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Polycyclic aromatic hydrocarbon (PAH) molecules are a exposure is through the diet. Some crops, such as rye, wheat,

large group of organic compounds with two or more fused and lentils, may synthesize PAHs or absorb them via air,

benzene rings arranged in various configurations.[1] To date,
hundreds of PAHs have been identified. PAHs are
widespread environmental contaminants formed as a result
of incomplete combustion of carbonaceous materials in both
natural and anthropogenic process.[2] Compared to the
natural sources, such as volcanic eruptions and wild fires,
anthropogenic sources, such as industrial processes, cigarette
smoke, vehicular exhaust, residential heating fuels and
charcoal-grilled and flame-broiled food, make a larger
contribution to the generation of atmospheric PAHs.[3]

Through inhalation, ingestion and dermal contract, PAHs
from all sources can easily be absorbed in the body and
further metabolized and excreted in urine. The urinary
monohydroxylated PAH (OH-PAH) has been widely
considered as a biomarker to represent individual PAH
exposure levels in many studies.[4-6]

The occurrence of PAHs has been of great concern for public
health for several decades. In addition to its mutagenic and
carcinogenic effects,[7,8] exposure to PAHs has been shown to
be associated with respiratory diseases in recent years. In the
present paper, we review the environmental sources of PAH
exposures, the associations between exposure to PAHs and
lung function alteration, and the potential mechanisms
underlying such relationship.

Major emission sources of PAHs are from human activities in
urban life. Traffic exhaust is thought to be a major outdoor
source of PAHs. It was reported that about one-eighth of
global environmental PAHs emissionwasattributed to vehicle
exhaust in 2007.[9] Whereas in the indoor environment,
exposure toPAHs ismarkedly increased by cigarette smoking.
Currently,more than 500 different PAHs have been identified
in cigarette smoke.[7] As the commission of the California Air
Resources Board reported, the amount of PAHs generated by
cigarette smoke was 1.5 to 4 times higher than those from
other indoor combustion sources.[10] For non-smokers and
non-occupational populations, the main source of PAHs
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water, or soil.[11] More importantly, multiple processing and
cooking methods at high temperatures, such as smoking,
grilling, roasting, and broiling, could add considerable PAHs
into the food.[12] PAHs in cooking fumes generated during
high-temperature food processing may be absorbed into the
human body with breathing.

Several studies investigated the associations between various
environment sources of PAHs exposure and urinary metab-
olites in specific populations. One study from Poland mainly
focused on the influence of environmental tobacco smoke
exposure and residential characteristics on urinaryOH-PAHs
in 218 3-year-old children. They found higher levels
of urinary 2-hydroxyfluorene (2-OHFlu), 9-hydroxyfluorene
(9-OHFlu), and 1-hydroxypyrene (1-OHP) in children
exposed to smoking at home compared to those without
exposure.Gas-based appliances used for cookingwere related
to higher levels of urinary 2-OHFlu, 9-OHFlu, 1-hydro-
xyphenanthrene (1-OHPh), and 3-hydroxyphenanthrene
(3-OHPh); and the use of coal, wood, or oil for heating
was associated with elevated levels of urinary 1-OHP.[13]

Another study among 1269 non-smoking housewives in
Korea found that subjects living near a major road have
significantly higher levels of urinary 2-OHFlu and
1-OHPh.[14] Hoseini et al[15] explored the effects of
environmental and lifestyle factors on urinary OH-PAHs in
222 Iranian adults. Their results suggested that cigarette
smoking, residency in high-traffic area, and exposure to
insecticides or tar productswere closely related tohigher levels
of urinary 1-hydroxynaphthalene (1-OHNa) and 2-hydrox-
ynaphthalene (2-OHNa). Subjects exposed to candle burning
had higher levels of urinary 2-OHNa and 9-OHFlu.[15]

