posterior means.
SD, standard deviation.

Table IV shows the R and /2 statistics for the smoking cessation data. The /2 statistic comparing the
common-effect and consistent model to the random-effects and consistent model is high (90%), indi-
cating that the between-study heterogeneity has considerable impact on the precision of the estimated
treatment effects. The value of the /2 statistic comparing the random-effects model with inconsistency
to this model assuming consistency is also high (63%), which means that the inconsistency variance also
has considerable impact within this network. This is despite the fact that the DIC statistic for the random-
effects consistency model is very slightly smaller than the one for the inconsistency model. Like Higgins
et al., [7], who instead use fixed effects for the inconsistency parameters, we conclude that there is not
strong evidence of inconsistency in this network but it has quite considerable impact when it is included
in the model. This is reminiscent of large /2 statistics but insignificant hypothesis tests for the presence
of heterogeneity in conventional univariate random-effects meta-analyses. The average standard devi-
ations (section 4) of the estimated treatment effects are 0.11 for the common-effect model assuming
consistency, 0.33 for the random-effects model assuming consistency and 0.54 for the random-effects
model with inconsistency.

Estimates of the inconsistency parameters wgdj may shed light on the presence of inconsistency
within this network. Posterior means and standard deviations of these inconsistency parameters are given
in Table V. The only inconsistency parameter that is estimated to be of a reasonable size is a)gm , Tep-
resenting inconsistencies between trials including treatments A and D and other trial designs. However,
there is just one trial that compares only treatments A and D, so the posterior standard deviation of wg“D
is larger than those for the other inconsistency parameters, and all the standard deviations are so large
that it is difficult to draw any firm conclusions here.

The results for the basic parameters in Table III are in broad agreement with previous analyses of these
data by Lu and Ades [5, Table II] and Dias et al. [9, Table III]. Qualitatively, we draw similar conclu-
sions about the effectiveness of these four treatments to those who have previously used this dataset as
an example.

5.2.1. A sensitivity analysis. The inconsistency variance 72 is likely to be poorly estimated when
a network contains only a few inconsistency parameters, such as the smoking cessation network where
the credible interval for 7, is very wide. In this case, we can conduct a sensitivity analysis to see how
sensitive our conclusions are to different fixed values of z,,. Table VI gives results for the probability that
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Table VI. Probability that each treatment is best for the
smoking cessation data and various fixed values of the
inconsistency standard deviation 7, .

Tw
Treatment 0 0.2 0.5 1 2
A: No contact 0.00 0.00 0.00 0.01 0.03
B: Self-help 0.06 0.06 0.08 0.13 0.19

C: Individual counselling 0.24 0.24 025 025 0.26
D: Group counselling 0.71 0.70 0.66 0.61 0.53

Estimates are given by posterior means.

each intervention is best when holding ,, fixed at various values. For the full model, the 95% credible
interval for z, was (0.02, 1.90), so values of 7, from O (i.e. assuming consistency) to 2 were considered.
The probability of being the best treatment was distributed more evenly between treatments as inconsis-
tency was increased, with the probability of group counselling being the best decreasing from 0.71 to
0.53 as the level of inconsistency increases. However, group counselling was still the treatment with the
largest probability of being the best for all values of t,,, which suggests that this conclusion is robust.

6. Discussion

We have proposed a model for network meta-analysis that incorporates both between-study hetero-
geneity and inconsistency. We have shown how this is related to some of the models that have been
previously proposed and have applied it to two real examples. We have based our approach on the
design-by-interaction model, and extensions of our model are straightforward. For example, the design-
by-treatment interaction model, of which our model is a special case, can easily incorporate study-level
covariate effects, by adding these directly to model (1). If clinically relevant covariates are available to
explain any apparent inconsistency in the network, for example, by substantially reducing the estimate of
the inconsistency variance, then including them in the model could remove the need to model inconsis-
tency. This is similar to the use of covariates to explain between-study variation in a meta-regression, and
an investigation of which covariates appear to explain inconsistency in the network could be of interest
in its own right. When there is insufficient evidence to demonstrate consistency or inconsistency, we let
the analyst decide whether to include the extra source of variation in the same way that they currently
need to decide whether to allow for heterogeneity using random effects in a univariate meta-analysis.

With sufficient replication within designs, richer models for the between-study heterogeneity involv-
ing more than a single parameter tg are certainly possible and should be considered in practice [33,34];
ideally, a less structured between-study covariance matrix should be used, but this is only possible in situ-
ations where there are sufficient data available. For examples, with many different designs, richer models
for the inconsistency parameters may be possible, and we leave it as an open question whether more
sophisticated modelling of the network’s inconsistency parameters should be attempted in applications
that either facilitate or motivate this.

