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Between miRNAs and Diseases
Based on Matrix Decomposition
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Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China

It is known that miRNA plays an increasingly important role in many physiological
processes. Disease-related miRNAs could be potential biomarkers for clinical diagnosis,
prognosis, and treatment. Therefore, accurately inferring potential miRNAs related to
diseases has become a hot topic in the bioinformatics community recently. In this
study, we proposed a mathematical model based on matrix decomposition, named
MFMDA, to identify potential miRNA–disease associations by integrating known miRNA
and disease-related data, similarities between miRNAs and between diseases. We also
compared MFMDA with some of the latest algorithms in several established miRNA
disease databases. MFMDA reached an AUC of 0.9061 in the fivefold cross-validation.
The experimental results show that MFMDA effectively infers novel miRNA–disease
associations. In addition, we conducted case studies by applying MFMDA to three types
of high-risk human cancers. While most predicted miRNAs are confirmed by external
databases of experimental literature, we also identified a few novel disease-related
miRNAs for further experimental validation.

Keywords: miRNA, matrix decomposition (MFMDA), endometrial cancer, miRNA–disease association,
computational prediction model

INTRODUCTION

Non-coding RNA (ncRNA) is a type of RNA that cannot be translated into protein. Although
ncRNA cannot be translated into protein, its target gene can be regulated at the post-
transcriptional level, thereby affecting disease (Hammond, 2015). A large amount of research
evidence indicates that mutations and disorders of ncRNA are important causes of disease.
Therefore, the identification of disease-related ncRNA has become an important topic in the field
of biological research in recent years. ncRNA is a huge family and can be divided into housekeeper
ncRNA and regulatory ncRNA (Kapranov et al., 2007; Lindsay et al., 2017). Housekeeping
ncRNA is closely related to cell function, mainly involved in gene translation, gene splicing, gene
modification, etc. The main function of regulating ncRNA is to regulate the expression level of
genes. As regulatory ncRNA, miRNA is a class of non-coding single-stranded RNA molecules
with a length of 22 nucleotides encoded by endogenous genes. They participate in the regulation
of post-transcriptional gene expression in animals and plants (Taft et al., 2007; Chen et al.,
2015). So far, 28645 miRNA molecules have been found in animals, plants, and viruses. Most
miRNA genes exist in the genome in the form of single copies, multiple copies, or gene clusters
(Wang and Chang, 2011).
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In recent years, more and more studies have shown that
miRNA plays a huge role in the process of cell differentiation,
biological development, and disease development, which has
also attracted more researchers’ attention (Xu et al., 2004; Jiang
et al., 2012; Li et al., 2014; Kang et al., 2020). With further in-
depth research on the mechanism of action of miRNA, and the
use of the latest high-throughput technologies such as miRNA
chips to study the relationship between miRNA and disease,
people will make higher eukaryote gene expression regulation
Network understanding has improved to a new level (Cui et al.,
2006). This will also make miRNA a new biological marker
for disease diagnosis; it may also make this molecule a drug
target, or simulate this molecule for new drug development,
which will likely provide a new treatment for human diseases
(Goh et al., 2016).

However, using biological experiments to identify disease-
associated miRNAs is expensive and time-consuming, and it
is blind. Therefore, there is an urgent need for simple and
effective computational prediction models for predicting disease-
related miRNAs. With the rapid development of high-throughput
sequencing technology, more and more omics data are published,
which also provides data support for the study of computational
prediction models (Yi et al., 2017).In recent years, many
scholars have proposed some effective computational models for
predicting miRNA related to complex diseases. According to
their respective implementation strategies, we can roughly divide
these methods into machine-based computational prediction
methods and network-based computational prediction methods
(Zou et al., 2016).