Our research group analyzed the relationship between four
major environment sources (cigarette smoking, traffic
exposure, home-cooking, and dietary intake) and ten kinds
of urinary OH-PAHs in 4092 urban participants from the
Wuhan-Zhuhai Cohort in China. The findings indicated that
Correspondence to: Dr. Wei-Hong Chen, Department of Occupational and
Environmental Health, School of Public Health, Tongji Medical College, Huazhong
University of Science and Technology, Wuhan, Hubei 430030, China
E-Mail: wchen@mails.tjmu.edu.cn

Copyright © 2020 The Chinese Medical Association, produced by Wolters Kluwer, Inc. under the
CC-BY-NC-ND license. This is an open access article distributed under the terms of the Creative
Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is
permissible to download and share the work provided it is properly cited. The work cannot be
changed in any way or used commercially without permission from the journal.

Chinese Medical Journal 2020;133(13)

Received: 01-02-2020 Edited by: Li-Min Chen

mailto:wchen@mails.tjmu.edu.cn
http://creativecommons.org/licenses/by-nc-nd/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0


tobacco smoking was significantly correlated to elevated
levels of urinary 1-OHNa, 2-OHNa, and 2-OHFlu

and benzo[ghi]perylene) were associated with a �214.54,
�226.13, and �265.00 mL change in FVC in 3 years.[19]
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(P< 0.0001). Higher dietary PAH intake was associated
with urinary 1-OHNa, 2-OHNa, and 9-OHFlu levels
(P< 0.05). Individuals who spent more than 30 min in
traffic showed increased levels of 9-OHFlu and 1-OHPh
(P< 0.05) compared with those with nomore than 30min in
traffic. Higher levels of urinary 1-OHP was closely related to
home-cooking (P= 0.0243). What’s more, our results
suggested that good kitchen ventilation could decrease
low-molecular-weight OH-PAHs levels (P< 0.05). We
further investigated the combined effect of various exposure
sources on urinary metabolites and found a stronger
combined effect of cigarette smoking when co-exposure
with any other sources occurred,[16] which confirmed the
great contribution of cigarette smoking to PAH exposures.

In previous studies, exposure to PAHs has been reported to
be associated with lung function decline in occupational
populations. Wang et al[17] conducted a 4-year prospective
investigation among 1243 coke ovenworkers and found that
the baseline concentrations of urinary 1-OHNa, 2-OHNa,
2-OHFlu, 9-OHFlu, 1-OHPh, 2-hydroxyphenanthrene (2-
OHPh), and the total urinaryOH-PAHs (

P
OH-PAHs) were

significantly negatively associated with the decline of forced
expiratory volume in one second (FEV1)/forced expiratory
volume (FVC) (P< 0.05). Additionally, the baseline levels of
urinary 1-OHNa, 1-OHPh, 2-OHPh, 9-hydroxyphenan-
threne (9-OHPh), 1-OHP, and

P
OH-PAHs were related to

forced expiratory flow between 25% and 75% of forced
vital capacity (FEF25-75) decline.

Differing from high levels of PAH exposure in an
occupational environment, exposure to low levels of PAHs
was observed in general populations. In our studies, we
investigated the association between the concentrations of
PAHs in ambient particle matter and urine, and lung
function decline. We studied 2747 Chinese adults in an
urban Wuhan cohort and observed significant associations
between increased levels of urinary OH-PAHs and reduced
lung function. Specifically, each 1-unit increase in log-
transformed levels of urinary 2-OHNa, 2-OHFlu, 9-OHFlu,
1-OHPh, 2-OHPh, 3-OHPh, 4-hydroxyphenanthrene (4-
OHPh), 9-OHPh, 1-OHP, and

P
OH-PAHs was associated

with �23.79, �41.76, �19.36, �39.53, �34.35, �27.37,
�36.87, �33.47, �25.03, and �37.13 mL change in FEV1,
respectively (all P< 0.05). Each 1-unit increase in log-
transformed levels of urinary 2-OHNa, 2-OHFlu, 1-OHPh,
2-OHPh, 4-OHPh, and

