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the paradox of active versus passive self-
motion sensation
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Abstract Brainstem and cerebellar neurons implement an internal model to accurately estimate

self-motion during externally generated (‘passive’) movements. However, these neurons show

reduced responses during self-generated (‘active’) movements, indicating that predicted sensory

consequences of motor commands cancel sensory signals. Remarkably, the computational

processes underlying sensory prediction during active motion and their relationship to internal

model computations during passive movements remain unknown. We construct a Kalman filter that

incorporates motor commands into a previously established model of optimal passive self-motion

estimation. The simulated sensory error and feedback signals match experimentally measured

neuronal responses during active and passive head and trunk rotations and translations. We

conclude that a single sensory internal model can combine motor commands with vestibular and

proprioceptive signals optimally. Thus, although neurons carrying sensory prediction error or

feedback signals show attenuated modulation, the sensory cues and internal model are both

engaged and critically important for accurate self-motion estimation during active head

movements.

DOI: https://doi.org/10.7554/eLife.28074.001

Introduction
For many decades, research on vestibular function has used passive motion stimuli generated by

rotating chairs, motion platforms or centrifuges to characterize the responses of the vestibular

motion sensors in the inner ear and the subsequent stages of neuronal processing. This research has

revealed elegant computations by which the brain uses an internal model to overcome the dynamic

limitations and ambiguities of the vestibular sensors (Figure 1A; Mayne, 1974; Oman, 1982;

Borah et al., 1988; Glasauer, 1992; Merfeld, 1995; Glasauer and Merfeld, 1997; Bos et al.,

2001; Zupan et al., 2002; Laurens, 2006; Laurens and Droulez, 2007; Laurens and Droulez,

2008; Laurens and Angelaki, 2011; Karmali and Merfeld, 2012; Lim et al., 2017). These computa-

tions are closely related to internal model mechanisms that underlie motor control and adaptation

(Wolpert et al., 1995; Körding and Wolpert, 2004; Todorov, 2004; Chen-Harris et al., 2008;

Berniker et al., 2010; Berniker and Kording, 2011; Franklin and Wolpert, 2011; Saglam et al.,

2011; 2014). Neuronal correlates of the internal model of self-motion have been identified in brain-

stem and cerebellum (Angelaki et al., 2004; Shaikh et al., 2005; Yakusheva et al., 2007,

2008, 2013, Laurens et al., 2013a, 2013b).

In the past decade, a few research groups have also studied how brainstem and cerebellar neu-

rons modulate during active, self-generated head movements. Strikingly, several types of neurons,

well-known for responding to vestibular stimuli during passive movement, lose or reduce their sensi-

tivity during self-generated movement (Gdowski et al., 2000; Gdowski and McCrea, 1999;

Marlinski and McCrea, 2009; McCrea et al., 1999; McCrea and Luan, 2003; Roy and Cullen,

2001; 2004; Brooks and Cullen, 2009; 2013; 2014; Brooks et al., 2015; Carriot et al., 2013). In
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contrast, vestibular afferents respond indiscriminately for active and passive stimuli (Cullen and

Minor, 2002; Sadeghi et al., 2007; Jamali et al., 2009). These properties resemble sensory predic-

tion errors in other sensorimotor functions such as fish electrosensation (Requarth and Sawtell,

2011; Kennedy et al., 2014) and motor control (Tseng et al., 2007; Shadmehr et al., 2010). Yet, a

consistent quantitative take-home message has been lacking. Initial experiments and reviews impli-

cated proprioceptive switches (Figure 1B; Roy and Cullen, 2004; Cullen et al., 2011; Cullen, 2012;

Carriot et al., 2013; Brooks and Cullen, 2014). More recently, elegant experiments by Brooks and

colleagues (Brooks and Cullen, 2013; Brooks et al., 2015) started making the suggestion that the

brain predicts how self-generated motion activates the vestibular organs and subtracts these predic-

tions from afferent signals to generate sensory prediction errors (Figure 1C). However, the computa-

tional processes underlying this sensory prediction have remained unclear.

Confronting the findings of studies utilizing passive and active motion stimuli leads to a paradox,

in which central vestibular neurons encode self-motion signals computed by feeding vestibular sig-

nals through an internal model during passive motion (Figure 1A), but during active motion, effer-

ence copies of motor commands, also transformed by an internal model (Figure 1C), attenuate the

responses of the same neurons. Thus, a highly influential interpretation is that the elaborate internal

model characterized with passive stimuli would only be useful in situations that involve unexpected

(passive) movements but would be unused during normal activities, because either its input or its

output (Figure 1—figure supplement 1) would be suppressed during active movement. Here, we

propose an alternative that the internal model that processes vestibular signals (Figure 1A) and the

internal model that generates sensory predictions during active motion (Figure 1C) are identical. In

support of this theory, we show that the processing of motor commands must involve an internal

model of the physical properties of the vestibular sensors, identical to the computations described

during passive motion, otherwise accurate self-motion estimation would be severely compromised

during actively generated movements.

The essence of the theory developed previously for passive movements is that the brain uses an

internal representation of the laws of physics and sensory dynamics (which has been elegantly mod-

eled as forward internal models of the sensors) to process vestibular signals. In contrast, although it

eLife digest When seated in a car, we can detect when the vehicle begins to move even with

our eyes closed. Structures in the inner ear called the vestibular, or balance, organs enable us to

sense our own movement. They do this by detecting head rotations, accelerations and gravity. They

then pass this information on to specialized vestibular regions of the brain.

Experiments using rotating chairs and moving platforms have shown that passive movements –

such as car journeys and rollercoaster rides – activate the brain’s vestibular regions. But recent work

has revealed that voluntary movements – in which individuals start the movement themselves –

activate these regions far less than passive movements. Does this mean that the brain ignores

signals from the inner ear during voluntary movements? Another possibility is that the brain predicts

in advance how each movement will affect the vestibular organs in the inner ear. It then compares

these predictions with the signals it receives during the movement. Only mismatches between the

two activate the brain’s vestibular regions.

To test this theory, Laurens and Angelaki created a mathematical model that compares predicted

signals with actual signals in the way the theory proposes. The model accurately predicts the

patterns of brain activity seen during both active and passive movement. This reconciles the results

of previous experiments on active and passive motion. It also suggests that the brain uses similar

processes to analyze vestibular signals during both types of movement.

These findings can help drive further research into how the brain uses sensory signals to refine

our everyday movements. They can also help us understand how people recover from damage to

the vestibular system. Most patients with vestibular injuries learn to walk again, but have difficulty

walking on uneven ground. They also become disoriented by passive movement. Using the model to

study how the brain adapts to loss of vestibular input could lead to new strategies to aid recovery.

DOI: https://doi.org/10.7554/eLife.28074.002
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Figure 1. Internal model computations for self-motion estimation. (A) Previous studies based on passive stimuli

have proposed that vestibular sensory signals are processed by an internal model to compute optimal estimates

of self-motion. (B) Other studies (Roy and Cullen, 2004) have shown that the cancellation of central vestibular

Figure 1 continued on next page
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is understood that transforming head motor commands into sensory predictions is likely to also

involve internal models, no explicit mathematical implementation has ever been proposed for

explaining the response attenuation in central vestibular areas. A survey of the many studies by

Cullen and colleagues even questions the origin and function of the sensory signals canceling vestib-

ular afferent activity, as early studies emphasized a critical role of neck proprioception in gating the

cancellation signal (Figure 1B, Roy and Cullen, 2004), whereas follow-up studies proposed that the

brain computes sensory prediction errors, without ever specifying whether the implicated forward

internal models involve vestibular or proprioceptive cues (Figure 1C, Brooks et al., 2015). This lack

of quantitative analysis has obscured the simple solution, which is that transforming motor com-

mands into sensory predictions requires exactly the same forward internal model that has been used

to model passive motion. We show that all previous experimental findings during both active and

passive movements can be explained by a single sensory internal model that is used to generate

optimal estimates of self-motion (Figure 1D, ‘Kalman filter’). Because we focus on sensory predic-

tions and self-motion estimation, we do not model in detail the motor control aspects of head move-

ments and we consider the proprioception gating mechanism as a switch external to the Kalman

filter, similar to previous studies (Figure 1D, black dashed lines and red switch).

We use the framework of the Kalman filter (Figure 1D; Figure 1—figure supplement 2; Kal-

man, 1960), which represents the simplest and most commonly used mathematical technique to

implement statistically optimal dynamic estimation and explicitly computes sensory prediction errors.

We build a quantitative Kalman filter that integrates motion signals originating from motor, canal,

otolith, vision and neck proprioceptor signals during active and passive rotations, tilts and transla-

tions. We show how the same internal model must process both active and passive motion stimuli,

and we provide quantitative simulations that reproduce a wide range of behavioral and neuronal

responses, while simultaneously demonstrating that the alternative models (Figure 1—figure sup-

plement 1) do not. These simulations also generate testable predictions, in particular which passive

stimuli should induce sensory errors and which should not, that may motivate future studies and

guide interpretation of experimental findings. Finally, we summarize these internal model computa-

tions into a schematic diagram, and we discuss how various populations of brainstem and cerebellar

neurons may encode the underlying sensory error or feedback signals.

Figure 1 continued

responses during active motion is gated by mismatches between predicted and actual neck proprioceptive

signals, and interpreted central vestibular responses as a passive motion signal. (C) Brooks and Cullen

(Brooks et al., 2015; Brooks and Cullen, 2013) have proposed that an internal model processes motor

commands to compute sensory predictions during active motion and that central vestibular neurons encode

sensory prediction errors. (D) Framework proposed in this study, in which the internal models in (A) and (C) are in

fact identical and interactions between head motion commands and sensory signals are modeled as a Kalman

filter (blue) that computes optimal self-motion estimates during both passive and active motions. For simplicity, we

have not included how head motion commands are generated (red), how head movements are executed, as well

as the contribution of feedback to error correction and motor learning (dashed blue arrow). In line with B, the

proprioceptive gating mechanism in D is shown as a switch controlling the transmission of head motion

commands to the Kalman filter. Solid lines in (D): computations modeled as a Kalman filter. Broken lines in (D):

additional computations that are only discussed (but not modeled) in the present study. Note that the ‘self-motion

signal’ box in D stands for both the predicted motion and final self-motion estimate (Figure 1—figure

supplement 2).

DOI: https://doi.org/10.7554/eLife.28074.003

The following figure supplements are available for figure 1:

Figure supplement 1. Alternative computational schemes where separate internal models process vestibular

signals and motor commands.

DOI: https://doi.org/10.7554/eLife.28074.004

Figure supplement 2. Generic structure of a Kalman Filter.

DOI: https://doi.org/10.7554/eLife.28074.005
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Results

Overview of Kalman filter model of head motion estimation
The structure of the Kalman filter in Figure 1D is shown with greater detail in Figure 1—figure sup-

plement 2 and described in Materials and methods. In brief, a Kalman filter (Kalman, 1960) is based

Figure 2. Application of the Kalman filter algorithm into optimal self-motion estimation using an internal model

with four state variables and two vestibular sensors. (A) Schematic diagram of the model. Inputs to the model

include motor commands, unexpected perturbations, as well as sensory signals. Motor commands during active

movements, that is angular velocity (
u) and translational acceleration (Au), are known by the brain. Unpredicted

internal or external factors such as external (passive) motion are modeled as variables 
" and A". The state variable

has 4 degrees of freedom: angular velocity 
, tilt position G; linear acceleration A and a hidden variable C used to

model the dynamics of the semicircular canals (see Materials and methods). Two sensory signals are considered:

semicircular canals (rotation sensors that generate a signal V ) and the otoliths organs (linear acceleration sensors

that generate a signal F). Sensory noise Vh and Fh is illustrated here but omitted from all simulations for simplicity.

(B, C) illustration of rotations around earth-vertical (B) and earth-horizontal (C) axes.

DOI: https://doi.org/10.7554/eLife.28074.006
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on a forward model of a dynamical system, defined by a set of state variables X that are driven by

their own dynamics, motor commands and internal or external perturbations. A set of sensors,

grouped in a variable S, provide sensory signals that reflect a transformation of the state variables.

Note that S tð Þ may provide ambiguous or incomplete information, since some sensors may measure

a mixture of state variables, and some variables may not be measured at all.

The Kalman filter uses the available information to track an optimal internal estimate of the state

variable X. At each time t, the Kalman filter computes a preliminary estimate (also called a predic-

tion, X̂p tð Þ) and a corresponding predicted sensory signal Ŝp. In general, the resulting state estimate

X̂p and the predicted sensory prediction Ŝp may differ from the real values X and S. These errors are

reduced using sensory information, as follows (Figure 1—figure supplement 2B): First, the predic-

tion Ŝp and the sensory input S are compared to compute a sensory error dS: Second, sensory errors

are transformed into a feedback Xk ¼ K:dS, where K is a matrix of feedback gains, whose dimension-

ality depends on both the state variable X and the sensory inputs. Thus, an improved estimate at

time t is X̂ tð Þ ¼ X̂p tð Þ þ K:dS tð Þ. The feedback gain matrix K determines how sensory errors improve

the final estimate X̂ (see Supplementary methods, ‘Kalman filter algorithm’ for details).

Figure 2 applies this framework to the problem of estimating self-motion (rotation, tilt and trans-

lation) using vestibular sensors, with two types of motor commands: angular velocity (
u) and transla-

tional acceleration (Au), with corresponding unpredicted inputs, 
" and A" (Figure 2A) that represent

passive motion or motor error (see Discussion: ‘Role of the vestibular system during active motion:

fundamental, ecological and clinical implications’). The sensory signals (S) we consider initially

encompass the semicircular canals (rotation sensors that generate a sensory signal V ) and the oto-

liths organs (linear acceleration sensors that generate a sensory signal F) – proprioception is also

added in subsequent sections. Each of these sensors has distinct properties, which can be accounted

for by the internal model of the sensors. The semicircular canals exhibit high-pass dynamic proper-

ties, which are modeled by another state variable C (see Supplementary methods, ‘Model of head

motion and vestibular sensors’). The otolith sensors exhibit negligible dynamics, but are fundamen-

tally ambiguous: they sense gravitational as well as linear acceleration – a fundamental ambiguity

resulting from Einstein’s equivalence principle [Einstein, 1907; modeled here as G tð Þ ¼
R


 tð Þ:dt

and F tð Þ ¼ G tð Þ þ A tð Þ; note that G and A are expressed in comparable units; see

Materials and methods; ’Simulation parameters’]. Thus, in total, the state variable X has 4-degrees of

freedom (Figure 2A): angular velocity 
 and linear acceleration A (which are the input/output varia-

bles directly controlled), as well as C (a hidden variable that must be included to model the dynamics

of the semicircular canals) and tilt position G (another hidden variable that depends on rotations 
,

necessary to model the sensory ambiguity of the otolith organs).

The Kalman filter computes optimal estimates 
̂ tð Þ, Ĝ tð Þ, Â tð Þ and Ĉ tð Þ based on motor commands

and sensory signals. Note that we do not introduce any tilt motor command, as tilt is assumed to be

controlled only indirectly though rotation commands (
u). For simplicity, we restrict self-motion to a

single axis of rotation (e.g. roll) and a single axis of translation (inter-aural). The model can simulate

either rotations in the absence of head tilt (e.g. rotations around an earth-vertical axis: EVAR,

Figure 2B) or tilt (Figure 2C, where tilt is the integral of rotation velocity, G tð Þ ¼
R


 tð Þ:dt) using a

switch (but see Supplementary methods, ‘Three-dimensional Kalman filter’ for a 3D model). Sensory

errors are used to correct internal motion estimates using the Kalman gain matrix, such that the Kal-

man filter as a whole performs optimal estimation. In theory, the Kalman filter includes a total of

eight feedback signals, corresponding to the combination of two sensory (canal and otolith) errors

and four internal states (
̂ tð Þ, Ĝ tð Þ, Â tð Þ and Ĉ tð Þ). From those eight feedback signals, two are always

negligible (Table 2; see also Supplementary methods, ‘Kalman feedback gains’).

We will show how this model performs optimal estimation of self-motion using motor commands

and vestibular sensory signals in a series of increasingly complex simulations. We start with a very

short (0.2 s) EVAR stimulus, where canal dynamics are negligible (Figure 3), followed by a longer

EVAR that highlights the role of an internal model of the canals (Figure 4). Next, we consider the

more complex tilt and translation movements that require all four state variables to demonstrate

how canal and otolith errors interact to disambiguate otolith signals (Figures 5 and 6). Finally, we

extend our model to simulate independent movement of the head and trunk by incorporating neck

proprioceptive sensory signals (Figure 7). For each motion paradigm, identical active and passive

motion simulations will be shown side by side in order to demonstrate how the internal model
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integrates sensory information and motor commands. We show that the Kalman feedback plays a

preeminent role, which explains why lots of brain machinery is devoted to its implementation (see

Discussion). For convenience, all mathematical notations are summarized in Table 1. For Kalman

feedback gain nomenclature and numerical values, see Table 2.