Machine learning-based computational prediction methods
predict the association of potential miRNAs with the disease can
be divided into supervised-based machine learning methods and
semi-supervised-based machine learning methods. The method
based on supervision is mainly based on labeling sample set
and label-less sample set to construct a machine learning
model. Jiang et al. extracted feature sets based on known
and unknown associations for training support vector machine
(SVM) classifiers to predict potential miRNAs and disease
associations, and achieved comparative prediction performance
through cross-validation (Maly et al., 2019). Qu et al. (Zou
et al., 2015) developed a new calculation method based
on the KATZ model to predict MiRNA disease association
(KATZMDA) by integrating multiple data sources. Based on the
known miRNA–disease association in the HMDD database, Li
et al. (2017) developed a MiRNA–disease association prediction
model (MCMDA) called the matrix completion algorithm. The
MCMDA model uses a matrix completion algorithm to update
the adjacency matrix of known miRNA–disease associations and
further predict potential associations. Xu et al. (Chen et al., 2018)
proposed a method based on low-rank matrix completion to
predict miRNA–disease association (LRMCMDA). LRMCMDA
first constructs negative samples based on known associations,
and then uses a low-rank matrix to complete the model to infer all
miRNA and disease associations. Cross-validation shows that the
model has obtained reliable prediction performance. However,
although this supervised machine learning method uses different
ways to define negative sample data, it is difficult to deal with

the actual situation in any way, which will affect the prediction
performance. In order to overcome this limitation, Chen and Yan
(2014) proposed a least-squares-based semi-supervised machine
learning method for predicting the association of potential
miRNAs with disease, referred to as RLSMDA for short. The
RLSMDA method constructs a continuous classifier function,
and the predicted value reflects the probability score between
specific miRNAs and specific diseases. This method can obtain
the predicted values of all miRNAs and diseases at the same
time, and does not require negative sample data. In addition,
the RLSMDA method can also predict miRNAs associated with
isolated diseases. Xu et al. (2019) designed a set of probabilistic
matrix decomposition algorithms by integrating the similarity
of miRNAs with diseases, using known correlation matrices
and integrated similarity matrices to identify miRNAs that are
potentially related to diseases. Luo et al. (2017) proposed a
semi-supervised method called KRLSM to reveal the association
between miRNA and disease. Machine learning has been a hot
topic in recent years, and some machine learning methods can be
used to solve this problem. Despite the outstanding contributions
made by existing methods, there is still room for improvement in
prediction accuracy.

In addition to machine learning-based methods, network-
based methods to predict disease-related miRNAs have also
attracted the attention of many researchers. Such methods are
mainly based on a common biological hypothesis, “miRNAs with
similar functions are more likely to be associated with disease
phenotypes with similar functions, and vice versa” (Jiang et al.,
2010). Based on this basic assumption, Jiang et al. proposed a
new method that uses Bayesian models to integrate genomic data
to rank disease-related miRNAs. Chen et al. (2012) adopted the
global network similarity measure and proposed an improved
restart-based random walk model (RWRMDA) to predict the
association between miRNAs and disease. Yet, this method is
not suitable for predicting new disease-related miRNAs. Xuan
et al. (2013) integrated the information entropy of disease
entries and the similarity of disease phenotypes to measure
the functional similarity of diseases and miRNAs, and gave
greater weight to miRNAs belonging to the same family or the
same cluster class, and proposed a k-nearest neighbor prediction
model (HDMP) is used to predict disease-related miRNAs. This
method has obtained reliable prediction performance, but also
cannot predict miRNAs associated with isolated diseases. Later,
Xuan et al. (Banys-Paluchowski et al., 2015) further proposed
the MIDP method based on random walk. In this model, by
assigning different weights to known and unknown nodes, the
prior information of the topology is effectively integrated. In
addition, the extended conversion on the double-layer network of
miRNA diseases makes it possible to predict miRNAs associated
with isolated diseases. You et al. (2017) proposed a path-
based miRNA–disease association (PBMDA) prediction model
by integrating known human miRNA–disease associations,
miRNA functional similarities, disease semantic similarities, and
Gaussian interaction profiles for miRNA and disease similarities.
The model constructs a heterogeneous graph composed of
three interrelated subgraphs, and further uses a depth-first
search algorithm to infer potential miRNA–disease associations.
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The results show that reliable performance is obtained. Gu
et al. (2016) created a network consistency projection algorithm
to identify potential associations (NCPMDA) by integrating
similarity networks and association networks. The biggest
advantage of these methods is that they can predict isolated
miRNAs associated with disease, but the performance obtained
is not very satisfactory.