We have used WinBUGS to fit our model. Purpose built frequentist software, in order to avoid
concerns related to prior sensitivity and convergence diagnostics and also to make our methods more
accessible to applied researchers, would be a useful next step. However, the computation required for
this is challenging because it involves relatively complex models, potentially high dimensional parameter
spaces and variance components at two different levels of the model. Hence, at present, MCMC is prob-
ably the most convenient way to fit our model. The situations where the estimates of our two variance
components are especially sensitive to their prior specification are also those where frequentist methods
will struggle to provide accurate inference using conventional methods, but we hope that alternatives to
our WinBUGS code will be developed and that this article will serve to encourage this.

We have estimated treatment effects and performed probabilistic ranking under the assumptions
of our model and hence without assuming consistency. This might be considered controversial because it
raises the obvious question of what it means to draw inferences when the available evidence is inconsis-
tent. This question is perhaps related to the question of what the usual inferences from the conventional
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univariate random-effects model mean, where it is acknowledged that studies have different true under-
lying effects. Statisticians are now familiar with the interpretation of the estimated mean treatment effect
from the random-effects model, but the issues are subtle [13,35] and the introduction of random incon-
sistency effects makes these yet more so. We interpret our estimates of treatment effect in a very similar
way to conventional random-effects meta-analysis, where in our model, it is recognised that the study
effects are different across both individual studies and their designs. Our probabilistic ranking also recog-
nises this and ranks the studies on the basis of a statistical model that incorporates two different ways
in which studies may have different underlying effects. Hence, our ranking may be both useful and
meaningful and could be extended by calculating the probability that each treatment is second best, third
best and so on. We could also rank the treatments in a new study, or a new design, using our model.
However, efforts to explain the heterogeneity and inconsistency should be made in situations where the
data are available to attempt this. We suggest that our model should be used to draw inferences only in
reasonably large networks when small amounts of inconsistency are present that cannot be explained
using covariates.

The entire model fit should be interpreted so that no single aspect of the model is used in isolation
when making decisions. We suggest that, as a minimum, the estimates of the basic parameters and the
variance components (with measures of their uncertainty), some form of ranking and the /2 and DIC
(or another measure of model fit) statistics should be presented and interpreted when using our model.
Further possibilities include the estimates of the inconsistency parameters and results from sensitivity
analyses. By interpreting a variety of components of the model fit, and not just a single aspect, overly
simplistic conclusions and specific misinterpretations should be avoided. Specifically, the type of misin-
terpretation that we wish to avoid would result from interpreting the estimated basic parameters whilst
ignoring the rest of the fitted model. The basic parameters do not describe all important features of the
data, such as the extent of the heterogeneity and the inconsistency, and so it is vital that the other types
of results that we have presented are also used for inference. Further considerations, such as prediction
intervals for different design types and shrunken estimates of the study effects [13], could also be used
for this purpose. For example, prediction intervals for particular designs and treatment effects could
be used to describe the effects in future studies, where these prediction intervals could relate either to
designs already included in the network meta-analysis or to a new design.

The assumption of a normal distribution we make for the inconsistency parameters is quite strong,
and we require a reasonably large number of design types to estimate the inconsistency variance with
sufficient accuracy. In situations where these are not available, a sensitivity analysis can be used instead,
but some may find this unsatisfactory because a sensitivity analysis does not provide a single answer.
An alternative to a sensitivity analysis is to use an informative prior for the inconsistency variance.
Instead, using fixed effects for the inconsistency parameters is a much weaker assumption that can be
used regardless of the number of designs represented in the network. However, in addition to a coherent
comparison of the multiple treatments, the probabilistic ranking of treatments is often an important aim
of network meta-analysis, and this is more difficult to achieve when using fixed effects for the inconsis-
tency parameters. We recognise that there are arguments for and against using fixed rather than random
effects for the inconsistency parameters. Because neither approach is uniformly better, we suggest that
both approaches have their merits and should both be considered in application. Random inconsistency
effects are a useful device for handling inconsistent network meta-analyses and allow us to estimate
average treatment effects across designs, but models using fixed effects for the inconsistency parameters
are perhaps better for understanding where the inconsistencies in the network arise.

We have applied the R and 12 statistics for multivariate meta-analysis [14] to network meta-analysis.
These are immediately applicable because they are based on generalised variances and our model uses
random effects for both the between-study heterogeneity and the inconsistency. However, the develop-
ment of alternative statistics that quantify the impact of between-study heterogeneity and inconsistency,
derived more specifically for network meta-analysis, provides an avenue for further work.
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