Passive motion induces sensory errors
In Figure 3, we simulate rotations around an earth-vertical axis (Figure 3A) with a short duration (0.2

s, Figure 3B), chosen to minimize canal dynamics (C » 0, Figure 3B, cyan) such that the canal

response matches the velocity stimulus (V » 
, compare magenta curve in Figure 3C with blue curve

in Figure 3B). We simulate active motion (Figure 3D–K, left panels), where 
 ¼ 
u (Figure 3D) and

Table 1. List of motion variables and mathematical notations.

Motion variables


 Head rotation velocity (in space)

G Head Tilt

A Linear Acceleration

C Canals dynamics


TS Trunk in space rotation velocity (variant of the model)


HT Head on trunk rotation velocity (variant of the model)

N Neck position (variant of the model)

X Matrix containing all motion variables in a model

Sensory variables

V Semicircular canal signal

F Otolith signal

P Neck proprioceptive signal

Vis Visual rotation signal

S Matrix containing all sensory variables in a model

Accent and superscripts (motion variables)

X Real value of a variable

X̂ Final estimate

X̂
p Predicted (or preliminary) estimate

Xu Motor command affecting the variable

X" Perturbation or motor error affecting the variable (standard deviation sX )

sX Standard deviation of X"

Xk Kalman feedback on the variable

Accent and superscripts (sensory variables)

S Real value of a variable

Ŝ
p Predicted value

Sh Sensory noise

sS Standard deviation of Sh

dS Sensory error

kXdS Kalman gain of the feedback from S to a motion variable X

Other

dt Time step used in the simulations

M
0 Transposed of a matrix M

tc Time constant of the semicircular canals

DOI: https://doi.org/10.7554/eLife.28074.026
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" ¼ 0 (not shown), as well as passive motion (Figure 3D–K, right panels), where 
 ¼ 
" (Figure 3D)

and 
u ¼ 0 (not shown). The rotation velocity stimulus (
, Figure 3E, blue) and canal activation (V ,

Figure 3F, magenta) are identical in both active and passive stimulus conditions. As expected, the

final velocity estimate 
̂ (output of the filter, Figure 3G, blue) is equal to the stimulus 
 (Figure 3E,

blue) during both passive and active conditions. Thus, this first simulation is meant to emphasize dif-

ferences in the flow of information within the Kalman filter, rather than differences in performance

between passive and active motions (which is identical).

The fundamental difference between active and passive motions resides in the prediction of head

motion (Figure 3H) and sensory canal signals (Figure 3I). During active motion, the motor command


u (Figure 3D) is converted into a predicted rotation 
̂
p
¼ 
u (Figure 3H) by the internal model,

and in turn in a predicted canal signal V̂
p
(Figure 3I). Of course, in this case, we have purposely cho-

sen the rotation stimulus to be so short (0.2 s), such that canal afferents reliably encode the rotation

Table 2. Kalman feedback gains during EVAR and tilt/translation.

Some feedback gains are constant independently of dt while some other scale with dt (see Supple-

mentary methods, ‘Feedback gains’ for explanations). Gains that have negligible impact on the

motion estimates are indicated in normal fonts, others with profound influence are indicated in bold.

The feedback gains transform error signals into feedback signals.

Gains during EVAR Gains during tilt Notes

Canal feedbacks k
dV 0.94 0.94

kCdV 0.19 dt 0.23 dt
Integrated over time

kGdV 0.00 0.90 dt

kAdV 0.00 -0.90 dt Negligible

Otolith feedbacks k
dF - 0.00 Negligible

kCdF - 0.14 dt
Integrated over time

kGdF - 0.76 dt

kAdF - 0.99

DOI: https://doi.org/10.7554/eLife.28074.027

Table 3. Kalman feedback gains during head and neck rotation.

As in Table 2, some feedback gains are constant and independently of dt, while some others scale

with or inversely to dt (see Supplementary methods, ‘Feedback gains of the model of head and neck

motion’ for explanations). Gains that have negligible impact on the motion estimates are indicated in

normal fonts, others with profound influence are indicated in bold. The feedback gains k
dV and

k
dP are computed as k
dV ¼ k

TS

dV þ k

HT

dV and k
dP ¼ k

TS

dP þ k

HT

dP .

Gains Notes

Canal feedbacks k
TSdV
0.85

k
HTdV
0.10

kNdV 0.05 dt Negligible

kCdV 0.22 dt Integrated over time

k
dV 0.95

Proprioceptive feedbacks k
TSdP
-0.84/dt

k
HTdP
0.89/dt

kNdP 0.94

kCdP 0.03 Negligible

k
dP 0.05/dt Negligible

DOI: https://doi.org/10.7554/eLife.28074.028
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stimulus (V »
; compare Figure 3F and E, left panels) and the internal model of canals dynamics

have a negligible contribution; that is, 
̂
p
» V̂

p
(compare Figure 3I and H, left panels). Because the

canal sensory error is null, that is dV ¼ V � V̂
p
» 0 (Figure 3K, left panel), the Kalman feedback path-

way remains silent (not shown) and the net motion estimate is unchanged compared to the predic-

tion, that is, 
̂ ¼ 
̂
p
¼ 
u ¼ 
. In conclusion, during active rotation (and in the absence of

perturbations, motor or sensory noise), motion estimates are generated entirely based on an accu-

rate predictive process, in turn leading to an accurate prediction of canal afferent signals. In the

absence of sensory mismatch, these estimates don’t require any further adjustment.

In contrast, during passive motion the predicted rotation is null (
̂
p
¼ 0, Figure 3H, right panel),

and therefore the predicted canal signal is also null (V̂
p
¼ 0, Figure 3I, right panel). Therefore, canal

Figure 3. Short duration rotation around an earth-vertical axis (as in Figure 2B). (A) Illustration of the stimulus lasting, 200 ms. (B,C) Time course of

motion variables and sensory (canal) signals. (D–K) Simulated variables during active (left panels) and passive motion (right panels). Only the angular

velocity state variable 
 is shown (tilt position G and linear acceleration A are not considered in this simulation, and the hidden variable C is equal to

zero). Continuous arrows represent the flow of information during one time step, and broken arrows the transfer of information from one time step to

the next. (J) Kalman feedback. For clarity, the Kalman feedback is shown during passive motion only (it is always zero during active movements in the

absence of any perturbation and noise). The box defined by dashed gray lines illustrates the Kalman filter computations. For the rest of mathematical

notations, see Table 1.

DOI: https://doi.org/10.7554/eLife.28074.007
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signals during passive motion generate a sensory error dV ¼ V � V̂
p

¼ V (Figure 3K, right panel).

This sensory error is converted into a feedback signal 
k ¼ k
dV :dV (Figure 3J) with a Kalman gain

k
dV (feedback from canal error dV to angular velocity estimate 
) that is close to 1 (Table 2; note

Figure 4. Medium-duration rotation around an earth-vertical axis, demonstrating the role of the internal model of canal dynamics. (A) Illustration of the

stimulus lasting 2 s. (B,C) Time course of motion variables and sensory (canal) signals. (D–K) Simulated variables during active (left panels) and passive

motions (right panels). Two state variables are shown: the angular velocity 
 (blue) and canal dynamics C (cyan). Continuous arrows represent the flow

of information during one time step, and broken arrows the transfer of information from one time step to the next. (J) Kalman feedback. For clarity, the

Kalman feedback (reflecting feedback from the canal error signal to the two state variables) is shown during passive motion only (it is always zero during

active movements in the absence of any perturbation and noise). All simulations use a canal time constant of 4 s. Note that, because of the integration,

the illustrated feedback Ck is scaled by a factor 1=dt; see Supplementary methods, ‘Kalman feedback gains’. The box defined by dashed gray lines

illustrates the Kalman filter computations. For the rest of mathematical notations, see Table 1.

DOI: https://doi.org/10.7554/eLife.28074.008

The following figure supplements are available for figure 4:

Figure supplement 1. Processing of rotation information during long-duration motion.

DOI: https://doi.org/10.7554/eLife.28074.009

Figure supplement 2. Same simulation as in Figure 4, where the internal model of canals dynamic is not used.

DOI: https://doi.org/10.7554/eLife.28074.010

Figure supplement 3. Quantitative analysis of the importance of an internal model of the canals for ecological movements.

DOI: https://doi.org/10.7554/eLife.28074.011
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that this value represents an optimum and is computed by the Kalman filter algorithm). The final

motion estimate is generated by this feedback, that is 
̂ ¼ k
dV :dV ¼ V » 
:

Figure 5. Simulation of short duration head tilt. (A) Illustration of the stimulus lasting 0.2 s. (B,C) Time course of motion variables and sensory (canal and

otolith) signals. (D–L) Simulated variables during active (left panels) and passive motions (right panels). Three state variables are shown: the angular

velocity 
 (blue), tilt position G; and linear acceleration A. Continuous arrows represent the flow of information during one time step, and broken arrows

represent the transfer of information from one time step to the next. (J, K) Kalman feedback (shown during passive motion only). Two error signals (dV :

canal error; dF: otolith error) are transformed into feedback to state variables 
k : blue, Gk : green, Ak : red (variable Ck is not shown, but see Figure 5—

figure supplement 1 for simulations of a 2-s tilt). Feedback originating from dF is shown in (J) and from dV in (K). The feedback to Gk is scaled by a

factor 1=dt (see Supplementary methods, ‘Kalman feedback gains’). Note that in this simulation we consider an active (
u) or passive (
") rotation

velocity as input. The tilt itself is a consequence of the rotation, and not an independent input. The box defined by dashed gray lines illustrates the

Kalman filter computations. For the rest of mathematical notations, see Table 1.

DOI: https://doi.org/10.7554/eLife.28074.012

The following figure supplement is available for figure 5:

Figure supplement 1. Simulation of medium duration (2 s) head tilt movement.

DOI: https://doi.org/10.7554/eLife.28074.013
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These results illustrate the fundamental rules of how active and passive motion signals are proc-

essed by the Kalman filter (and, as hypothesized, the brain). During active movements, motion esti-

mates are generated by a predictive mechanism, where motor commands are fed into an internal

model of head motion. During passive movement, motion estimates are formed based on feedback

signals that are themselves driven by sensory canal signals. In both cases, specific nodes in the

Figure 6. Simulation of short duration translation. Same legend as Figure 5. Note that F is identical in Figures 5 and 6: in terms of sensory inputs,

these simulation differ only in the canal signal.

DOI: https://doi.org/10.7554/eLife.28074.014

The following figure supplements are available for figure 6:

Figure supplement 1. Long duration translation, demonstrating the time course of the somatogravic effect.

DOI: https://doi.org/10.7554/eLife.28074.015

Figure supplement 2. Simulation of simultaneous tilt and translation.

DOI: https://doi.org/10.7554/eLife.28074.016

Figure supplement 3. Otolith influence on rotation estimate during passive rotations.

DOI: https://doi.org/10.7554/eLife.28074.017
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network are silent (e.g. predicted canal signal

during passive motion, Figure 3I; canal error sig-

nal during active motion, Figure 3K), but the

same network operates in unison under all stimu-

lus conditions. Thus, depending on whether the

neuron recorded by a microelectrode in the brain

carries predicted, actual or error sensory signals,

differences in neural response modulation are

expected between active and passive head

motion. For example, if a cell encodes canal error

exclusively, it will show maximal modulation dur-

ing passive rotation, and no modulation at all

during active head rotation. If a cell encodes mix-

tures of canal sensory error and actual canal sen-

sory signals (e.g. through a direct canal afferent

input), then there will be non-zero, but attenu-

ated, modulation during active, compared to pas-

sive, head rotation. Indeed, a range of response

attenuation has been reported in the vestibular

nuclei (see Discussion).

We emphasize that in Figure 3 we chose a

very short-duration (0.2 s) motion profile, for

which semicircular canal dynamics are negligible

and the sensor can accurately follow the rotation

velocity stimulus. We now consider more realistic

rotation durations, and demonstrate how predic-

tive and feedback mechanisms interact for accu-

rate self-motion estimation. Specifically, canal

afferent signals attenuate (because of their

dynamics) during longer duration rotations – and

this attenuation is already sizable for rotations

lasting 1 s or longer. We next demonstrate that

the internal model of canal dynamics must be

engaged for accurate rotation estimation, even

during purely actively generated head

movements.

Internal model of canals
We now simulate a longer head rotation, lasting

2 s (Figure 4A,B, blue). The difference between

the actual head velocity 
 and the average canal

signal V is modeled as an internal state variable

C, which follows low-pass dynamics (see Supple-

mentary methods, ‘Model of head motion and

vestibular sensors’). At the end of the 2 s rota-

tion, the value of C reaches its peak at ~40% of

the rotation velocity (Figure 4B, cyan), modeled

to match precisely the afferent canal signal V ,

which decreases by a corresponding amount

(Figure 4C). Note that C persists when the rota-

tion stops, matching the canal aftereffect

(V ¼ �C < 0 after t > 2 s). Next, we demonstrate

how the Kalman filter uses the internal variable C

to compensate for canal dynamics.

During active motion, the motor command 
u

(Figure 4D) is converted into an accurate

Figure 7. Simulations of passive trunk and head

movements. We use a variant of the Kalman filter

model (see Supplementary methods) that tracks the

velocity of both head and trunk (trunk in space: gray;

head in space: blue; head on trunk: red) based on

semicircular canal and neck proprioception signals. The

real motion (first line), sensory signals (second line) and

velocity feedback signals (third to fifth lines) are shown

during (A) passive whole head and trunk rotation, (B)

passive head on trunk rotation, and (C) passive trunk

under head rotation. See Figure 7—figure

supplement 1–3 for other variables and simulations of

active motion.

DOI: https://doi.org/10.7554/eLife.28074.018

The following figure supplements are available for

figure 7:

Figure supplement 1. Active and passive head and

trunk rotation.

DOI: https://doi.org/10.7554/eLife.28074.019

Figure supplement 2. Active and passive head on

trunk rotation.

DOI: https://doi.org/10.7554/eLife.28074.020

Figure supplement 3. Active and passive rotation of

the trunk while the head is stationary.

DOI: https://doi.org/10.7554/eLife.28074.021

Figure supplement 4. Simulated tuning of unimodal

and bimodal neuron as a function of neck position

offset.

DOI: https://doi.org/10.7554/eLife.28074.022

Figure supplement 5. Long-duration passive head and

trunk movements.

DOI: https://doi.org/10.7554/eLife.28074.023

Figure supplement 6. Modeling the impact of

perturbing motor activity during active movement.

DOI: https://doi.org/10.7554/eLife.28074.024

Figure 7 continued on next page
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prediction of head velocity 
̂
p

(Figure 4H,

blue). Furthermore, 
u is also fed through the

internal model of the canals to predict Ĉ
p

(Figure 4H, cyan). By combining the predicted

internal state variables 
̂
p
and Ĉ

p
, the Kalman

filter computes a canal prediction V̂
p
that fol-

lows the same dynamics as V (compare Figure 4F and I, left panels). Therefore, as in Figure 3, the

resulting sensory mismatch is dV ¼ V � V̂
p
» 0 and the final estimates (Figure 4G) are identical to

the predicted estimates (Figure 4H). Thus, the Kalman filter maintains an accurate rotation estimate

by feeding motor commands through an internal model of the canal dynamics. Note, however, that

because in this case V 6¼ 
 (compare magenta curve in Figure 4F and blue curve in Figure 4E, left

panels), V̂
p
6¼ 
̂

p
(compare magenta curve in Figure 4I and blue curve in Figure 4H, left panels).

Thus, the sensory mismatch can only be null under the assumption that motor commands have been

processed through the internal model of the canals. But before we elaborate on this conclusion, let’s

first consider passive stimulus processing.

During passive motion, the motor command 
u is equal to zero. First, note that the final estimate


̂ »
 is accurate (Figure 4G), as in Figure 3G, although canal afferent signals don’t encode 
 accu-

rately. Second, note that the internal estimate of canal dynamics Ĉ (Figure 4G) and the correspond-

ing prediction (Ĉ
p
; Figure 4H) are both accurate (compare with Figure 4E). This occurs because the

canal error dV (Figure 4K) is converted into a second feedback, Ck, (Figure 4J, cyan), which updates

the internal estimate Ĉ (see Supplementary methods, ‘Velocity Storage’). Finally, in contrast to Fig-

ure 3, the canal sensory error dV (Figure 4K) does not follow the same dynamics as V (Figure 4C,F),

but is (as it should) equal to 
 (Figure 4B). This happens because, though a series of steps (V̂
p
= -Ĉ

p

in Figure 4I and dV ¼ V � V̂
p
in Figure 4K), Ĉ

p
is

added to the vestibular signal V to compute

dV »
. This leads to the final estimate 
̂ ¼ 
̂
p
¼

dV »
 (Figure 4G). Model simulations during

even longer duration rotations and visual-vestibu-

lar interactions are illustrated in Figure 4—figure

supplement 1. Thus, the internal model of canal

dynamics improves the rotation estimate during

passive motion. Remarkably, this is important not

only during very long duration rotations (as is

often erroneously presumed), but also during

short stimuli lasting 1–2 s, as illustrated with the

simulations in Figure 4.