Although research on miRNA disease association prediction
models has made some progress, there is still room to further
improve the prediction performance of the model. In this study,
we propose a predictive model called matrix decomposition,
which fully considers the similarity between miRNAs and the
similarity between diseases. In order to evaluate the effectiveness
of MFMDA, we tested it using a global fivefold and local LOOCV
framework. MFMDA is superior to the benchmark algorithm
used for comparison, and achieves reliable performance in the
framework of fivefold CV and local LOOCV (AUC 0.9061 and
0.7933) in the HMDD (V2.0) data set. To further prove the
superiority of MFMDA, we analyzed three common diseases.
Based on the analysis of the test results, we can find that 18 of the
top 30 potential miRNAs related to the three diseases predicted
by MFMDA have been confirmed by other databases.

MATERIALS AND METHODS

Human Disease–miRNA Interactome
Network
In the past few decades, as the technology has matured, a large
number of omics data have been published, including a large
number of pairs related to miRNA diseases. Here, we use the
known miRNAs and disease-associated data set HMDD V2.0
as the benchmark dataset (Huang et al., 2019a). The data set
contains 495 miRNAs and 383 diseases and 5430 experimentally
verified human-disease-related pairs. We use the adjacency
matrix A to represent this confirmed association. Specifically, if
the disease d (i) was previously associated with miRNA m

(
j
)
, the

value of Aij is 1; otherwise, the corresponding position is set to 0.

miRNA Functions Similarly
Based on previous research, it is not difficult to find that
miRNAs with similar functions are more likely to be related to
similar diseases (Wang et al., 2010). Under this assumption, the
miRNA functional similarity score was calculated1. Therefore, we
constructed a functional similarity matrix FS between miRNAs
based on these data, where FS(m (i),m

(
j
)
) represents the

similarity between miRNA m (i) and another miRNA m
(
j
)
.

Disease Semantic Similarity
Semantic similarity is a common way to express the similarity
of diseases in this field. MFMDA uses a layered directed acyclic
graph (DAG) to calculate the similarity between two diseases
(Wang et al., 2010). Specifically, for disease d, let DAGd =

(d,Td,Ed) be a DAG, where Td represents the ancestor node
set of d (including itself) and Ed represents the hierarchical

1http://www.cuilab.cn/files/images/cuilab/misim.zip

connection between diseases defined by the MeSH disease tree
structure of the National Library of Medicine. For any t ∈ Td,
MFMDA defines the semantic contribution of disease t to d as:

Dd (t) =

{
1 if t = d
max

{
1× Dd(t

′

)|t
′

∈ children of t
}

if t 6= d
(1)

Where1 is the semantic decay factor, which is set to 0.5 in the
iterative equation according to previous researches (Dong et al.,
2019; Marcuello et al., 2019). Therefore, the semantic similarity
between the diseases d1 and d2 can be defined as:

D
(
di, dj

)
=

∑
t∈Tdi ∩ Tdj

(
Ddi (t)+ Ddj (t)

)
∑

t∈Tdi
Ddj(t)+

∑
t∈Tdj

Ddj(t)
(2)

Gaussian Similarity of miRNA and
Disease
Among various similarity measurement algorithms, Gaussian
similarity is a very good measurement method, which has been
widely used in various fields. Let VP(mi) be the vector related
to miRNA miin Y, i.e., the ith column of Y. Then, the Gaussian
similarity between the diseases mi and mjis calculated as follows:

KM
(
ri, rj

)
= exp(−γm||VP (ri)− VP(rj)||2) (3)

Where γm is the adjustment parameter of the bandwidth (van
Laarhoven et al., 2011). The update rule of parameter γm is as
follows:

γm = γ
′

m/

(
1
nm

∑nm

i=1
||VP (ri) ||2

)
(4)

Similarly, the Gaussian similarity between miRNAs can be
defined as follows:

KD
(
di, dj

)
= exp(−γd||VP

(
di
)
− VP(dj)||2) (5)

γd = γ
′

d/

(
1
nd

∑nd

i=1
||VP

(
di
)
||

2
)

(6)

Integrated Similarity for Diseases and
miRNAs
In order to obtain a more comprehensive disease similarity, the
semantic similarity of the disease is combined with the Gaussian
interactive contour kernel similarity through the following
piecewise function to obtain the final similarity between the
diseases:

Sd
(
di, dj

)
=

{
D
(
di, dj

)
di and dj has semantic similarity

KD
(
di, dj

)
otherwise

(7)
Similarly, the similarity between miRNAs can also be

redefined as:

Sm
(
mi,mj

)
=

{
FS
(
mi,mj

)
ri and rj has functional similarity

KM
(
mi,mj

)
otherwise

(8)
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MFMDA
Matrix factorization (MF) is an effective technique that has
been widely used in data representation (Huang and Zheng,
2006; Hosoda et al., 2009; Zheng et al., 2009; Xu et al., 2020).
It aims to find two matrices whose product provides the best
approximation to the original matrix. Given a miRNAs–diseases
association matrix, MF can be decomposed into two matrices
Y = Rn×m, that is, W ∈ Rn×k and H ∈ Rm×k,and Y ≈ UVT .
Here, we use mathematical formulas to express the potential
association prediction problem between diseases and miRNAs as
the following objective function:

min
U,V
||I·(Y −WHT)||2F (9)

where ||· · ·||2F represents the Frobenius norm and · denotes the
Hadamard product of two matrices, that is, the multiplication of
the corresponding elements of the matrix, and Iij = 0 if the entry
(i, j) in Y is missing, and 1 otherwise.

The standard MF in Eq. 2 is just to find two matrices,
and their product tries to approximate the original matrix.
However, the effects caused by the similarity between miRNAs
and diseases are ignored. Suppose the functions of the two
miRNAs are very similar, and at the same time, the diseases
implicitly learned that they should have a similar distance
in the vector space. The diseases dimension is the same.
For the same reason, the miRNAs size can also use this
idea to constrain the drug’s implicit representation. That is,
if the two diseases are similar, the distance of the miRNAs
in the low-dimensional vector space should also be small.

min
U,V
||I ·

(
Y −WHT

)
||

2
F + λl

(
||W||2F + ||H||

2
F
)

+λv

n∑
i,p=1

||wi − wp||
2Sm∗i,p

+λd
∑m

j,k=1
||hj − hk||2Sd∗j,k

(10)
where λl, λd, and λv are the regularization coefficients;
wi and hj are the ith and jth rows of W and H,
respectively. Sv∗ is the hidden social similarity between
miRNAs and Sd∗ is the hidden social similarity
between diseases.

Optimization
In order to solve the local optimal solution problem of Eq. 3,
we use the gradient descent algorithm to solve. According to
the nature of the Frobenius norm, the corresponding Lagrange
function LE of Eq. 2 can be redefined as:

LE = Tr
(
I ·
(
YYT
− 2 ∗ YHWT

+WHTHWT
))
+

λlTr
(
WWT

)
+ λl Tr

(
HHT

)
+ λmTr

(
WTLmW

)
+

λdTr
(
HTLdH

)
+ Tr

(
∅WT

)
+ Tr

(
ψHT

)
(11)

where Tr(· · · ) represents the trace of a matrix; Lm = Dm − Sm∗
and Ld = Dd − Sd∗ are the graph Laplacian matrices for Sm∗ and

Sd∗, respectively; and Dm and Dm are the diagonal matrices whose
entries are row (or column) sums of Sm∗ and Sd∗, respectively.

The partial derivatives of the above functions with respect to
W and H are:

∂LE
∂W
= −2YH + 2WHTH + 2λlW + 2λmLmW + ∅

∂LE
∂H
= −2YTW + 2HWTW + 2λlH + 2λdLdH +ψ (12)

According to the solution conditions of Karush–Kuhn–
Tucker (KKT) (Facchinei et al., 2013), we can make ∅ikwik =

0 and ψjkhjk = 0, thus obtain the following equations for
w and h:

− (YH)ik wik +
(
WHTH

)
ik
wik + (λlW)ik wik+(

λm(Dm − Sm∗)W
)
ik wik = 0

−

(
YTW

)
jk
hjk +

(
HWTW

)
jk
hjk + (λlH)jk hjk+(

λd(Dd − Sd∗)H
)
jk
hjk = 0. (13)

Therefore, we get the wik and hjk update rules as follows:

wik = wik
(YH + λmSm∗W)ik

(WHTH + λlW + λmDmW)ik

hjk = hjk
(YTW + λdSd∗H)jk

(HWTW + λlH + λdDdH)jk
(14)

The matrices W and H are updated based on Eq. 3 until
convergence. Finally, we can obtain the predicted miRNAs–
diseases association matrix as Y∗ =WHT , and determine the
priority of potential miRNAs and disease according to the value
in the matrix Y∗. In principle, the miRNAs with the highest grade
in Y∗ are more likely to be associated with the disease. The flow
chart of MFMDA is shown in Figure 1.