P
OH-PAHs was associated with a

�24.39,�33.90,�28.56,�27.46,�27.15, and�27.99 mL
change in FVC (all P< 0.05).[18]

To quantify the associations of 16 fine particulate matter
(PM2.5)-bound PAHs with lung function levels, we studied
224 Chinese participants who enrolled in two study periods
(2014–2015 and 2017–2018) of the Wuhan-Zhuhai cohort.
Each one interquartile-range increase of naphthalene,
acenaphthene, fluoranthene, and pyrene was associated
with 26.82, 60.99, 45.25, and 23.37 mL decline in FVC,
respectively; fluoranthene and pyrene were associated with
27.43 and 15.49 mL decline in FEV1. Compared with the
persistently low-exposure level groups, persistently long-
term high levels of three high-molecular-weight PAHs
exposure (benzo[a]anthracene, dibenzo[a,h]anthracene,

1

Our findings verified that both external and internal
exposure of PAHs affect lung function.

Epidemiological and experimental studies have supported
the hypothesis that exposure to noxious environment
pollutants, such as PAHs, induce oxidative damage by
activating the cytochrome P450 family of enzymes. These
could increase reactive oxygen species, attack biological
macromolecules (such as proteins, lipids, and DNA), and
lead to impairment of lung epithelium or tissue.[20-22] We
used urinary 8-hydroxy-20-deoxyguanosine (8-OHdG), the
predominant metabolite of oxidative DNA lesions, and
8-isoprostane (8-iso-PGF2a), the terminal product of cell
membrane lipid peroxidation, as markers of oxidative
damage. Significant associations between PAH exposure
and oxidative damage (elevated levels of urinary 8-OHdG)
and decrease of FVC were observed leading to the concept
that 8-OHdG may play a mediating role in the association
between total high-molecular-weight OH-PAHs (

P
HMW

OH-PAHs) and a decrease of FVC.

Persistent inflammationmight be anothermechanism for lung
function decline. In vivo and in vitro studies have reported
that PAH exposure may induce continuing lung inflamma-
tion.[23]Airway inflammation involving cytokines andgrowth
factors, such as tumor necrosis factor-a, interleukin (IL)-4,
and IL-6, which are secreted by inflammatory cells may be
responsible for the development of airway hyper-responsive-
ness and structural change in the airway wall. The cell
apoptosis and remodeling[24,25] might play an important role
in lung function decline. In support of this, epidemiological
studies have shown that exposure to PAHs is linked to
increased levels of C-reactive protein, IL-1b, and immune
cells[26-28]; increase in these inflammatory factors is correlated
with a decline in lung function.[29]

As a protective biomarker of lung epithelium integrity, club
cell secretory protein-16 (CC16) is produced in abundance by
non-ciliated bronchiolar club cells under physiological
conditions. Once oxidative stress and inflammation appears,
a large amount of CC16 can be secreted to protect the
respiratory tract.[30] Lower levels ofCC16have been linked to
lung function decline and development of respiratory
diseases.[31] Our previous study found that plasma CC16
accounted for 22.13% of the association between

P
HMW

OH-PAHs and FVC among individuals with higher
P

HMW
OH-PAHs (>0.67 mg/mmol creatinine). After 3 years of
follow-up, individuals with low level of plasma CC16 had a
significant decline of FVC when exposed to high level ofP

HMW OH-PAHs.[32]

In conclusion, PAHs are a group of environmental
contaminants from multiple sources, often associated with
incomplete combustion. Environmental sources and life-
styles affect the types and levels of urinary OH-PAHs. Both
parent PAH in the atmosphere and its metabolites in urine
are significantly associated with a decrease in lung function.
Evidence indicates that oxidative damage, inflammatory
response, and the reduction of CC16 may be involved in the
pathological process of lung function decline induced by
PAHs exposure. Understanding the influence of environ-
mental PAHs exposure on urinary metabolites could help
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control the emission of PAHs and reduce their harmful
health effects.
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