We now return to the actively generated head

rotations to ask the important question: What

would happen if the brain didn’t use an internal

model of canal dynamics? We simulated motion

estimation where canal dynamics were removed

from the internal model used by the Kalman filter

(Figure 4—figure supplement 2). During both

active and passive motion, the net estimate 
̂ is

inaccurate as it parallels V , exhibiting a decrease

over time and an aftereffect. In particular, during

active motion, the motor commands provide

accurate signals 
̂
p
, but the internal model of the

canals fails to convert them into a correct predic-

tion V̂
p
, resulting in a sensory mismatch. This mis-

match is converted into a feedback signal 
k that

degrades the accurate prediction 
̂
p
such that

the final estimate 
̂ is inaccurate. These

Figure 7 continued

Figure supplement 7. Neuronal responses when

perturbing motor activity during active movement.

DOI: https://doi.org/10.7554/eLife.28074.025

Figure 8. Interaction of active and passive motion.

Active movements (Gaussian profiles) and passive

movements (short trapezoidal profiles) are

superimposed. (A) Active (
u) and passive (
")

rotations. (B) Head tilt resulting from active and passive

rotations (the corresponding tilt components are
R


u:dt and
R


":dt). (C) Active (Au) and passive (A")

translations. (D-F) Final motion estimates (equal to the

total motion). (G-I) The Kalman feedback corresponds

to the passive motion component. (J-K) Final estimates

computed by inactivating all Kalman feedback

pathways. These simulations represent the motion

estimates that would be produced if the brain

suppressed sensory inflow during active motion. The

simulations contradict the alternative scheme of

Figure 1—figure supplement 1A.

DOI: https://doi.org/10.7554/eLife.28074.029
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simulations highlight the role of the internal model of canal dynamics, which continuously integrates

rotation information in order to anticipate canal afferent activity during both active and passive

movements. Without this sensory internal model, active movements would result in sensory mis-

match, and the brain could either transform this mismatch into sensory feedback, resulting in inaccu-

rate motion estimates, or ignore it and lose the ability to detect externally generated motion or

movement errors. Note that the impact of canal dynamics is significant even during natural short-

duration and high-velocity head rotations (Figure 4—figure supplement 3). Thus, even though par-

ticular nodes (neurons) in the circuit (e.g. vestibular and rostral fastigial nuclei cells presumably

reflecting either dV or 
k in Figures 3 and 4; see Discussion) are attenuated or silent during active

head rotations, efference copies of motor commands must always be processed though the internal

model of the canals – motor commands cannot directly drive appropriate sensory prediction errors.

This intuition has remained largely unappreciated by studies comparing how central neurons modu-

late during active and passive rotations – a misunderstanding that has led to a fictitious dichotomy

belittling important insights gained by decades of studies using passive motion stimuli (see

Discussion).

Active versus passive tilt
Next, we study the interactions between rotation, tilt and translation perception. We first simulate a

short duration (0.2 s) roll tilt (Figure 5A; with a positive tilt velocity 
, Figure 5B, blue). Tilt position (G,

Figure 9. Simulations of the alternative scheme where motor commands cancel the output of a sensory internal model. In this figure, we consider an

alternative scheme (Figure 1—figure supplement 1B), where the motor commands (first row), which are assumed to encode head angular velocity and

linear acceleration (as in the Kalman filer model), are used to cancel the output of a ‘sensory only’ internal model (second row, also identical to the

Kalman filter model) to compute motion prediction errors (third row), instead of sensory prediction error, as in the Kalman filter model. (A) During a

short active rotation (same as in Figure 3), both the motor prediction and the sensory self-motion estimate are close to the real motion and therefore

the motor prediction cancels the sensory estimate accurately. (B) Similarly to Figure 3, the motor prediction is null and the sensory estimate is not

cancelled during passive rotation. (C) During long-duration active rotation (same motion as in Figure 4—figure supplement 1A,B), the motor

prediction (top row) does not match the sensory signal (second row), resulting in a substantial prediction error (third row). This contrasts with Kalman

filter simulations, where no sensory prediction errors occur during active motion. (D) During long-duration passive motion, results agree with Kalman

filter predictions. (E) During active translation (same motion as in Figure 6), the somatogravic effect would induce a tilt illusion (green) and an

underestimation of linear acceleration (red), again leading to motion prediction errors. Thus, although the predictions of this alternative model

resemble those of the Kalman filter during short active rotations, they differ during long rotations or active translations and are contradicted by

experimental observations. The last row shows the final self-motion estimate obtained by computing a weighted average of the predicted head motion

and sensory motion estimates. Three different weights are considered: 100% motor signals (dark blue), 100% sensory estimates (dark blue) or 50%/50%

(blue).

DOI: https://doi.org/10.7554/eLife.28074.030
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Figure 5B, green) ramps during the rotation and then remains constant. As in Figure 3, canal dynam-

ics C are negligible (V »
; Figure 5F, magenta) and the final rotation estimate 
̂ is accurate

(Figure 5G, blue). Also similar to Figure 3, 
̂ is carried by the predicted head velocity node during

active motion (
̂ » 
̂
p
; 
k

» 0) and by the Kalman feedback node during passive motion (
 »
k; 
̂
p
» 0).

That is, the final rotation estimate, which is accurate during both active and passive movements, is car-

ried by different nodes (thus, likely different cell types; see Discussion) within the neural network.

Figure 10. Schematic diagram of central vestibular computations. This diagram is organized to offer a synthetic

view of the processing elements, as well as their putative neural correlates. An internal model (top gray box)

predicts head motion based on motor commands and receives feedback signals. The internal model computes

predicted canal and otolith signals that are compared to actual canal and otolith inputs. The resulting sensory

errors are transformed by the Kalman gain matrix into a series of feedback ‘error’ signals. Left: canal error

feedback signals; Right: otolith error feedback signals. Rotation signals are spatially transformed (‘3D’ boxes) into

tilt velocity signals. Ovals indicate putative neuronal correlates of the feedback signals (VN: vestibular only

vestibular nuclei neurons; rFN: rostral fastigial nuclei neurons, PC: Purkinje cells in the caudal vermis, DCN: deep

cerebellar nuclei).

DOI: https://doi.org/10.7554/eLife.28074.031

The following figure supplements are available for figure 10:

Figure supplement 1. Alternative diagram.

DOI: https://doi.org/10.7554/eLife.28074.032

Figure supplement 2. Influence of model parameters.

DOI: https://doi.org/10.7554/eLife.28074.033
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When rotations change orientation relative to gravity, another internal state (tilt position G, not

included in the simulations of Figures 3 and 4) and another sensor (otolith organs; F ¼ G since A ¼ 0

in this simulation; Figure 5F, black) are engaged. During actively generated tilt movements, the

rotation motor command (
u) is temporally integrated by the internal model (see Eq: 3c of Supple-

mentary methods, ‘Kalman filter algorithm developed’), generating an accurate prediction of head

tilt Ĝ
p
tð Þ ¼

R t

0

u:dt (Figure 5H, left panel, green). This results in a correct prediction of the otolith

signal F̂
p
(Figure 5I, grey) and therefore, as in previous simulations of active movement, the sensory

mismatch for both the canal and otolith signals (Figure 5L, magenta and gray, respectively) and

feedback signals (not shown) are null; and the final estimates, driven exclusively by the prediction,

are accurate; Ĝ tð Þ ¼ Ĝ
p
tð Þ and 
̂ tð Þ ¼ 
̂

p
tð Þ.

During passive tilt, the canal error, dV , is converted into Kalman feedback that updates 
̂

(Figure 5K, blue) and Ĉ (not shown here; but see Figure 5—figure supplement 1 for 2 s tilt simula-

tions), as well as the two other state variables (Ĝ and Â). Specifically, the feedback from dV to Ĝ

(GkÞ updates the predicted tilt Ĝ
p
and is temporally integrated by the Kalman filter (Ĝ tð Þ ¼

R t

0
Gk;

see Supplementary methods, ‘Passive Tilt’; Figure 5K, green). The feedback signal from dV to Â has

a minimal impact, as illustrated in Figure 5K, red (see also Supplementary methods,’ Kalman feed-

back gains’ and Table 2).

Because dV efficiently updates the tilt estimate Ĝ, the otolith error dF is close to zero during pas-

sive tilt (Figure 5L, gray; see Supplementary methods, ‘Passive Tilt’) and therefore all feedback sig-

nals originating from dF (Figure 5J) play a minimal role (see Supplementary methods, ‘Passive Tilt’)

during pure tilt (this is the case even for longer duration stimuli; Figure 5—figure supplement 1).

This simulation highlights that, although tilt is sensed by the otoliths, passive tilt doesn’t induce any

sizeable otolith error. Thus, unlike neurons tuned to canal error, the model predicts that those cells

tuned to otolith error will not modulate during either passive or actively-generated head tilt. There-

fore, cells tuned to otolith error would respond primarily during translation, and not during tilt, thus

they would be identified ‘translation-selective’. Furthermore, the model predicts that those neurons

tuned to passive tilt (e.g. Purkinje cells in the caudal cerebellar vermis; Laurens et al., 2013b) likely

reflect a canal error that has been transformed into a tilt velocity error (Figure 5L, magenta). Thus,

the model predicts that tilt-selective Purkinje cells should encode tilt velocity, and not tilt position, a

prediction that remains to be tested experimentally (see Discussion).

Otolith errors are interpreted as translation and tilt with distinct
dynamics
Next, we simulate a brief translation (Figure 6). During active translation, we observe, as in previous

simulations of active movements, that the predicted head motion matches the sensory (otolith in this

case: F ¼ A) signals (Â
p
¼ A and F̂

p
¼ F). Therefore, as in previous simulations of active motion, the

sensory prediction error is zero (Figure 6L) and the final estimate is equal to, and driven by, the pre-

diction (Â ¼ Â
p
¼ A; Figure 6G, red).

During passive translation, the predicted acceleration is null (Â
p
¼ 0, Figure 6H, red), similar as

during passive rotation in Figures 3 and 4). However, a sizeable tilt signal (Ĝ
p
and Ĝ, Figure 6G,H,

green), develops over time. This (erroneous) tilt estimate can be explained as follows: soon after

translation onset (vertical dashed lines in Figure 6B–J), Ĝ
p
is close to zero. The corresponding pre-

dicted otolith signal is also close to zero (F̂
p
¼ Â

p
þ Ĝ

p
¼ 0), leading to an otolith error dF »A

(Figure 6L, right, gray). Through the Kalman feedback gain matrix, this otolith error, dF, is converted

into: (1) an acceleration feedback Ak (Figure 6J, red) with gain kAdF ¼ 0:995 (the close to unity feed-

back gain indicates that otolith errors are interpreted as acceleration: Â ¼ dF »A; note however that

the otolith error dF vanishes over time, as explained next); and (2) a tilt feedback Gk (Figure 6J,

green), with kGdF ¼ 0:5:dt. This tilt feedback, although too weak to have any immediate effect, is inte-

grated over time (Ĝ tð Þ ¼
R t

0
Gk; see Figure 5 and Supplementary methods, ‘Somatogravic effect’),

generating the rising tilt estimate Ĝ (Figure 6G, green) and Ĝ
p
(Figure 6H, green).

The fact that the Kalman gain feedback from the otolith error to the Ĝ internal state generates

the somatogravic effect is illustrated in Figure 6—figure supplement 1, where a longer acceleration
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(20 s) is simulated. At the level of final estimates (perception), these simulations predict the occur-

rence of tilt illusions during sustained translation (somatogravic illusion; Graybiel, 1952; Paige and

Seidman, 1999). Further simulations show how activation of the semicircular canals without a corre-

sponding activation of the otoliths (e.g. during combination of tilt and translation; Angelaki et al.

(2004); Yakusheva et al., 2007) leads to an otolith error (Figure 6—figure supplement 2) and how

signals from the otoliths (that sense indirectly whether or not the head rotates relative to gravity) can

also influence the rotation estimate 
̂ at low frequencies (Figure 6—figure supplement 3; this prop-

erty has been extensively evaluated by Laurens and Angelaki, 2011). These simulations demon-

strate that the Kalman filter model efficiently simulates all previous properties of both perception

and neural responses during passive tilt and translation stimuli (see Discussion).

Neck proprioceptors and encoding of trunk versus head velocity
The model analyzed so far has considered only vestibular sensors. Nevertheless, active head rota-

tions often also activate neck proprioceptors, when there is an independent rotation of the head rel-

ative to the trunk. Indeed, a number of studies (Kleine et al., 2004; Brooks and Cullen, 2009;

2013; Brooks et al., 2015) have identified neurons in the rostral fastigial nuclei that encode the

rotation velocity of the trunk. These neurons receive convergent signals from the semicircular canals

and neck muscle proprioception and, accordingly, are named ‘bimodal neurons’, to contrast with

‘unimodal neurons’, which encode passive head velocity. Because the bimodal neurons do not

respond to active head and trunk movements (Brooks and Cullen, 2013; Brooks et al., 2015), they

likely encode feedback signals related to trunk velocity. We developed a variant of the Kalman filter

to model both unimodal and bimodal neuron types (Figure 7; see also Supplementary methods and

Figure 7—figure supplement 1–3).

The model tracks the velocity of the trunk in space 
TS and the velocity of the head on the trunk


HT as well as neck position (N ¼
R


HT :dt). Sensory inputs are provided by the canals (that sense the

total head velocity, 
 ¼ 
TS þ 
HT ), and proprioceptive signals from the neck musculature (P), which

are assumed to encode neck position (Chan et al., 1987).

In line with the simulations presented above, we find that, during active motion, the predicted

sensory signals are accurate. Consequently, the Kalman feedback pathways are silent (Figure 7—fig-

ure supplement 1–3; active motion is not shown in Figure 7). In contrast, passive motion induces

sensory errors and Kalman feedback signals. The velocity feedback signals (elaborated in Figure 7—

figure supplement 1–3) have been re-plotted in Figure 7, where we illustrate head in space (blue),

trunk in space (gray), and head on trunk (red) velocity (neck position feedback signals are only shown

in Figure 7—figure supplement 1–3).

During passive whole head and trunk rotation, where the trunk rotates in space (Figure 7A, Real

motion: 
TS>0, grey) and the head moves together with the trunk (head on trunk velocity 
HT ¼ 0,

red, head in space 
>0, blue), we find that the resulting feedback signals accurately encode these

rotation components (Figure 7A, Velocity Feedback; see also Figure 7—figure supplement 1). Dur-

ing head on trunk rotation (Figure 7B, Figure 7—figure supplement 2), the Kalman feedback sig-

nals accurately encode the head on trunk (red) or in space (blue) rotation, and the absence of trunk

in space rotation (gray). Finally, during trunk under head rotation that simulates a rotation of the

trunk while the head remains fixed in space, resulting in a neck counter-rotation, the various motion

components are accurately encoded by Kalman feedback (Figure 7C, Figure 7—figure supplement

3). We propose that unimodal and bimodal neurons reported in (Brooks and Cullen, 2009;

2013) encode feedback signals about the velocity of the head in space (
k, Figure 7, blue) and of

the trunk in space (
k
TS, Figure 7, gray), respectively. Furthermore, in line with experimental findings

(Brooks and Cullen, 2013), these feedback pathways are silent during self-generated motion.

The Kalman filter makes further predictions that are entirely consistent with experimental results.

First, it predicts that proprioceptive error signals during passive neck rotation encode velocity (Fig-

ure 7—figure supplement 3L; see Supplementary methods, ‘Feedback signals during neck move-

ment’). Thus, the Kalman filter explains the striking result that the proprioceptive responses of

bimodal neurons encode trunk velocity (Brooks and Cullen, 2009; 2013), even if neck propriocep-

tors encode neck position. Note that neck proprioceptors likely encode a mixture of neck position

and velocity at high frequencies (Chan et al., 1987; Mergner et al., 1991); and additional simula-

tions (not shown) based on this hypothesis yield similar results as those shown here. We used here a
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model in which neck proprioceptors encode position for simplicity, and in order to demonstrate that

Kalman feedback signals encode trunk velocity even when proprioceptive signals encode position.