RESULTS

Evaluation of Prediction Performance
There are many performance indicators for evaluating prediction
models. In this field, ROC curve and AUC value, PR curve, and
AUPR value are usually used to evaluate the performance of the
algorithm (Chen and Huang, 2017; Chen et al., 2020).

The ROC curve, also called receiver operating characteristic
curve or susceptibility curve, is a comprehensive indicator
reflecting sensitivity and specificity. The ROC curve graphically
reveals the correlation between sensitivity and specificity. By
setting different thresholds, a series of corresponding sensitivities
and specificities are calculated, and then plotted with the true
positive rate on the ordinate and false positive rate on the abscissa
curve. The simple assumption is that for binary classification
problems (only two types, positive and negative samples), the
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FIGURE 1 | Diagram of MFMDA for predicting potential miRNA–disease associations.

calculation methods of TPR and FPR are shown in Eq. 15.

TPR =
TP

TP + FN
, FPR =

FP
TN + FP

(15)

TP refers to the number of positive samples that are correctly
predicted, that is, the number of positive samples that are
predicted as positive samples; FP refers to the number of positive
samples that are incorrectly predicted, that is, the number of
negative samples that are predicted to be positive samples; the
number of negative samples correctly predicted, that is, the
number of negative samples predicted as negative samples; FN
refers to the number of negative samples that are incorrectly
predicted, that is, the number of positive samples predicted as
negative samples. The area under the line of the ROC curve
is AUC. The more convex the ROC curve, the closer to the
upper left corner. The larger the AUC value, the better the
prediction performance. The AUC value is generally between
0.5 and 1. The AUC value of 0.5 is the effect of random
prediction. The AUC value of 1 has the best performance and
the perfect classifier, that is, it can correct all positive and
negative classes.

The PR curve calculates a series of accuracy and recall by
setting different thresholds, and then draws the curve as the
precision ordinate and recall as the abscissa. The precision and
recall are calculated into the formulas 16:

precision =
TP

TP + FP
, FPR =

TP
TP + FN

. (16)

The PR curve reflects the correlation between accuracy and
recall. The area under the PR curve is AUPR. The larger the AUPR
value, the better the performance.

Comparison With Other Methods
We further compared the prediction performance of the
MFMDA model with four benchmark prediction models (i.e.,
LRMCMDA, IMCMDA, NCPMDA, and RLSMDA). LRMCMDA
and IMCMDA belong to the matrix completion algorithm,
and have achieved good predictive performance in this field.
NCPMDA is a network projection algorithm, which is one of
the representatives of algorithms based on network prediction.
RLSMDA is a semi-supervised learning method based on the
Regularized Least Squares (RLS) framework, which represents a
good opportunity to learn learning algorithms. Since the data
used in this study are all from the public data set HMDD2.0,
all the parameters of the comparison algorithm will also use the
parameters given by the original author.

Performance on Predicting
miRNA–Disease Association
We applied MFMDA, LRMCMDA, IMCMDA, NCPMDA, and
RLSMDA to HMDD V2.0 miRNA–disease association data,
which contains 5430 unique associations between 495 miRNAs
and 383 diseases, and draws their ROC curves of the global
fivefold CV in Figure 2A. As can be seen, the AUCs of
MFMDA, LRMCMDA, IMCMDA, NCPMDA, and RLSMDA
are 0.9061, 0.8883, 0.8364, 0.8637, and 0.8326, respectively,
indicating that MFMDA performed best in predicting miRNA–
disease associations.

However, considering the limited number of known and
experimentally verified miRNA–disease associations, it is too
arbitrary to use AUC to evaluate the performance of prediction
methods. Therefore, we also include the exact recall (PR)
curve and the AUPR in Figure 2B to supplement performance
evaluation. As shown in Figure 2B, the AUPR of MMFDA,
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FIGURE 2 | Comparison of MFMDA with four best performers for miRNA–disease associations. (A) ROC curves for fivefold cross validation. (B) Precision–recall (PR)
curve for fivefold cross validation.

LRMCMDA, IMCMDA, NCPMDA, and RLSMDA are 0.3658,
0.4442, 0.2502, 0.2315, and 0.1240, which again shows that
MFMDA performs better than most algorithms in predicting
miRNA–disease associations and can be a supplement to the
existing computational prediction model.