Second, the model predicts another important property of bimodal neurons: their response gains

to both vestibular (during sinusoidal motion of the head and trunk together) and proprioceptive

(during sinusoidal motion of the trunk when the head is stationary) stimulation vary identically if a

constant rotation of the head relative to the trunk is added, as an offset, to the sinusoidal motion

(Brooks and Cullen, 2009). We propose that this offset head rotation extends or contracts individual

neck muscles and affects the signal to noise ratio of neck proprioceptors. Indeed, simulations shown

in Figure 7—figure supplement 4 reproduce the effect of head rotation offset on bimodal neurons.

In agreement with experimental findings, we also find that simulated unimodal neurons are not

affected by these offsets (Figure 7—figure supplement 4).

Finally, the model also predicts the dynamics of trunk and head rotation perception during long-

duration rotations (Figure 7—figure supplement 5), which has been established by behavioral stud-

ies (Mergner et al., 1991).

Alternative models of interaction between active and passive motions
The theoretical framework of the Kalman filter asserts that the brain uses a single internal model to

process copies of motor commands and sensory signals. But could alternative computational

schemes, involving distinct internal models for motor and sensory signals, explain neuronal and

behavioral responses during active and passive motions? Here, we consider three possibilities, illus-

trated in Figure 1—figure supplement 1. First, that the brain computes head motion based on

motor commands only and suppresses vestibular sensory inflow entirely during active motion (Fig-

ure 1—figure supplement 1A). Second, that a ‘motor’ internal model and a ‘sensory’ internal model

run in parallel, and that central neurons encode the difference between their outputs – which would

represent a motion prediction error instead of a sensory prediction error, as proposed by the Kal-

man filter framework (Figure 1—figure supplement 1B). Third, that the brain computes sensory pre-

diction errors based on sensory signals and the output of the ‘motor’ internal model, and then feeds

these errors into the ‘sensory’ internal model (Figure 1—figure supplement 1C).

We first consider the possibility that the brain simply suppresses vestibular sensory inflow. Experi-

mental evidence against this alternative comes from recordings performed when passive motion is

applied concomitantly to an active movement (Brooks and Cullen, 2013; 2014; Carriot et al.,

2013). Indeed, neurons that respond during passive but not active motion have been found to

encode the passive component of combined passive and active motions, as expected based on the

Kalman framework. We present corresponding simulation results in Figure 8. We simulate a rotation

movement (Figure 8A), where an active rotation (
u, Gaussian velocity profile) is combined with a

passive rotation (
", trapezoidal profile), a tilt movement (Figure 8B; using similar velocity inputs, 
u

and 
", where the resulting active and passive tilt components are
R


udt and
R


"dt), and a transla-

tion movement (Figure 8C). We find that, in all simulations, the final motion estimate (Figure 8D–F;


̂, Ĝ and Â, respectively) matches the combined active and passive motions (
, G and A, respec-

tively). In contrast, the Kalman feedback signals (Figure 8G–I) specifically encode the passive motion

components. Specifically, the rotation feedback (
k, Figure 8G) is identical to the passive rotation


" (Figure 8A). As in Figure 5, the tilt feedback (Gk, Figure 8H) encodes tilt velocity, also equal to


" (Figure 8A). Finally, the linear acceleration feedback (Ak, Figure 8I) follows the passive accelera-

tion component, although it decreases slightly with time because of the somatogravic effect. Thus,

Kalman filter simulations confirm that neurons that encode sensory mismatch or Kalman feedback

should selectively follow the passive component of combined passive and active motions.

What would happen if, instead of computing sensory prediction errors, the brain simply discarded

vestibular sensory (or feedback) signals during active motion? We repeat the simulations of

Figure 8A–I after removing the vestibular sensory input signals from the Kalman filter. We find that

the net motion estimates encode only the active movement components (Figure 8J–L; 
̂, Ĝ and Â) –

thus, not accurately estimating the true movement. Furthermore, as a result of the sensory signals

being discarded, all sensory errors and Kalman feedback signals are null. These simulations indicate

that suppressing vestibular signals during active motion would prevent the brain from detecting pas-

sive motion occurring during active movement (see Discussion, ‘Role of the vestibular system during
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active motion: ecological, clinical and fundamental implications.”), in contradiction with experimental

results.

Next, we simulate (Figure 9) the alternative model of Figure 1—figure supplement 1B, where

the motor commands are used to predict head motion (Figure 9, first row) while the sensory signals

are used to compute a self-motion estimate (second row). According to this model, these two signals

would be compared to compute a motion prediction error instead of a sensory prediction error

(third row; presumably represented in the responses of central vestibular neurons). We first simulate

short active and passive rotations (Figure 9A,B; same motion as in Figure 3). During active rotation

(Figure 9A), both the motor prediction and the sensory self-motion estimate are close to the real

motion and therefore the motor prediction is null (Figure 9A, third row). In contrast, the sensory

estimate is not cancelled during passive rotation, leading to a non-zero motion prediction error

(Figure 9B, third row). Thus, the motion prediction errors in Figure 9A,B resemble the sensory pre-

diction errors predicted by the Kalman filter in Figure 3 and may explain neuronal responses

recorded during brief rotations.

However, this similarity breaks down when simulating a long-duration active or passive rotation

(Figure 9C,D; same motion as in Figure 4—figure supplement 1A,B). The motor prediction of rota-

tion velocity would remain constant during 1 min of active rotation (Figure 9C, first row), whereas

the sensory estimate would decrease over time and exhibit an aftereffect (Figure 9C, second row).

This would result in a substantial difference between the motor prediction and the sensory estimate

(Figure 9C, third row) during active motion. This contrasts with Kalman filter simulations, where no

sensory prediction errors occur during active motion.

A similar difference would also be seen during active translation (Figure 9E; same motion as in

Figure 6). While the motion prediction (first row) would encode the active translation, the sensory

estimate (second row) would be affected by the somatogravic effect (as in Figure 6), which causes

the linear acceleration signal (red) to be replaced by a tilt illusion (green), also leading to motion pre-

diction errors (third row). In contrast, the Kalman filter predicts that no sensory prediction error

should occur during active translation.

These simulations indicate that processing motor and vestibular information independently would

lead to prediction errors that would be avoided by the Kalman filter. Beyond theoretical arguments,

this scheme may be rejected based on behavioral responses: Both rotation perception and the vesti-

bulo-ocular reflex (VOR) decrease during sustained passive rotations, but persist indefinitely during

active rotation (macaques: Solomon and Cohen, 1992); humans: Guedry and Benson (1983);

Howard et al. (1998); Jürgens et al., 1999). In fact, this scheme cannot account for experimental

findings, even if we consider different weighting for how the net self-motion signal is constructed

from the independent motor and sensory estimates (Figure 9, bottom row). For example, if the sen-

sory estimate is weighted 100%, rotation perception would decay during active motion (Figure 9C,

bottom, dark blue), inconsistent with experimental results. If the motor prediction is weighted 100%,

passive rotations would not be detected at all (Figure 9B,D, light blue). Finally, intermediate solu-

tions (e.g. 50%/50%) would result in undershooting of both the steady state active (Figure 9C) and

passive (Figure 9B,D) rotation perception estimates. Note also that, in all cases, the rotation after-

effect would be identical during active and passive motion (Figure 9C,D, bottom), in contradiction

with experimental findings (Solomon and Cohen, 1992; Guedry and Benson, 1983; Howard et al.,

1998).

Finally, the third alternative scheme (Figure 1—figure supplement 1C), where sensory prediction

error is used to cancel the input of a sensory internal model is, in fact, a more complicated version of

the Kalman filter. This is because an internal model that processes motor commands to predict sen-

sory signals must necessarily include an internal model of the sensors. Thus, simulations of the model

in Figure 1—figure supplement 1C would be identical to the Kalman filter, by merely re-organizing

the sequence of operations and uselessly duplicating some of the elements, to ultimately produce

the same results.

Discussion
We have tested the hypothesis that the brain uses, during active motion, exactly the same sensory

internal model computations already discovered using passive motion stimuli (Mayne, 1974;

Oman, 1982; Borah et al., 1988; Merfeld, 1995; Zupan et al., 2002; Laurens, 2006; Laurens and

Laurens and Angelaki. eLife 2017;6:e28074. DOI: https://doi.org/10.7554/eLife.28074 20 of 45

Research article Neuroscience

https://doi.org/10.7554/eLife.28074


Droulez, 2007; Laurens and Droulez, 2008; Laurens and Angelaki, 2011; Karmali and Merfeld,

2012; Lim et al., 2017). Presented simulations confirm the hypothesis that the same internal model

(consisting of forward internal models of the canals, otoliths and neck proprioceptors) can reproduce

behavioral and neuronal responses to both active and passive motions. The formalism of the Kalman

filter allows predictions of internal variables during both active and passive motions, with a strong

focus on sensory error and feedback signals, which we hypothesize are realized in the response pat-

terns of central vestibular neurons.

Perhaps most importantly, this work resolves an apparent paradox in neuronal responses

between active and passive movements (Angelaki and Cullen, 2008), by placing them into a unified

theoretical framework in which a single internal model tracks head motion based on motor com-

mands and sensory feedback signals. Although particular cell types that encode sensory errors or

feedback signals may not modulate during active movements because the corresponding sensory

prediction error is negligible, the internal models of canal dynamics and otolith ambiguity operate

continuously to generate the correct sensory prediction during both active and passive movements.

Thus, the model presented here should eliminate the misinterpretation that vestibular signals are

ignored during self-generated motion, and that internal model computations during passive motion

are unimportant for every day’s life. We hope that this realization should also highlight the relevance

and importance of passive motion stimuli, as critical experimental paradigms that can efficiently

interrogate the network and unravel computational principles of natural motor activities, which can-

not easily be disentangled during active movements.

Summary of the Kalman filter model
We have developed the first ever model that simulates self-motion estimates during both

actively generated and passive head movements. This model, summarized schematically in Fig-

ure 10, transforms motor commands and Kalman filter feedback signals into internal estimates of

head motion (rotation and translation) and predicted sensory signals. There are two important take-

home messages: (1) Because of the physical properties of the two vestibular sense organs, the pre-

dicted motion generated from motor commands is not equal to predicted sensory signals (for exam-

ple, the predicted rotation velocity is processed to account for canal dynamics in Figure 4). Instead,

the predicted rotation, tilt and translation signals generated by efference copies of motor com-

mands must be processed by the corresponding forward models of the sensors in order to generate

accurate sensory predictions. This important insight about the nature of these internal model compu-

tations has not been appreciated by the qualitative schematic diagrams of previous studies. (2) In an

environment devoid of externally generated passive motion, motor errors and sensory noise, the

resulting sensory predictions would always match sensory afferent signals accurately. In a realistic

environment, however, unexpected head motion occurs due to both motor errors and external per-

turbations (see ‘Role of the vestibular system during active motion: ecological, clinical and funda-

mental implications’). Sensory vestibular signals are then used to correct internal motion estimates

through the computation of sensory errors and their transformation into Kalman feedback signals.

Given two sensory errors (dV originating from the semicircular canals and dF originating from the

otoliths) and four internal state variables (rotation, internal canal dynamics, tilt and linear accelera-

tion: 
̂, Ĉ, Ĝ, Â), eight feedback signals must be constructed. However, in practice, two of these sig-

nals have negligible influence for all movements (dV feedback to Â and dF feedback to 
̂; see

Table 2 and Supplementary methods, ‘Kalman Feedback Gains’), thus only six elements are summa-

rized in Figure 10.

The non-negligible feedback signals originating from the canal error dV are as follows (Figure 10,

left):

. The feedback to the rotation estimate 
̂ represents the traditional ‘direct’ vestibular pathway
(Raphan et al., 1979; Laurens and Angelaki, 2011). It is responsible for rotation perception
during high-frequency (unexpected) vestibular stimulation, and has a gain close to unity.

. The feedback to Ĉ feeds into the internal model of the canals, thus allowing compensation for
canals dynamics. This pathway corresponds to the ‘velocity storage’ (Raphan et al., 1979;
Laurens and Angelaki, 2011). Importantly, the contribution of this signal is significant for
movements larger than ~1 s, particularly during high velocity rotations.
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. The feedback to tilt (Ĝ) converts canal errors into a tilt velocity (dG=dt) signal, which is subse-
quently integrated by the internal model of head tilt.

The non-negligible feedback signals originating from the otolith error dF are as follows (Figure 9,

right):

. The feedback to linear acceleration (Â) converts unexpected otolith activation into an accelera-
tion signal and is responsible for acceleration perception during passive translations (as well as
experimentally generated otolith errors; Merfeld et al., 1999; Laurens et al., 2013a).

. The dF feedback to tilt (Ĝ) implements the somatogravic effect that acts to bias the internal
estimate of gravity toward the net otolith signal so as to reduce the otolith error.

. The dF feedback to Ĉ plays a similar role with the feedback to tilt Ĝ, that is, to reduce the oto-
lith error; but acts indirectly by biasing the internal estimate of rotation in a direction which,
after integration, drives the internal model of tilt so that it matches otolith signal (this feedback
was called ‘velocity feedback’ in Laurens and Angelaki, 2011). Behavioral studies (and model
simulations) indicate that this phenomenon has low-frequency dynamics and results in the abil-
ity of otolith signals to estimate rotational velocity (Angelaki and Hess, 1996; Hess and Ange-
laki, 1993). Lesion studies have demonstrated that this feedback depends on an intact
nodulus and ventral uvula, the vermal vestibulo-cerebellum (Angelaki and Hess, 1995a;
Angelaki and Hess, 1995b).

The model in Figure 10 is entirely compatible with previous models based on optimal passive

self-motion computations (Oman, 1982; Borah et al., 1988; Merfeld, 1995; Laurens, 2006;

Laurens and Droulez, 2007; Laurens and Droulez, 2008; Laurens and Angelaki, 2011;

Karmali and Merfeld, 2012; Lim et al., 2017; Zupan et al., 2002). The present model is, however,

distinct in two very important aspects: First, it takes into account active motor commands and inte-

grates these commands with the vestibular sensory signals. Second, because it is formulated as a

Kalman filter, it makes specific predictions about the feedback error signals, which constitute the

most important nodes in understanding the neural computations underlying head motion sensation.

Indeed, as will be summarized next, the properties of most cell types in the vestibular and cerebellar

nuclei, as well as the vestibulo-cerebellum, appear to represent either sensory error or feedback

signals.

Vestibular and rostral fastigial neurons encode sensory error or
feedback signals during rotation and translation
Multiple studies have reported that vestibular-only (erroneous term to describe ‘non-eye-movement-

sensitive’) neurons in the VN encode selectively passive head rotation (McCrea and Luan, 2003;

Roy and Cullen, 2001; 2004; Brooks and Cullen, 2014) or passive translation (Carriot et al., 2013),

but suppress this activity during active head movements. In addition, a group of rostral fastigial

nuclei (unimodal rFN neurons; Brooks and Cullen, 2013; Brooks et al., 2015) also selectively enco-

des passive (but not active) rotations. These rotation-responding VN/rFN neurons likely encode

either the semicircular canal error dV itself or its Kalman feedback to the rotation estimate (blue in

Figure 10, dashed and solid ovals ‘VN, rFN’, respectively). The translation-responding neurons likely

encode either the otolith error dF or its feedback to the linear acceleration estimate (Figure 10,

solid and dashed red lines ‘VN, trans PC’). Because error and feedback signals are proportional to

each other in the experimental paradigms considered here, whether VN/rFN encode sensory errors

or feedback signals cannot easily be distinguished using vestibular stimuli alone. Nevertheless, it is

also important to emphasize that, while the large majority of VN and rFN neurons exhibit reduced

responses during active head movements, this suppression is rarely complete (McCrea et al., 1999;

Roy and Cullen, 2001; Brooks and Cullen, 2013; Carriot et al., 2013). Thus, neuronal responses

likely encode mixtures of error/feedback and sensory motion signals (e.g. such as those conveyed by

direct afferent inputs).

During large amplitude passive rotations (Figure 4—figure supplement 3), the rotation estimate

persists longer than the vestibular signal (Figure 4, blue; a property called velocity storage). Because

the internal estimate is equal to the canal error, this implies that VN neurons (that encode the canal

error) should exhibit dynamics that are different from those of canal afferents, having incorporated

velocity storage signals. This has indeed been demonstrated in VN neurons during optokinetic stimu-

lation (Figure 4—figure supplement 1; Waespe and Henn, 1977; Yakushin et al., 2017) and
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rotation about tilted axes (Figure 6—figure supplement 3; Reisine and Raphan, 1992;

Yakushin et al., 2017).

Thalamus-projecting VN neurons possibly encode final motion
estimates
Based on the work summarized above, the final estimates of rotation (Figure 4G) and translation

(Figure 6G), which are the desirable signals to drive both perception and spatial navigation, do not

appear to be encoded by most VN/rFN cells. Thus, one may assume that they are reconstructed

downstream, perhaps in thalamic (Marlinski and McCrea, 2008; Meng et al., 2007; Meng and

Angelaki, 2010) or cortical areas. Interestingly, more than half (57%) of ventral thalamic neurons

(Marlinski and McCrea, 2008) and an identical fraction (57%) of neurons of the VN cells projecting

to the thalamus (Marlinski and McCrea, 2009) respond similarly during passive and actively-gener-

ated head rotations. The authors emphasized that VN neurons with attenuated responses during

actively-generated movements constitute only a small fraction (14%) of those projecting to the thala-

mus. Thus, although abundant in the VN, these passive motion-selective neurons may carry sensory

error/feedback signals to the cerebellum, spinal cord or even other VN neurons (e.g. those coding

the final estimates; Marlinski and McCrea, 2009). Note that Dale and Cullen, 2016, reported con-

trasting results where a large majority of ventral thalamus neurons exhibit attenuated responses dur-

ing active motion. Even if not present in the ventral posterior thalamus, this signal should exist in the

spatial perception/spatial navigation pathways. Thus, future studies should search for the neural cor-

relates of the final self-motion signal. VN neurons identified physiologically to project to the cervical

spinal cord do not to modulate during active rotations, so they could encode either passive head

rotation or active and passive trunk rotation (McCrea et al., 1999).

Furthermore, the dynamics of the thalamus-projecting VN neurons with similar responses to pas-

sive and active stimuli were not measured (Marlinski and McCrea, 2009). Recall that the model pre-

dicts that final estimates of rotation differ from canal afferent signals only in their response dynamics

(Figure 4, compare panels F and G). It would make functional sense that these VN neurons projec-

ting to the thalamus follow the final estimate dynamics (i.e., they are characterized by a prolonged

time constant compared to canal afferents) – and future experiments should investigate this

hypothesis.

Rostral fastigial neurons encoding passive trunk rotations
Another class of rFN neurons (and possibly VN neurons projecting to the thalamus; Marlinski and

McCrea, 2009, or those projecting to the spinal cord; McCrea et al., 1999) specifically encodes pas-

sive trunk velocity in space, independently of head velocity (bimodal neurons; Brooks and Cullen,

2009; 2013; Brooks et al., 2015). These neurons likely encode Kalman feedback signals about trunk

velocity (Figure 7, blue). Importantly, these neurons respond equivalently to passive whole trunk

rotation when the trunk and the head rotate together (Figure 7A) and to passive trunk rotation

when the head is space-fixed (Figure 7C). The first protocol activates the semicircular canals and

induces a canal error dV , while the later activates neck proprioceptors and generates a propriocep-

tive error, dP. From a physiological point of view, this indicates that bimodal neurons respond to

semicircular canals as well as neck proprioceptors (hence their name). Note that several other studies

identified VN (Anastasopoulos and Mergner, 1982), rFN (Kleine et al., 2004) and anterior suprasyl-

vian gyrus (Mergner et al., 1985) neurons that encode trunk velocity during passive motion, but

didn’t test their response to active motion.

The Kalman filter also predicts that neck proprioceptive signals that encode neck position should

be transformed into error signals that encode neck velocity. In line with model predictions, bimodal

neurons encode velocity signals that originate from neck proprioception during passive sinusoidal

(1 Hz, Brooks and Cullen, 2009) and transient (Gaussian velocity profile, Brooks and Cullen, 2013)

movements. Remarkably, although short-duration rotation of the trunk while the head is stationary in

space leads to a veridical perception of trunk rotation, long duration trunk rotation leads to an atten-

uation of the perceived trunk rotation and a growing illusion of head rotation in the opposite direc-

tion (Mergner et al., 1991). These experimental findings are also predicted by the Kalman filter

model (Figure 7—figure supplement 5).
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Purkinje cells in the vestibulo-cerebellum encode tilt and acceleration
feedback
The simple spike modulation of two distinct types of Purkinje cells in the caudal cerebellar vermis

(lobules IX-X, Uvula and Nodulus) encodes tilt (tilt-selective cells) and translation (translation-selec-

tive cells) during three-dimensional motion (Yakusheva et al., 2007, 2008, 2013; Laurens et al.,

2013a; Laurens et al., 2013b). Therefore, it is possible that tilt- and translation selective cells

encode tilt and acceleration feedback signals (Figure 10, green and red lines, respectively). If so, we

hypothesize that their responses are suppressed during active motion (Figures 5 and 6). How Pur-

kinje cells modulate during active motion is currently unknown. However, one study (Lee et al.,

2015) performed when rats learned to balance on a swing indicates that Purkinje cell responses that

encode trunk motion are reduced during predictable movements, consistent with the hypothesis

that they encode sensory errors or Kalman feedback signals.

Model simulations have also revealed that passive tilt does not induce any significant otolith error

(Figure 5J). In contrast, passive tilt elicits a significant canal error (Figure 5K). Thus, we hypothesize

that the tilt signal present in the responses of Purkinje cells originates from the canal error dV onto

the tilt internal state variable. If it is indeed a canal, rather than an otolith, error, it should be propor-

tional to tilt velocity instead of tilt position (or linear acceleration). Accordingly, we observed

(Laurens et al., 2013b) that tilt-selective Purkinje cell responses were on average close to velocity

(average phase lag of 36˚ during sinusoidal tilt at 0.5 Hz). However, since sinusoidal stimuli are not

suited for establishing dynamics (Laurens et al., 2017), further experiments are needed to confirm

that tilt-selective Purkinje cells indeed encode tilt velocity.

Model simulations have also revealed that passive translation, unlike passive tilt, should include

an otolith error. This otolith error feeds also into the tilt internal variable (Figure 9, somatogravic

feedback) and is responsible for the illusion of tilt during sustained passive linear acceleration (soma-

togravic effect; Graybiel, 1952). Therefore, as summarized in Figure 10 (green lines), both canal

and otolith errors should feedback onto the tilt internal variable. The canal error should drive modu-

lation during tilt, whereas the otolith error should drive modulation during translation. In support of

these predictions, we have demonstrated that tilt-selective Purkinje cells also modulate during trans-

lation, with a gain and phase consistent with the simulated otolith-driven feedback (Laurens et al.,

2013b). Thus, both of these feedback error signals might be carried by caudal vermis Purkinje cells –

and future experiments should address these predictions.

Note that semicircular canal errors must be spatially transformed in order to produce an appropri-

ate tilt feedback. Indeed, converting a rotation into head tilt requires taking into account the angle

between the rotation axis and earth-vertical. This transformation is represented by a bloc marked

‘3D’ in Figure 9 (see also (eq: 9) in Supplemenatry methods, ‘Three-Dimensional Kalman filter’.

Importantly, we have established (Laurens et al., 2013b) that tilt-selective Purkinje cells encode spa-

tially transformed rotation signals, as predicted by theory. In fact, we have demonstrated that tilt-

selective Purkinje cells do not simply modulate during vertical canal stimulation, but also carry the

tilt signal during off-vertical axis yaw rotations (Laurens et al., 2013b).

In this respect, it is important to emphasize that truly tilt-selective neurons exclusively encode

changes in orientation relative to gravity, rather than being generically activated by vertical canal

inputs. Thus, it is critical that this distinction is experimentally made using three-dimensional motion

(see Laurens et al., 2013b; Laurens and Angelaki, 2015). Whereas 3D rotations have indeed been

used to identify tilt-selective Purkinje cells in the vermis (Laurens et al., 2013b; Yakusheva et al.,

2007), this is not true for other studies. For example, Siebold et al., 1997, Siebold et al., 1999,

2001), Laurens and Angelaki, 2015 and Zhou et al. (2006) have reported tilt-modulated cells in

the rFN and VN, respectively, but because these neurons were not tested in three dimensions, the

signals carried by these neurons remain unclear.

Further notes on tilt-selective Purkinje cells
As summarized above, the simple spike responses of tilt-selective Purkinje cells during passive

motion have already revealed many details of the internal model computations. Thus, we have pro-

posed that tilt- selective Purkinje cells encode the feedback signals about tilt, which includes scaled

and processed (i.e. by a spatial transformation, green ‘3D’ box in Figure 10) versions of both canal

and otolith sensory errors (Figure 10, green oval, ‘tilt PC?’). However, there could be alternative
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implementations of the Kalman filter, where tilt-selective Purkinje cells may not encode only feed-

back signals, as proposed next:

We note that motor commands 
u must be also be spatially processed (black ‘3D’ box in Fig-

ure 10) to contribute to the tilt prediction. One may question whether two distinct neuronal net-

works transform motor commands and canal errors independently (resulting in two ‘3D’ boxes in

Figure 10). An alternative (Figure 10—figure supplement 1) would be that the brain merges motor

commands and canal error to produce a final rotation estimate prior to performing this transforma-

tion. From a mathematical point of view, this alternative would only require a re-arrangement of the

Kalman filter equations, which would not alter any of the model’s conclusions. However, tilt-selective

Purkinje cells, which encode a spatially transformed signal, would then carry a mixture of predictive

and feedback signals and would therefore respond identically to active and passive tilt velocity.

Therefore, the brain may perform a spatial transformation of predictive and feedback rotation sig-

nals independently (Figure 10); or may merge them before transforming them (Figure 10—figure

supplement 1). Recordings from tilt-selective Purkinje cells during active movements will distinguish

between these alternatives.

Summary of the neural implementation of sensory error and feedback
signals
In summary, many of the response properties described by previous studies for vestibular nuclei and

cerebellar neurons can be assigned a functional ‘location’ within the Kalman filter model. Interest-

ingly, most of the central neurons fit well with the properties of sensory errors and/or feedback sig-

nals. That an extensive neural machinery has been devoted to feedback signals is not surprising,

given their functional importance for self-motion estimation. For many of these signals, a distinction

between sensory errors and feedback signals is not easily made. That is, rotation-selective VN and

rFN neurons can encode either canal error (Figure 10, bottom, dashed blue oval) or rotation feed-

back (Figure 10, bottom, solid blue oval). Similarly, translation-selective VN, rFN and Purkinje cells

can encode either otolith error (Figure 10, bottom, dashed red oval) or translation feedback (Fig-

ure 10, bottom, solid red oval). The only feedback that is easily distinguished based on currently

available data is the tilt feedback (Figure 10, green lines).

Although the blue, green and red feedback components of Figure 10 can be assigned to specific

cell groups, this is not the case with the cyan feedback components. First, note that, like the tilt vari-

able, the canal internal model variable, receives non-negligible feedback contributions from both

the canal and otolith sensory errors (Figure 10, cyan lines). The canal feedback error changes the

time constant of the rotation estimate (Figure 4 and Figure 4—figure supplements 1 and

3), whereas the otolith feedback error may suppress (post-rotatory tilt) or create (horizontal axis

rotation) a rotation estimate (Figure 6—figure supplement 3). The neuronal implementations of the

internal model of the canals (Ĉ), and of its associated feedback pathways, are currently unknown.

However, lesion studies clearly indicate that the caudal cerebellar vermis, lobules X and IX may influ-

ence the canal internal model state variable (Angelaki and Hess, 1995a; Angelaki and Hess,

1995b; Wearne et al., 1998). In fact, it is possible that the simple-spike output of the translation-

selective Purkinje cells also carries the otolith sensory error feedback to the canal internal model

state variable (Figure 10, bottom, cyan arrow passing though the dashed red ellipse). Similarly, the

canal error feedback to the canal internal model state variable (Figure 10, bottom, cyan arrow origi-

nating from the dashed blue ellipse) can originate from VN or rFN cells that selectively encode pas-

sive, not active, head rotation (Figure 4J, note that the Ck feedback is but a scaled-down version of

the 
k feedback).

Thus, although the feedback error signals to the canal internal model variable can be linked to

known neural correlates, cells coding for the state variable Ĉ exclusively have not been identified. It

is possible that the hidden variable Ĉ may be coded in a distributed fashion. After all, as already

stated above, VN and rFN neurons have also been shown to carry mixed signals - they can respond

to both rotation and translation, as well as they may carry both feedback/error and actual sensory

signals. Thus, it is important to emphasize that these Kalman variables and error signals may be rep-

resented in a multiplexed way, where single neurons manifest mixed selectivity to more than just

one internal state and/or feedback signals. This appears to be an organizational principle both in

central vestibular areas (Laurens et al., 2017) and throughout the brain (Rigotti et al., 2013;
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Fusi et al., 2016). It has been proposed that mixed selectivity has an important computational

advantage: high-dimensional representations with mixed selectivity allow a simple linear readout to

generate a diverse array of potential responses (Fusi et al., 2016). In contrast, representations based

on highly specialized neurons are low dimensional and may preclude a linear readout from generat-

ing several responses that depend on multiple task-relevant variables.

Recalibration of motor internal model computations during
proprioceptive mismatch
In this treatment, we have considered primarily the importance of the internal models of the sensors

to emphasize its necessity for both self-generated motor commands and unpredicted, external per-

turbations. It is important to point out that self-generated movements involve internal model compu-

tations that have been studied extensively in the field of motor control and motor adaptation

(Wolpert et al., 1995; Körding and Wolpert, 2004; Todorov, 2004; Chen-Harris et al., 2008;

Berniker et al., 2010; Berniker and Kording, 2011; Franklin and Wolpert, 2011; Saglam et al.,

2011; 2014). While the question of motor adaptation are not addressed directly in the present

study, experiments in which resistive or assistive torques are applied to the head (Brooks et al.,

2015) or in which active movements are entirely blocked (Roy and Cullen, 2004; Carriot et al.,

2013) reveal how central vestibular pathways respond in situations that cause motor adaptation.

Under these conditions, central neurons have been shown to encode net head motion (i.e. active

and passive indiscriminately) with a similar gain as during passive motion (Figure 7—figure supple-

ments 6 and 7). This may be interpreted and modeled by assuming that central vestibular pathways

cease to integrate copies of motor commands (Figure 7—figure supplement 6) whenever active

head motion is perturbed, until the internal model of the motor plant recalibrates to anticipate this

perturbation (Brooks et al., 2015). Further analysis of these experimental results (Figure 7—figure

supplement 7) indicate that they are fundamentally non-linear and cannot be reproduced by the

Kalman filter (which is limited to linear operations) and therefore requires the addition of an external

gating mechanism (black pathway in Figure 1D).

Notably, this nonlinearity is triggered with proprioceptive mismatch, that is, when there is a dis-

crepancy between the intended head position and proprioceptive feedback. Note that perturbing

head motion also induces a vestibular mismatch since it causes the head velocity to differ from the

motor plan. However, central vestibular neurons still encode specifically passive head movement

during vestibular mismatch, as can be shown by superimposing passive whole body rotations to

active movements (Brooks and Cullen, 2013; 2014; Carriot et al., 2013) and illustrated in the

model predictions of Figure 8. Remarkably, the elementary and fundamental difference between

these different types of computations has never before been presented in a single theoretical

framework.

Proprioceptive mismatch is likely a specific indication that the internal model of the motor plant

(necessary for accurate motor control; Figure 1D, red) needs to be recalibrated. Applying resistive

head torques (Brooks et al., 2015) or increasing head inertia (Saglam et al., 2011; 2014) does

indeed induce motor adaptation which is not modeled in the present study (but see Berniker and

Kording, 2008 ). Interestingly, the studies by Saglam et al. (2011), 2014) indicate that healthy sub-

jects use a re-calibrated model of the motor plant to restore optimal motor performance, but that

vestibular deficient patients fail to do so, indicating that vestibular error signals participate in motor

adaptation (Figure 1D, broken blue arrow).

Relation to previous dynamical models
The internal model framework has been widely used to simulate optimal motor control strategies

(Todorov, 2004; Chen-Harris et al., 2008; Saglam et al., 2011; 2014) and to create Kalman filter

models of reaching movements (Berniker and Kording, 2008) and postural control (van der Kooij

et al., 2001). The present model, however, is to our knowledge the first to apply these principles to

optimal head movement perception during active and passive motion. As such, it makes explicit links

between sensory dynamics (i.e. the canals), ambiguities (i.e. the otoliths), priors and motor efference

copies. Perhaps most importantly, the focus of this study has been to explain neuronal response

properties. By simulating and explaining neuronal responses during active and passive self-motion in

the light of a quantitative model, this study advances our understanding of how theoretical principles

Laurens and Angelaki. eLife 2017;6:e28074. DOI: https://doi.org/10.7554/eLife.28074 26 of 45

Research article Neuroscience

https://doi.org/10.7554/eLife.28074


about optimal combinations of motor signals, multiple sensory modalities with distinct dynamic

properties and ambiguities and Bayesian priors map onto brainstem and cerebellar circuits.