Predicting Novel Disease-Related
miRNAs
For a new disease, if it can find its related miRNAs, it will provide
a great help for people to understand the pathogenesis of the
disease. Therefore, we performed CVd experiment to test the
performance of MFMDA in predicting miRNAs associated to a
novel disease d. In CVd: CV on disease di, we remove all the
known miRNA–disease association of the disease di (column
vectors in matrix Y ∈ Rm×n) and build prediction model (for
inferring the deleted associations) using the remaining data. As
shown in Figure 3, the AUC value obtained by MFMDA is
second only to LRMCMDA, which also indicates that MFMDA
is also relatively good at predicting miRNAs related to new

FIGURE 3 | Comparison between MFMDA and benchmark algorithms based
on local LOOCV.

FIGURE 4 | Network of the top 10 predicted associations for the three
diseases via MFMDA.

diseases. Of course, although LRMCMDA is more effective
at predicting new disease-related miRNAs, LRMCMDA uses
network projection to construct negative samples. This method
of constructing negative samples will be affected by the size of the
data set, which will affect its prediction performance. Presumably,
MFMDA is a semi-supervised algorithm, it does not need to
construct negative samples and the prediction performance is
relatively stable.

Finally, we explored the effect of the disease similarity and
miRNA similarity on prediction performance. Specifically, we
performed global fivefold CV with parameters λmor λd from
0.2 to 1 and a step size of 0.2 (Table 1). We can see that the
two similarities really help predict performance. However, as
the parameters continue to increase, the performance of the
prediction is constantly decreasing.
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TABLE 1 | Prediction AUCs of MFMDA at different choices of parameters.

MFMDA λm = λd = 0.2 λm = λd = 0.4 λm = λd = 0.6 λm = λd = 0.8 λm = λd = 1

AUC 0.9061 0.9058 0.9013 0.8924 0.8912

TABLE 2 | The top 10 potential miRNA candidates detected by MFMDA for endometrial neoplasms.

Cancer No. of confirmed miRNAs Top 10 ranked predictions

Rank miRNAs Evidences Rank miRNAs Evidences

Endometrial neoplasms 9 1 hsa-mir-146a HMDD V3.0 6 hsa-mir-34a HMDD V3.0

2 hsa-mir-221 Unconfirmed 7 hsa-mir-29a HMDD V3.0

3 hsa-mir-20a HMDD V3.0 8 hsa-mir-145 HMDD V3.0

4 hsa-mir-17 HMDD V3.0 9 hsa-mir-15a HMDD V3.0

5 hsa-mir-16 HMDD V3.0 10 hsa-mir-29b HMDD V3.0

Case Study
Next, three disease case studies were conducted to further
validate the predictive power of the new miRNA disease pairs
discovered by MFMDA. We first use the verified HMDD V2.0
pair as a training sample. For each predicted disease, the
corresponding unverified miRNA is ranked according to the
predicted score. Then, according to the other three well-known
databases dbDEMC2.0 (Yang et al., 2017), miR2Disease (Jiang
et al., 2009), and HMDD V3.0 (Huang et al., 2019b), the top 10
candidate miRNAs in the prediction list were examined.

Endometrial cancer is a group of epithelial malignant tumors
that occur in the endometrium, and it occurs in perimenopausal
and postmenopausal women. Endometrial cancer is one of the
most common tumors of the female reproductive system. There
are nearly 200,000 new cases each year, and it is the third
most common gynecological malignant tumor that causes death.
Earlier studies have shown that the differential expression of

miRNA in endometrial adenocarcinoma can play a key auxiliary
role in understanding the diagnosis and treatment of endometrial
adenocarcinoma (Jurcevic et al., 2014). Therefore, in this study,
we used MFMDA to identify potential miRNAs associated
with endometrial adenocarcinoma. Nine of the top 10 miRNAs
found were confirmed by at least one external database (see
Table 2).

In the second case study, we still choose the tumor that
belongs to women with high incidence, namely, breast tumor.
Breast tumors are malignant tumors that occur in the epithelial
tissue of the breast glands. Currently, the treatment is mainly
based on clinical and pathological features. Targeted therapy
and personalized therapy are the ultimate goals. Related studies
have shown that the occurrence of breast tumors is also related
to abnormalities of related miRNAs. For example, an abnormal
increase in miR-22 may promote the occurrence and metastasis
of breast cancer and lead to a higher degree of tumor malignancy.