To simplify the main framework and associated predictions, as well as the in-depth mathematical

analyses of the model’s dynamics (Supplementary methods), we have presented a linearized one-

dimensional model. This model was used to simulate either rotations around an earth-vertical axis or

combinations of translation and rotations around an earth-horizontal axis. A more natural and gen-

eral way to simulate self-motion information processing is to design a three-dimensional Kalman fil-

ter model. Such models have been used in previous studies, either by programming Kalman filters

explicitly (Borah et al., 1988; Lim et al., 2017), or by building models based on the Kalman filter

framework (Glasauer, 1992; Merfeld, 1995; Glasauer and Merfeld, 1997; Bos et al., 2001;

Zupan et al., 2002). We show in Supplementary methods, ‘Three-dimensional Kalman filter’, how to

generalize the model to three dimensions.

The passive motion components of the model presented here are to a large extent identical to

the Particle filter Bayesian model in (Laurens, 2006; Laurens and Droulez, 2007,Laurens and Drou-

lez, 2008; Laurens and Angelaki, 2011), which we have re-implemented as a Kalman filter, and into

which we incorporated motor commands. One fundamental aspect of previous Bayesian models

(Laurens, 2006; Laurens and Droulez, 2007,Laurens and Droulez, 2008) is the explicit use of two

Bayesian priors that prevent sensory noise from accumulating over time. These priors encode the

natural statistics of externally generated motion or motion resulting from motor errors and unex-

pected perturbations. Because, on average, rotation velocities and linear accelerations are close to

zero, these Bayesian priors are responsible for the decrease of rotation estimates during sustained

rotation (Figure 4—figure supplement 2) and for the somatogravic effect (Figure 6—figure supple-

ment 2) (see Laurens and Angelaki, 2011) for further explanations). The influence of the priors is

higher when the statistical distributions of externally generated rotation (
") and acceleration (A")

are narrower (Figure 10—figure supplement 2), that is when their standard deviation is smaller.

Stronger priors reduce the gain and time constant of rotation and acceleration estimates (Fig-

ure 10—figure supplement 2B,D). Importantly, the Kalman filter model predicts that the priors

affect only the passive, but not the active, self-motion final estimates. Indeed, the rotation and accel-

eration estimates last indefinitely during simulated active motion (Figure 4—figure supplement 2,

Figure 6—figure supplement 2, Figure 10—figure supplement 2). In this respect, the Kalman filter

may explain why the time constant of the vestibulo-ocular reflex is reduced in figure ice skaters

(Tanguy et al., 2008; Alpini et al., 2009): The range of head velocities experienced in these activi-

ties is wider than normal. In previous Bayesian models, we found that widening the rotation prior

should increase the time constant of vestibular responses, apparently in contradiction with these

experimental results. However, these models did not consider the difference between active and

passive stimuli. The formalism of the Kalman filter reveals that Bayesian priors should reflect the dis-

tribution of passive motion or motor errors. In athletes that are highly trained to perform stereotypic

movements, this distribution likely narrows, resulting in stronger priors and reduced vestibular

responses.

Further behavioral evidence of optimal combination of vestibular
signals and efference copies
One of the predictions of the Kalman filter is that motion illusions, such as the disappearance of rota-

tion perception during long-duration rotation and the ensuing post-rotatory response (Figure 4—

figure supplement 1B) should not occur during active motion (Figure 4—figure supplement 1A).

This has indeed been observed in monkeys (Solomon and Cohen, 1992) and humans, where steady-

state per-rotatory responses plateau at 10˚/s and post-rotatory responses are decreased by a similar

amount (Guedry and Benson, 1983; Howard et al., 1998); see also Brandt et al., 1977a). The fact

that post-rotatory responses are reduced following active, as compared to passive, rotations is of

particular interest, because it demonstrates that motor commands influence rotation perception

even after the movement has stopped. As shown in Figure 4, The Kalman filter reproduces this

effect by feeding motor commands though an internal model of the canals. As shown in Figure 4—

figure supplement 1, this process is equivalent to the concept of ‘velocity storage’ (Raphan et al.,

1979; see Laurens, 2006, Laurens and Droulez, 2008, MacNeilage et al. (2008), Laurens and

Angelaki (2011) for a Bayesian interpretation of the concept of velocity storage). Therefore, the

functional significance of this network, including velocity storage, is found during natural active head
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movements (see also Figure 4—figure supplement 3), rather than during passive low-frequency

rotations with which it has been traditionally associated with in the past (but see Laurens and Ange-

laki, 2011).

A recent study (MacNeilage and Glasauer, 2017) evaluated how motor noise varies across loco-

motor activities and within gait cycles when walking. They found that motor noise peaks shortly

before heel strike and after toe off; and is minimal during swing periods. They interpreted experi-

mental findings using principles of sensory fusion, an approach that uses the same principles of opti-

mal cue combination as the Kalman filter but doesn’t include dynamics. Interestingly, this analysis

showed that vestibular cues should have a maximal effect when motor noise peaks, in support with

experimental observations (Brandt et al., 1999; Jahn et al., 2000).

To avoid further complications to the solution to the Kalman filter gains, the presented model

does not consider how the brain generates motor commands in response to vestibular stimulation,

e.g. to stabilize the head in response to passive motion or to use vestibular signals to correct motor

commands. This would require an additional feedback pathway - the reliance of motor command

generation on sensory estimates (Figure 1D, blue broken arrow). For example, a passive head move-

ment could result in a stabilizing active motor command. Or an active head movement could be less

than desired because of noise, requiring an adjustment of the motor command to compensate.

These feedback pathways have been included in previous Kalman filter models (e.g. van der Kooij

et al., 2001), a study that focused specifically on postural control and reproduced human postural

sway under a variety of conditions. Thus, the Kalman filter framework may be extended to model

neuronal computations underlying postural control as well as the vestibulo-collic reflex.

Role of the vestibular system during active motion: ecological, clinical
and fundamental implications
Neuronal recordings (Brooks and Cullen, 2013; 2014; Carriot et al., 2013) and the present model-

ing unambiguously demonstrate that central neurons respond to unexpected motion during active

movement (a result that we reproduced in Figure 8G–I). Beyond experimental manipulations, a num-

ber of processes may cause unpredictable motion to occur in natural environments. When walking

on tree branches, boulders or soft grounds, the support surface may move under the feet, leading

to unexpected trunk motion. A more dramatic example of unexpected trunk motion, that requires

immediate correction, occurs when slipping or tripping. Complex locomotor activities involve a vari-

ety of correction mechanism among which spinal mechanisms and vestibular feedback play preemi-

nent roles (Keshner et al., 1987; Black et al., 1988; Horstmann and Dietz, 1988).

The contribution of the vestibular system for stabilizing posture is readily demonstrated by con-

sidering the impact of chronic bilateral vestibular deficits. While most patients retain an ability to

walk on firm ground and even perform some sports (Crawford, 1964; Herdman, 1996), vestibular

deficit leads to an increased incidence of falls (Herdman et al., 2000), difficulties in walking on

uneven terrains and deficits in postural responses to perturbations (Keshner et al., 1987;

Black et al., 1988; Riley, 2010). This confirms that vestibular signals are important during active

motion, especially in challenging environments. In this respect, the Kalman filter framework appears

particularly well suited for understanding the effect of vestibular lesions.

As mentioned earlier, vestibular sensory errors also occur when the internal model of the motor

apparatus is incorrect (Brooks et al., 2015) and these errors can lead to recalibration of internal

models. This suggests that vestibular error signals during self-generated motion may play two funda-

mental roles: (1) updating self-motion estimates and driving postural or motor corrections, and (2)

providing teaching signals to internal models of motor control (Wolpert et al., 1995) and therefore

facilitating motor learning. This later point is supported by the finding that patients with vestibular

deficits fail to recalibrate their motor strategies to account for changes in head inertia

(Sağlam et al., 2014).

But perhaps most importantly, the model presented here should eliminate the misinterpretation

that vestibular signals are ignored during self-generated motion – and that passive motion stimuli

are old-fashioned and should no longer be used in experiments. Regarding the former conclusion,

the presented simulations highlight the role of the internal models of canal dynamics and otolith

ambiguity, which operate continuously to generate the correct sensory prediction during both active

and passive movements. Without these internal models, the brain would be unable to correctly pre-

dict sensory canal and otolith signals and everyday active movements would lead to sensory
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mismatch (e.g. for rotations, see Figure 4—figure supplements 2 and 3). Thus, even though partic-

ular nodes (neurons) in the circuit show attenuated or no modulation during active head rotations,

vestibular processing remains the same - the internal model is both engaged and critically important

for accurate self-motion estimation, even during actively-generated head movements. Regarding the

latter conclusion, it is important to emphasize that passive motion stimuli have been, and continue

to be, extremely valuable in revealing salient computations that would have been amiss if the brain’s

intricate wisdom was interrogated only with self-generated movements.

Furthermore, a quantitative understanding of how efference copies and vestibular signals interact

for accurate self-motion sensation is primordial for our understanding of many other brain functions,

including balance and locomotor control. As stated in Berniker and Kording (2011): ‘A crucial first

step for motor control is therefore to integrate sensory information reliably and accurately’, and

practically any locomotor activity beyond reaching movements in seated subjects will affect posture

and therefore recruit the vestibular sensory modality. It is thus important for both motor control and

spatial navigation functions (for which intact vestibular cues appear to be critical; Taube, 2007) to

correct the misconception of incorrectly interpreting that vestibular signals are cancelled and thus

are not useful during actively generated movements. By providing a state-of-the-art model of self-

motion processing during active and passive motion, we are bridging several noticeable gaps

between the vestibular and motor control/navigation fields.

Conclusion
‘A good model has a delightful way of building connections between phenomena that never would

have occurred to one’ (Robinson, 1977). Four decades later, this beautifully applies here, where the

mere act of considering how the brain should process self-generated motion signals in terms of

mathematical equations (instead of schematic diagrams) immediately revealed a striking similarity

with models of passive motion processing and, by motivating this work, opened an avenue to

resolve a standing paradox in the field.

The internal model framework and the series of quantitative models it has spawned have

explained and simulated behavioral and neuronal responses to self-motion using a long list of pas-

sive motion paradigms, and with a spectacular degree of accuracy (Mayne, 1974; Oman, 1982;

Borah et al., 1988; Glasauer, 1992; Merfeld, 1995; Glasauer and Merfeld, 1997; Bos et al.,

2001; Zupan et al., 2002; Laurens, 2006; Laurens and Droulez, 2007,Laurens and Droulez, 2008;

Laurens and Angelaki, 2011; Karmali and Merfeld, 2012; Lim et al., 2017). Internal models also

represent the predominant theoretical framework for studying motor control (Wolpert et al., 1995;

Körding and Wolpert, 2004; Todorov, 2004; Chen-Harris et al., 2008; Berniker et al., 2010;

Berniker and Kording, 2011; Franklin and Wolpert, 2011; Saglam et al., 2011; 2014). The vestib-

ular system shares many common questions with the motor control field, such as that of 3D coordi-

nate transformations and dynamic Bayesian inference, but, being considerably simpler, can be

modeled and studied using relatively few variables. As a result, head movements represent a valu-

able model system for investigating the neuronal implementation of computational principles that

underlie motor control. The present study thus offers the theoretical framework which will likely

assist in understanding neuronal computations that are essential to active self-motion perception,

spatial navigation, balance and motor activity in everyday life.

Materials and methods

Structure of a Kalman filter
In a Kalman filter (Kalman, 1960), state variables X are driven by their own dynamics (matrix D),

motor commands Xu and unpredictable perturbations resulting from motor noise and external influ-

ence X" through the equation (Figure 1—figure supplement 2A):

X tð Þ ¼D:X t� 1ð ÞþM:Xu tð ÞþE:X"

where matrices M and E reflect the response to motor inputs and perturbations, respectively.

A set of sensors, grouped in a variable S, measure state variables transformed by a matrix T, and

are modeled as:
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S tð Þ ¼ T:X tð Þþ Sh tð Þ

where Sh is Gaussian sensory noise (Figure 1—figure supplement 2A, right). The model assumes

that the brain has an exact knowledge of the forward model, that is, of D, M, E and T as well as the

variances of X" and Sh. Furthermore, the brain knows the values of the motor inputs Xu and sensory

signals S, but doesn’t have access to the actual values of X" and Sh.

At each time t, the Kalman filter computes a preliminary estimate (also called a prediction)

X̂
p
tð Þ ¼ D:X̂ t � 1ð Þ þM: Xu tð Þ and a corresponding predicted sensory signal Ŝ

p
tð Þ ¼ T :X̂

p
tð Þ (Figure 1—

figure supplement 2B). In general, the resulting state estimate X̂
p
tð Þ and the predicted sensory pre-

diction Ŝ
p
tð Þ may differ from the real values X tð Þ and S tð Þ because: (1) X" tð Þ 6¼ 0, but the brain cannot

predict the perturbation X" tð Þ, (2) the brain does not know the value of the sensory noise Sh tð Þ and

(3) the previous estimate X̂ t � 1ð Þ used to compute X̂
p
tð Þ could be incorrect. These errors are

reduced using sensory information, as follows (Figure 1—figure supplement 2B). First, this predic-

tion Ŝ
p
tð Þ and the sensory input S tð Þ are compared to compute a sensory error dS tð Þ: Second, sensory

errors are then transformed into a feedback Xk tð Þ ¼ K:dS tð Þ where K is a matrix of feedback gains.

Thus, an improved estimate at time t is X̂ tð Þ ¼ X̂
p
tð Þ þ K:dS tð Þ. The value of the feedback gain matrix

K determines how sensory errors (and therefore sensory signals) are used to compute the final esti-

mate X̂ tð Þ and is computed based on D, E, T and on the variances of X" and Sh (see Supplementary

methods, ‘Kalman filter algorithm’).

In the case of the self-motion model, the motor commands 
u and Au are inputs to the Kalman fil-

ter (Figure 2). Note that, while the motor system may actually control other variables (such as forces

or accelerations), we consider that these variables are converted into 
u and Au. We demonstrate in

Supplementary methods,’ Model of motor commands’ that altering these assumptions does not alter

our conclusions. In addition to motor commands, a variety of unpredictable factors such as motor

noise and external (passive) motion also affect 
 and A (MacNeilage and Glasauer, 2017). The total

rotation and acceleration components resulting from these factors are modeled as variables 
" and

A". Similar to (Laurens, 2006; Laurens and Droulez, 2007,Laurens and Droulez, 2008) we modeled

the statistical distribution of these variables as Gaussians, with standard deviations s
 and sA.

Excluding vision and proprioception, the brain senses head motion though the semicircular canals

(that generate a signal V ) and the otoliths organs (that generate a signal F). Thus, in initial simula-

tions (Figures 3–6), the variable S encompasses V and F (neck proprioceptors are added in

Figure 7).

The semicircular canals are rotation sensors that, due to their mechanical characteristic, exhibit

high-pass filter properties. These dynamics may be neglected for rapid movements of small ampli-

tude (such as Figure 3) but can have significant impact during natural movements (Figure 4—figure

supplement 3). They are modeled using a hidden state variable C. The canals are also subject to

sensory noise Vh. Taken both the noise and the dynamics into account, the canals signal is modeled

as V ¼ 
� C þ Vh.

The otolith organs are acceleration sensors. They exhibit negligible temporal dynamics in the

range of motion considered here, but are fundamentally ambiguous: they sense gravitational as well

as linear acceleration – a fundamental ambiguity resulting from Einstein’s equivalence principle (Ein-

stein, 1907). Gravitational acceleration along the inter-aural axis depends on head roll position,

modeled here as G ¼
R


:dt. The otoliths encode the sum of A and G and is also affected by sensory

noise Fh, such that the net otolith signal is F ¼ Aþ Gþ Fh.

How sensory errors are used to correct motion estimates depends on the Kalman gain matrix,

which is computed by the Kalman algorithm such that the Kalman filter as a whole performs optimal

estimation. In theory, the Kalman filter includes a total of 8 feedback signals, corresponding to the

combination of two sensory errors (canal and otolith errors) and four internal states (see Supplemen-

tary methods,’ Kalman feedback gains’).

It is important to emphasize that the Kalman filter model is closely related to previous models of

vestibular information processing. Indeed, simulations of long-duration rotation and visuo-vestibular

interactions (Figure 4—figure supplement 2), as well as mathematical analysis (Laurens, 2006),

demonstrate that Ĉ is equivalent to the ‘velocity storage’ (Raphan et al., 1979; Laurens and Ange-

laki, 2011). These low-frequency dynamics, as well as visuo-vestibular interactions, were previously
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simulated and interpreted in the light of optimal estimation theory; and accordingly are reproduced

by the Kalman filter model.

The model presented here is to a large extent identical to the Particle filter Bayesian model in

(Laurens, 2006; Laurens and Droulez, 2007, Laurens and Droulez, 2008; Laurens and Angelaki,

2011). It should be emphasized that: (1) transforming the model into a Kalman filter didn’t alter the

assumptions upon which the Particle filter was build; (2) introducing motor commands into the Kal-

man filter was a textbook process that did not require any additional assumptions or parameters;

and (3) we used exactly the same parameter values as in Laurens, 2006 and Laurens and Droulez,

2008 (with the exception of sF whose impact, however, is negligible, and of the model of head on

trunk rotation that required additional parameters; see next section).

Simulation parameters
The parameters of the Kalman filter model are directly adapted from previous studies (Lau-

rens, 2006; Laurens and Droulez, 2008). Tilt angles are expressed in radians, rotation velocities in

rad/s, and accelerations in g (1 g = 9.81 m/s2). Note that a small linear acceleration A in a direction

perpendicular to gravity will rotate the gravito-inertial force vector around the head by an angle

a ¼ sin�1ðAÞ »A. For this reason, tilt and small amplitude linear accelerations are expressed, in one

dimension, in equivalent units that may be added or subtracted. The standard deviations of the

unpredictable rotations (
") and accelerations (A") are set to the standard deviations of the Bayesian

a priori in Laurens, 2006 and Laurens and Droulez, 2008, that is, s
 ¼ 0.7 rad/s ð
"Þ and sA ¼0.3

g (A"). The standard deviation of the noise affecting the canals (Vh) was set to sV ¼0.175 rad/s (as in

Laurens, 2006 and Laurens and Droulez, 2008; see Figure 10—figure supplement 2 for simula-

tions with different parameters). The standard deviation of the otolith noise (Fh) was set to

sF ¼0.002 g (2 cm/s2). We verified that values ranging from 0 to 0.01 g had no effect on simulation

results. The time constant of the canals was set to tc=4s. Simulations used a time step of dt = 0.01 s.

We verified that changing the value of the time step without altering other parameters had no effect

on the results.

We ran simulations using a variant of the model that included visual information encoding rota-

tion velocity. The visual velocity signals were affected by sensory noise with a standard deviation sVis

= 0.12 rad/s, as in Laurens and Droulez, 2008.

Another variant modeled trunk in space velocity (
TS) and head on trunk velocity (
HT ) indepen-

dently. The standard deviations of unpredictable rotations were set to sTS = 0.7 rad/s (identical to

s
) and sHT = 3.5 rad/s. The standard deviation of sensory noise affecting neck afferents was set

manually to sP = 0.0017 rad. We found that increasing the neck afferent noise reduces the gain of

head on trunk and trunk in space velocity estimate (Figure 7C) (e.g. by 60% for a tenfold increase in

afferent noise). Reducing the value of this noise has little effect on the simulations.

For simplicity, all simulations were run without adding the sensory noise Vh and Fh. These noise-

free simulations are representative of the results that would be obtained by averaging several simu-

lation runs performed with sensory noise (e.g. as in Laurens and Droulez, 2007). We chose to pres-

ent noise-free results here in order to facilitate the comparison between simulations of active and

passive motions.

A Matlab implementation of the Kalman model is available at: https://github.com/JeanLaurens/

Laurens_Angelaki_Kalman_2017 (Laurens, 2017; copy archived at https://github.com/elifesciences-

publications/Laurens_Angelaki_Kalman_2017).
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Appendix 1

DOI: https://doi.org/10.7554/eLife.28074.035

Supplementary Methods
Here we describe the Kalman model in more detail. We present the model of head motion

and vestibular information processing, first as a set of linear equations (‘Model of head motion

and vestibular sensors’), and then in matrix form (‘Model of head motion in matrix form’). Next

we present the Kalman filter algorithm, in the form of matrix computations (‘Kalman filter

algorithm’) and then as a series of equations (‘Kalman filter algorithm developed’).

Next, we derive a series of properties of the internal model computations (‘Velocity Storage

during EVAR’; ‘Passive Tilt’,’ Kalman feedback gains’,’ Time constant of the somatogravic

effect’,’ Model of motor commands’).

We then present some variations of the Kalman model (‘Visual rotation signals’,’ Model of

head and neck rotations’, ‘Feedback signals during neck movement’, ‘Three-dimensional

Kalman filter’).

Model of head motion and vestibular sensors
The model of head motion in (Figure 2) can be described by the following equations (see

Table 1 for a list of mathematical variables):


 tð Þ ¼ 0 þ 
u tð Þ þ 
" tð Þ eq: 1ð Þ
C tð Þ ¼ k1:C t� dtð Þþ k2:
 tð Þ þ 0 þ 0 eq: 2ð Þ
G tð Þ ¼ G t� dtð Þþ s:dt:
 tð Þ þ 0 þ 0 eq: 3ð Þ
A tð Þ ¼ 0 þ Au tð Þ þ A" tð Þ eq: 4ð Þ

8

>

>

<

>

>

:

Here, eq: 1 states that head velocity 
 tð Þ is the sum of self-generated rotation 
u tð Þ and of

unexpected rotations 
" tð Þ resulting from motor errors and passive motion. In the absence of

motor commands, 
 tð Þ is expected to be zero on average, independently from all previous

events.

Eq: 2 describes the first-order low-pass dynamics of the canals:

C tð Þ ¼C t� dtð Þþ
dt

tc

: 
 tð Þ�C tð Þð Þ

which yields:

C tð Þ ¼
tc

tc þ dt
:C t� dtð Þþ

dt

tc þ dt
:
 tð Þ eq: 2ð Þ

with k1 ¼
tc

tcþdt
and k2 ¼

dt
tcþdt

.

Eq: 3 integrates rotation 
 into tilt G. The variable s acts as a switch: it is set to one during

tilt and to 0 during EVAR (in which case G remains equal to zero, independently of 
).

Finally, Eq: 4 that describes linear acceleration, resembles Eq: 1 in form and properties.

The system of these equations is rewritten as follows in order to eliminate 
 tð Þ from the

right-hand side (which is needed so that it may fit into the form of eq: 7 below):


 tð Þ ¼ 0 þ 
u tð Þ þ 
" tð Þ eq: 1bð Þ
C tð Þ ¼ k1:C t� dtð Þ þ k2:


u tð Þ þ k2:

" tð Þ eq: 2bð Þ

G tð Þ ¼ G t� dtð Þ þ s:dt:
u tð Þ þ s:dt:
" tð Þ eq: 3bð Þ
A tð Þ ¼ 0 þ Au tð Þ þ A" tð Þ eq: 4bð Þ

8

>

>

<

>

>

:

The model sensory transduction is:

V tð Þ ¼ 
 tð Þ�C tð Þ þ Vh tð Þ eq: 5ð Þ
F tð Þ ¼ G tð ÞþA tð Þ þ Fh tð Þ eq: 6ð Þ

�
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Eq: 5 indicates that the semicircular canals encode rotation velocity, minus the dynamic

component C; and Eq: 6 indicates that the otolith organs encode the sum of tilt and

acceleration.

Model of head motion in matrix form
The system of equations (1b� 4b) can be rewritten in matrix form:

X tð Þ ¼D:X t� dtð ÞþM:Xu tð ÞþE:X" tð Þ eq: 7ð Þ

with:

X ¼




C

G

A

2

6

6

4

3

7

7

5

, D ¼

0 0 0 0

0 k1 0 0

0 0 1 0

0 0 0 0

2

6

6

4

3

7

7

5

, M ¼

1 0

k2 0

s:dt 0

0 1

2

6

6

4

3

7

7

5

, Xu ¼

u

Au

� �

, E ¼ M, X" ¼

"

A"

� �

Similarly, the model of sensory transduction eq: 5� 6ð Þ is rewritten as:

S tð Þ ¼ T :X tð Þþ Sh tð Þ eq: 8ð Þ

With:

S¼
V

F

� �

;T ¼
1 �1 0 0

0 0 1 1

� �

;Sh ¼
Vh

Fh

� �

Given the standard deviations of 
", A", Vh and Fh (s
, sA, sV and sF), the covariance

matrices of X" and Sh (that are needed to perform Kalman filter computations) are

respectively:

Q ¼ E:
s2


 0

0 s2

A

� �

:E0 and R ¼
s2

V 0

0 s2

F

� �

Note that the matrix Q used here that unexpected rotations 
" and accelerations A" are

independent. However, it could easily be adapted to represent more complex covariance

matrices resulting for instance from motor noise.

Kalman filter algorithm
The Kalman filter algorithm (Kalman, 1960) computes optimal state estimates in any model

that follows the structure of eqn: 7; 8ð Þ (Figure 1—figure supplement 2). The optimal estimate

X̂ tð Þ is computed by the following steps (Figure 1—figure supplement 2B):

X̂
p
tð Þ ¼ D:X̂ t� dtð ÞþM:Xu tð Þ state predictionð Þ

Ŝ
p
tð Þ ¼ T:X̂

p
tð Þ predicted sensory signalsð Þ

dS tð Þ ¼ S tð Þ� Ŝ
p
tð Þ sensory errorsð Þ

X̂ tð Þ ¼ X̂
p
tð ÞþK tð Þ:dS tð Þ final estimatesð Þ

The Kalman gain matrix K tð Þ is computed as:

K tð Þ ¼ Lp tð Þ:T
0

: T :Lp tð Þ:T
0

þR
� ��1

where Lp tð Þ ¼ D:L t � dtð Þ:D
0
þ Q and L tð Þ ¼ Id � K tð Þ:Tð Þ:Lp tð Þ are the covariance of the

predicted and updated estimates, Q and R are the covariance matrices of E:X" and Sh, and Id

is an identity matrix. These equations are not shown in Figure 1—figure supplement 2.

The initial conditions of X̂ are set according to the initial head position in the simulated

motion, and the initial value of K and L are set to their steady-state value, which are computed

by setting L ¼ Q and then running 500 iterations of the Kalman filter algorithm.

Kalman filter algorithm developed
The inference is performed by applying the Kalman filter algorithm on Eqs: 7� 8. The

corresponding computations can be expanded in the following equations:
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State predictions


̂
p
tð Þ ¼ 
u tð Þ eq: 1cð Þ

Ĉ
p
tð Þ ¼ k1:Ĉ t� dtð Þþ k2:
̂

p
tð Þ eq: 2cð Þ

Ĝ
p
tð Þ ¼ Ĝ t� dtð Þþ dt:
̂

p
tð Þ eq: 3cð Þ

Â
p
tð Þ ¼ Au tð Þ eq: 4cð Þ

Sensory predictions

V̂
p
tð Þ ¼ 
̂

p
tð Þ� Ĉ

p
tð Þ eq: 5cð Þ

F̂
p
tð Þ ¼ Ĝ

p
tð Þþ Â

p
tð Þ eq: 6cð Þ

Sensory errors

dV tð Þ ¼ V tð Þ� V̂
p
tð Þ eq: 5dð Þ

dF tð Þ ¼ F tð Þ� F̂
p
tð Þ eq: 6dð Þ

Final estimates


̂ tð Þ ¼ 
̂
p
tð Þ þ
k ¼ 
̂

p
tð Þ þ k
dV :dV tð Þþ k
dF :dF tð Þ eq: 1dð Þ

Ĉ tð Þ ¼ Ĉ
p
tð Þ þ Ck ¼ Ĉ

p
tð Þ þ kCdV :dV tð Þþ kCdF :dF tð Þ eq: 2dð Þ

Ĝ tð Þ ¼ Ĝ
p
tð Þ þ Gk ¼ Ĝ

p
tð Þ þ kGdV :dV tð Þþ kGdF :dF tð Þ eq: 3dð Þ

Â tð Þ ¼ Â
p
tð Þ þ Ak ¼ Â

p
tð Þ þ kAdV :dV tð Þþ kAdF :dF tð Þ eq: 4dð Þ

These equations form the basis of the model (in Figure 9, kAdV and k
dF are assumed to be

zero, see ‘Kalman feedback gains’ and Table 2).

Velocity storage during EVAR
Here we analyze the Kalman filter equations to derive the dynamics of rotation perception

during passive EVAR and compare it to existing models. During passive EVAR (
̂
p
¼ 
u ¼ 0

and dF ¼ 0), the dynamics of the rotation estimate depends of Ĉ, which is governed by

eq: 2c; dð Þ:

Ĉ
p
tð Þ ¼ k1:Ĉ t� dtð Þ from eq: 2cð Þ

Ĉ tð Þ ¼ Ĉ
p
tð Þþ kCdV :dV from eq: 2dð Þ

With:

dV ¼ V tð Þ� V̂
p
tð Þ ¼ V tð Þþ Ĉ

p
tð Þ from eq: 5c;dð Þ

Based on these equations, Ĉ follows a first-order differential equation:

Ĉ tð Þ ¼ Ĉ
p
tð Þþ kCdV : V tð Þþ Ĉ

p
tð Þ

� �

¼ k1: 1þ kCdV
� �

:Ĉ t� dtð Þþ kCdV :V tð Þ eq: 2eð Þ

This equation is characteristic of a leaky integrator, that integrates V with a gain kCdV , and

has a time constant tVS which is computed by solving:

1� dt=tVSð Þ ¼ k1: 1þ kCdV
� �

Based on the values of Table 2, we compute tVS=16.5 s (in agreement with the simulations

in Figure 4—figure supplement 2).

The final rotation estimate is the sum of Ĉ and the canal signal:
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̂ tð Þ ¼ k
dV :dV tð Þ ¼ k1:Ĉ t� dtð Þþ k
dV :V tð Þ from eq: 1dð Þ

These equations reproduce the standard model of (Raphan et al., 1979). Note that the

gains kCdV ¼ 0:19 dt, tVS=16.5 s, and k
dV ¼ 0:94 are similar to the values in (Raphan et al., 1979)

and to model fits to experimental data in (Laurens et al., 2011). The dynamics of Ĉ eq: 2eð Þ can

be observed in simulations, i.e. in Figure 4—figure supplement 2B where the leaky integrator

is charged by vestibular signals V at t = 0 to 10 s and t = 60 to 70 s; and subsequently

discharges with a time constant tVS=16.5 s. The discharge of the integrator is also observed in

Figure 4—figure supplement 2C when t > 60 s Figure 6—figure supplement 3C when

t > 120 s.

Passive tilt
Here we provide additional mathematical analyses about motion estimation during passive tilt.

During passive tilt (
̂
p
¼ 
u ¼ 0;F ¼ G), the internal estimate Ĝ follows:

Ĝ
p
tð Þ ¼ Ĝ t� dtð Þ from eq: 3cð Þ

Ĝ tð Þ ¼ Ĝ
p
tð Þþ Gk with Gk ¼ kGdV :dV tð Þþ kGdF :dF tð Þ eq: 3dð Þ

First, we note that eq: 3c; dð Þ combine into Ĝ tð Þ ¼
R t

0
Gk. In other words, the tilt estimate

during passive tilt is computed by integrating feedback signals Gk.

Also, to a first approximation, the gain kGdV is close to dt, the canal error dV encodes 
 and

dF is approximately null. In this case, Gk
» dt:
 and Ĝ tð Þ »

R t

0

:dt. Therefore, during passive tilt

(Figure 5, Figure 5—figure supplement 1), the internal model (eq: 3c) integrates tilt velocity

signals that originate from the canals and are conveyed by feedback pathways.

Note, however, that the Kalman gain kGdV is slightly lower than dt (kGdV » 0:9dt; Table 2). Yet,

the final tilt estimate remains accurate due to an additional feedback originating from dF

which can be analyzed as follows. Because kGdV < dt, the tilt estimate Ĝ lags behind G, resulting

in a small otolith error dF ¼ G tð Þ � Ĝ
p
tð Þ that contributes to the feedback signal (via the term

kGdF :dF tð Þ in eq: 3d). The value of dF stabilizes to a steady-state where

Ĝ tð Þ � Ĝ t � dtð Þ ¼ G tð Þ � G t � dtð Þ ¼ 
:dt. Based on eq: 3d, we obtain:

Ĝ tð Þ� Ĝ t� dtð Þ ¼ kGdV :dV tð Þþ kGdF :dF tð Þ ¼
:dt;

with dV ¼ 
, dF ¼ dt � kGdV
� �

:
= kGdF » 0:13 
 (based on Table 2).

Thus, a feedback signal originating from the otolith error complements the canal error. This

effect is nevertheless too small to be appreciated in Figure 5.

Kalman feedback gains
Here we provide additional information about Kalman gains and we justify that some feedback

signals are considered negligible.

First, we note that some values of the Kalman gain matrix (those involved in a temporal

integration), include the parameter dt (Table 2). This is readily explained by the following

example. Consider, for instance, the gain of the vestibular feedback to the tilt estimate (kGdV ).