TABLE 3 | The top 10 potential miRNA candidates detected by MFMDA for breast neoplasms.

Cancer No. of confirmed miRNAs Top 10 ranked predictions

Rank miRNAs Evidences Rank miRNAs Evidences

Breast neoplasms 10 1 hsa-mir-150 dbDEMC 2.0 6 hsa-mir-130a dbDEMC 2.0

2 hsa-mir-142 dbDEMC 2.0 7 hsa-mir-99a dbDEMC 2.0

3 hsa-mir-15b dbDEMC 2.0 8 hsa-mir-196b dbDEMC 2.0

4 hsa-mir-106a dbDEMC 2.0 9 hsa-mir-378a dbDEMC 2.0

5 hsa-mir-192 dbDEMC 2.0 10 hsa-mir-212 dbDEMC 2.0

TABLE 4 | The top 10 potential miRNA candidates detected by MFMDA for lung neoplasms.

Cancer No. of confirmed miRNAs Top 10 ranked predictions

Rank miRNAs Evidences Rank miRNAs Evidences

Lung neoplasms 9 1 hsa-mir-16 miR2Disease 6 hsa-mir-141 miR2Disease

2 hsa-mir-122 dbDEMC 2.0 7 hsa-mir-195 miR2Disease

3 hsa-mir-15a dbDEMC 2.0 8 hsa-mir-429 miR2Disease

4 hsa-mir-15b Unconfirmed 9 hsa-mir-23b dbDEMC 2.0

5 hsa-mir-106b dbDEMC 2.0 10 hsa-mir-20b dbDEMC 2.0
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Therefore, predicting miRNAs related to breast tumors through
related algorithms will also provide corresponding help for
human breast cancer treatment. As shown in Table 3, we found
that the top 10 miRNAs predicted by MFMDA related to breast
cancer have all been confirmed by relevant databases.

Finally, we conduct prediction studies on miRNAs associated
with lung tumors. Lung cancer is one of the fastest growing
morbidity and mortality rates, and the most threatening to
the health and life of the population. In the past 50 years,
many countries have reported that the incidence and mortality
of lung cancer have increased significantly. The incidence and
mortality of lung cancer in men accounted for the first place
in all malignant tumors, the incidence in women accounted
for the second place, and the mortality rate took the second
place. Despite the important therapeutic value of chemotherapy,
surgery is still the only way to treat lung cancer. There is an
urgent need to find potential biomarkers that respond strongly to
clinical observations. The researchers found that the expression
level of miR-99a is related to the clinicopathological factors
of lung cancer and lymph node metastasis. Identifying more
miRNAs related to lung cancer helps to accurately assess clinical
outcomes. Therefore, we conducted a lung cancer case study
based on MFMDA. In the prediction list, nine of the top 10
predicted miRNAs confirmed their association with lung tumors
(see Table 4).

For a clear view, we illustrate in Figure 4 the association
network of the top 10 predicted miRNA candidates for the
three diseases. It is worth noting that some top candidates were
found to be related to several diseases. For example: hsa-mir-
15a has not only been shown to be related to the occurrence
of endometrial neoplasms, but also has a certain relationship
with lung neoplasms.

DISCUSSION

A large number of studies have shown that miRNA plays an
increasingly important role in many physiological processes.
Researchers are trying to identify disease-related miRNAs as
valuable biomarkers that can be used for clinical measurement,
diagnosis, prognosis, and treatment. Therefore, accurately
inferring potential miRNAs related to diseases can help us

study the pathogenesis of diseases and find more effective
treatments. In this study, we proposed a mathematical model
based on MF (MFMDA) to identify potential miRNA–disease
associations. First, MFMDA not only uses known miRNA and
disease-related data, but also integrates the similarities between
miRNA and disease. Second, the model is a semi-supervised
model, which does not rely on negative samples. Finally, in
the process of solving the model, we use the alternating
gradient descent algorithm to find the optimal solution to
ensure a stable decomposition matrix. Experimental results show
that, compared with other methods, MFDMA can effectively
improve performance and is a powerful tool for discovering
the association of potential diseases with miRNA. However,
this method still has some limitations; we need to further
optimize. For example, the similarity measure between diseases
and miRNAs used by MFMDA is too single and may not be the
best choice. How to integrate multiple omics information more
effectively to improve prediction performance is also worthy of
further research.
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