During passive tilt, the tilt estimate Ĝ tð Þ is tracked by the Kalman filter according to:

Ĝ tð Þ ¼ Ĝ t� dtð Þþ kGdV :dV tð Þ from eq: 3c;d; with dF»0ð Þ

Since Ĝ is computed by integrating canal signals (dV ) over time, we would expect the

equation above to be approximately equal to the following:

Ĝ tð Þ ¼ Ĝ t� dtð Þþ dt:dV tð Þ

Therefore, we expect that kGdV » dt. When simulations are performed with dt ¼ 0:01s, we find

indeed that kGdV ¼ 0:009 ¼ 0:9 dt. Furthermore, if simulations are performed again, but with

t ¼ 0:1s, we find kGdV ¼ 0:09 ¼ 0:9 dt. In other words, the Kalman gain computed by the filter is
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scaled as a function of dt in order to perform the operation of temporal integration (albeit with

a gain of 0.9). For this reason, we write kGdV ¼ 0:9 dt in Table 2, which is more informative than

kGdV ¼ 0:009. Similarly, other Kalman gain values corresponding to Ĝ and Ĉ (which is also

computed by temporal integration of Kalman feedback) are shown as a function of dt in

Table 2.

Furthermore, the values of Ck and Gk are divided by dt in all figures, for the same reason. If,

for example, dV ¼ 1, then the corresponding value and Gk would be 0.009 (kGdV :dV ). This value

is correct (since kGdV ¼ 0:9 dt) but would cause Gk to appear disproportionately small. In order

to compensate for this, we plot Gk=dt in the figures. The feedback Ck is scaled in a similar

manner. In contrast, neither 
k nor Ak are scaled.

Note that the feedback gain kAdV (from the canal error dV to Â) is equal to -kGdV (Table 2).

This compensates for a part of the error dF during tilt (see previous section), which generates

an erroneous acceleration feedback Ak. This component has a negligible magnitude and is not

discussed in the text or included in the model of Figure 9.

Note also that the Kalman filter gain k
dF is practically equal to zero (Table 2). In practice,

this means that the otoliths affect rotation perception only through variable Ĉ. Accordingly,

otolith-generated rotation signals (e.g. Figure 6—figure supplement 3C, from t = 60 s to

t = 120 s) exhibit low-pass dynamics.

Because kAdV and k
dF are practically null and have no measurable effect on behavioral or

neuronal responses, the corresponding feedback pathways are excluded from Figure 9.

Time constant of the somatogravic effect
Here we analyze the dynamics of the somatogravic effect. During passive linear acceleration,

the otolith error dF determines the feedback Gk that aligns Ĝ with F and therefore minimizes

the feedback. This process can be modeled as a low-pass filter based on the following

equations:

dF tð Þ ¼ F tð Þ� F̂
p
tð Þ ¼ A tð Þ� Ĝ t� dtð Þ eq: 3c;6c;6dð Þ

Ĝ tð Þ ¼ Ĝ
p
tð Þþ Gk ¼ Ĝ t� dtð Þþ kGdF :dF tð Þ eq: 3c;3d; neglecting dVð Þ

Leading to:

Ĝ tð Þ ¼ Ĝ t � dtð Þ þ kGdF : A tð Þ � Ĝ t � dtð Þ
� �

)

This equation illustrates that Ĝ is a low-pass filter that converges towards A with a time

constant tS = dt=kGdF=1.3 s (Table 2).

Note that the feedback from dF to Ĉ adds, indirectly, a second component to the

differential equation above, leading Ĝ to transiently overshoot A in Figure 6—figure

supplement 1. Nonetheless, describing the somatogravic effect as a first-order low-pass filter

is accurate enough for practical purposes.

Model of motor commands
In this model, we assume that the Kalman filter receives copies of motor commands that

encode rotation velocity 
u and linear acceleration Au. We assume that motor noise and

external perturbations amount to two independent Gaussian processes sum up to generate

the total unpredictable components 
" and A". It should be noted that internal model

computations that underlie motor control, and in particular the transformation of muscle

activity into 
u and Au, requires a series of coordinate transformations that are not modelled

here, and that these transformation may affect the covariance matrix of motor noise and

therefore of X".

We found that this simplistic description of motor inputs to the Kalman filter was adequate

in this study for two reasons. First, the motor inputs 
u and Au appear only in the prediction

stage of the Kalman filter eq: 7ð Þ. In all simulations presented in this study, we have observed

that motor commands were transformed into accurate predictions of motor commands. We
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reason that, if the model of motor commands was changed, it would still lead to accurate

predictions of the self-generated motion component, as long as the motor inputs are unbiased

and are sufficient to compute all motion variables, either directly or indirectly through the

internal model. Under these hypotheses, simulation results would remain unchanged.

Regarding the covariance matrix of motor noise, we find that assuming that the

unpredictable motion components 
" and A" are independent is sufficient to model the

experimental studies considered here. Furthermore, we note that the Kalman filter could

readily accommodate a more sophisticated noise covariance matrix, should it be necessary.

Visual rotation signals
In Figure 4—figure supplement 2C, a visual sensory signal Vis was added to the model as in

(Laurens, 2006; Laurens and Droulez, 2008) by simply assuming that it encodes rotation

velocity:

Vis tð Þ ¼ 
þVish

Where Vish is a Gaussian noise with standard deviation sVis = 0.12 rad/s (Laurens and

Droulez, 2008).

This signal is incorporated into the matrices of the sensory model as follows:

S ¼
V

F

Vis

2

4

3

5, T ¼
1 �1 0 0

0 0 1 1

1 0 0 0

2

4

3

5, Sh ¼
Vh

Fh

Vish

2

4

3

5, R ¼
s2

V 0 0

0 s2

F 0

0 0 s2

Vis

2

4

3

5

The model of head motion and the matrix equations of the Kalman filter remain

unchanged.

Model of head and neck rotations
We created a variant of the Kalman filter, where trunk velocity in space and head velocity

relative to the trunk are two independent variables 
TS and 
HT . We assumed that head

position relative to the trunk is sensed by neck proprioceptors. To model this, we added an

additional variable N (for ‘neck’) that encodes the position of the head relative to the trunk:

N ¼
R


HT :dt. We also added a sensory modality P that represents neck proprioception.

Total head velocity (which is not an explicit variable in the model but may be computed as


 ¼ 
TS þ 
HT ) is sensed through the semicircular canals, which were modeled as previously.

The model of head and trunk motion is based on the following equations:


TS tð Þ ¼ 0 þ 
u
TS tð Þ þ 
u

TS tð Þ eq: S1ð Þ

HT tð Þ ¼ 0 þ 
u

HT tð Þ þ 
"
HT tð Þ eq: S2ð Þ

N tð Þ ¼ N t� dtð Þþ dt:
HT tð Þ þ 0 þ 0 eq: S3ð Þ
C tð Þ ¼ k1:C t� dtð Þþ k2: 
TS tð Þþ
HT tð Þð Þ þ 0 þ 0 eq: S4ð Þ

8

>

>

<

>

>

:

Note that (eq: S1) and (eq: S2), are analogous to (ðeq: 1Þ in the main model and imply that


TS and 
HT are the sum of self-generated (
u
TS, 


u
HT ) and unpredictable components (
u

TS,


"
HT ). Eq: S3 encodes N ¼

R


HT :dt. The canal model (eq: S4) is identical as in (eq: 2), the input

being the velocity of the head in space, i.e. 
TS tð Þ þ 
HT tð Þ.

The sensory model includes the canal signal V and a neck proprioceptive signal P that

encodes neck position:

V tð Þ ¼ 
TS tð Þþ
HT tð Þ�C tð Þ þ Vh tð Þ eq: S5ð Þ
P tð Þ ¼ N tð Þ þ Ph tð Þ eq: S6ð Þ

�

Note that eq: S5ð Þ is identical to eq: 5ð Þ in the main model, and that P is subject to sensory

noise Ph.

Similar to the main model, eq: S1� S6ð Þ are written in matrix form:

X tð Þ ¼D:X t� dtð ÞþM:Xu tð ÞþE:X" tð Þ eq: S7ð Þ

with:
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X ¼


TS


HT

N

C

2

6

6

4

3

7

7

5

, D ¼

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 k1

2

6

6

4

3

7

7

5

, M ¼

1 0

0 1

dt 0

k2 k2

2

6

6

4

3

7

7

5

, Xu ¼

u

TS


u
HT

� �

,E ¼ M, X" ¼

"

TS


"
HT

� �

Similarly, the model of sensory transduction eq: S5� S6ð Þ is rewritten as:

S tð Þ ¼ T:X tð Þþ Sh tð Þ eq: S8ð Þ

with:

S¼
V

P

� �

Given the standard deviations of 
"
TS, 


"
HT , V

hand Ph (sTS, sHT , sV and sP), the covariance

matrices of X" and Sh are respectively:

Q¼ E:
s2

TS 0

0 s2

HT

� �

:E0

Simulations were performed using the Kalman filter algorithm, as in the main model.

Feedback signals during neck movement
In Figure 7—figure supplements 2 and 3, we note that passive neck motion induces a

proprioceptive feedback dP that encodes neck velocity, although proprioceptive signals P are

assumed to encode neck position. This dynamic transformation is explained by considering

that, during passive motion:

N̂
p
tð Þ ¼ N̂ t� dtð Þ

N̂ tð Þ ¼ N̂
p
tð ÞþNk ¼ N̂ t� dtð Þþ kNdV :dV þ kNdP:dP

Because kNdV » 0 (Table 3), neck position is updated exclusively by its own proprioceptive

feedback dP. Furthermore, the equation above is transformed into:

N̂ tð Þ� N̂ t� dtð Þ ¼ kNdP:dP

In a steady-state, N̂ tð Þ � N̂ t � dtð Þ ¼ N tð Þ � N t � dtð Þ ¼ 
HT :dt, leading to:

dP ¼ 
HT :dt=k
N
dP that is dP » 
HT :dt (with kNdP » 1)

Thus, similar to the reasons already pointed out in section ‘Kalman feedback gains’, the

feedback signal dP is scaled by 1=dt in Figure 7—figure supplement 1–3. Also, because the

gain kNdP (which is close to 1, see Table 3) doesn’t scale with dt, the feedback Nk ¼ kNdP:dP is

also scaled by 1=dt in Figure 7—figure supplement 1–3.

Importantly, the equations above indicate that neck proprioception error should encode

neck velocity even when the proprioceptive signals are assumed to encode neck position.

Next, we note that, during passive neck rotation, the estimate of head velocity relative to

the trunk is determined by 
̂HT ¼ k

HT

dP :dP. Since dP » 
HT :dt, we expect that k
HT

dP » 1=dt.

Accordingly, simulations performed with dt ¼ 0:01s yield k

HT

dP ¼ 89 ¼ 0:89=dt. Furthermore,

performing simulations with dt ¼ 0:1s leads to k

HT

dP ¼ 8:9 ¼ 0:89=dt. We find that k
TS

dP is also

dependent of dt. Therefore, the corresponding Kalman gains scale with dt in Table 3.

Note that the considerations above can equally explain the amplitude and dynamics of the

predicted neck position and of the neck proprioceptive error in Figure 7—figure supplement

6. The simulation in Figure 7—figure supplement 6C is identical (with half the amplitude) to a

passive rotation of the head relative to the trunk (Figure 7—figure supplement 2), where

dP ¼ dV>0. The simulation in Figure 7—figure supplement 6C can be explained

mathematically by noticing that it is equivalent to an active head motion (where dP ¼ 0)

superimposed to a passive rotation of the head with a gain of 0.5 and in the opposite

direction, resulting in dP ¼ dV<0.
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Three-dimensional Kalman filter
For the sake of simplicity, we have restricted our model to one dimension in this study.

However, generalizing the model to three-dimensions may be useful for further studies and is

relatively easily accomplished, by (1) replacing one-dimensional variables by three-dimensional

vectors and (2) locally linearizing a non-linearity that arises from a vectorial cross-product (Eq: 9

below), as shown in this section.

Principle
Generalization of the Kalman filter to three dimensions requires replacing each motion and

sensory parameter with a 3D vector. For instance, 
 is replaced by 
x, 
y and 
z that encode

the three-dimensional rotation vector in a head-fixed reference frame x; y; zð Þ. Sensory

variables are also replaced by three variables, that is (Vx, Vy, Vz) and (Fx, Fy, Fz) that encode

afferent signals from the canals and otoliths in three dimensions.

With one exception, all variables along one axis (e.g. 
x; Cx; Gx; Ax; Vx; Fx along the x

axis) are governed by the same set of equations (eqn 1� 6) as the main model. Therefore, the

full 3D model can be thought of as three independent Kalman filters operating along the x; y

and z dimensions. The only exception is the three-dimensional computation of tilt, which

follows the equation:

G
!

tð Þ ¼ G
!

t� dtð Þþ dt:G
!

t� dtð Þ�

!

tð Þ ðeq: 9Þ

Where G
!
and 


!

are vectorial representations of (Gx; Gy;Gz) and (
x; 
y;
z), and �

represents a vectorial cross-product. In matrix form,

dt:G
!
�


!

¼ dt:
Gx

Gy

Gz

2

4

3

5�

x


y


z

2

4

3

5¼ dt:
Gy: 
z� Gz:
y

Gz: 
x � Gx:
z

Gx: 
y � Gy:
x

2

4

3

5

This non-linearity is implemented by placing the terms dt and (Gx; Gy;Gz) in the matrices M

and E that integrate rotation inputs (
u and 
") into tilt, as shown below.

Implementation
The implementation of the 3D Kalman filter is best explained by demonstrating how the

matrices of the 1D filter are replaced by scaled-up matrices.

First, we replace all motion variables and inputs by triplets of variables along x; y and z:

X ¼




C

G

A

2

6

6

4

3

7

7

5

, Xu ¼

u

Au

� �

, X" ¼

"

A"

� �

are replaced by: X ¼


x


y


z

Cx

Cy

Cz

Gx

Gy

Gz

Ax

Ay

Az

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

Xu ¼


u
x


u
y


u
z

Au
x

Au
y

Au
z

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

, X" ¼


"
x


"
y


"
z

A"
x

A"
y

A"
z

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5
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Next, we scale the matrix D up; each non-zero element in the 1D version being repeated

twice in the 3D version:

D ¼

0 0 0 0

0 k1 0 0

0 0 1 0

0 0 0 0

2

6

6

4

3

7

7

5

is replaced by D ¼

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 k1 0 0 0 0 0 0 0 0

0 0 0 0 k1 0 0 0 0 0 0 0

0 0 0 0 0 k1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

We build M in a similar manner. Furthermore, the element s:dt (that encodes the integration

of 
u into G) is replaced by a set of terms that encode the cross-product in ðeq: 9Þ, as follows:

dt:G
!
�


!

¼ dt:
Gx

Gy

Gz

2

4

3

5�

x


y


z

2

4

3

5¼ dt:
Gy:
z�Gz:
y

Gz:
x �Gx:
z

Gx:
y �Gy:
x

2

4

3

5¼ dt:
0 �Gz Gy

Gz 0 �Gx

�Gy Gx 0

2

4

3

5�

x


y


z

2

4

3

5

M ¼

1 0

k2 0

s:dt 0

0 1

2

6

6

4

3

7

7

5

is replaced by M ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

k2 0 0 0 0 0

0 k2 0 0 0 0

0 0 k2 0 0 0

0 �Gz:dt Gy:dt 0 0 0

Gz:dt 0 �Gx:dt 0 0 0

�Gy:dt Gx:dt 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

As previously, E ¼ M. Note that Mand E must be recomputed at each iteration since Gx; Gy

and Gz change continuously.

Similarly, we build the sensor model as follows:

S ¼
V

F

� �

and Sh ¼
Vh

Fh

� �

are replaced by S ¼

Vx

Vy

Vz

Fx

Fy

Fz

2

6

6

6

6

6

4

3

7

7

7

7

7

5

and Sh ¼

Vh
x

Vh
y

Vh
z

Fh
x

Fh
y

Fh
z

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

T ¼
1 �1 0 0

0 0 1 1

� �

is replaced by T ¼

1 0 0 �1 0 0 0 0 0 0 0 0

0 1 0 0 �1 0 0 0 0 0 0 0

0 0 1 0 0 �1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

Q ¼ E:
s2


 0

0 s2

A

� �

:E
0
and R ¼

s2

V 0

0 s2

F

� �

are replaced by:

Q ¼ E:

s2


 0 0 0 0 0

0 s2


 0 0 0 0

0 0 s2


 0 0 0

0 0 0 s2

A 0 0

0 0 0 0 s2

A 0

0 0 0 0 0 s2

A

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

:E0 and R ¼

s2

V 0 0 0 0 0

0 s2

V 0 0 0 0

0 0 s2

V 0 0 0

0 0 0 s2

F 0 0

0 0 0 0 s2

F 0

0 0 0 0 0 s2

F

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5
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