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Abstract
The Michaelis–Menten equation is usually expressed in terms of kcat and Km values: v = kcat[S]/(Km + [S]). However, it is impos-

sible to interpret Km in the absence of additional information, while the ratio of kcat/Km provides a measure of enzyme specificity

and is proportional to enzyme efficiency and proficiency. Moreover, kcat/Km provides a lower limit on the second order rate con-

stant for substrate binding. For these reasons it is better to redefine the Michaelis–Menten equation in terms of kcat and kcat/Km

values: v = kSP[S]/(1 + kSP[S]/kcat), where the specificity constant, kSP = kcat/Km. In this short review, the rationale for this asser-

tion is explained and it is shown that more accurate measurements of kcat/Km can be derived directly using the modified form of the

Michaelis–Menten equation rather than calculated from the ratio of kcat and Km values measured separately. Even greater accuracy

is achieved with fitting the raw data directly by numerical integration of the rate equations rather than using analytically derived

equations. The importance of fitting to derive kcat and kcat/Km is illustrated by considering the role of conformational changes in en-

zyme specificity where kcat and kcat/Km can reflect different steps in the pathway. This highlights the pitfalls in attempting to inter-

pret Km, which is best understood as the ratio of kcat divided by kcat/Km.

16

Review
When Henri, Michaelis and Menten derived the equation for

steady state enzyme turnover, they chose to define the rate in

terms of Vmax and the substrate dissociation constant for the

hypothetical enzyme–substrate complex, KS [1,2].
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At the time, the choice of the terms Vmax and KS was logical

because the concentrations of enzymes could not be determined

and even the chemical makeup of enzymes was unknown. By

including the unknown enzyme concentration in the term for the

maximum velocity of turnover, the equation contained two vari-

ables, Vmax and KS, consistent with the information content of

the data and a minimal model.

In 1913, Michaelis and Menten provided evidence for the exis-

tence of an enzyme–substrate complex by careful rate measure-

ments and rigorous quantitative analysis, fulfilling the major

goal of their work [1,2]. Estimating the binding affinity for the

substrate as KS was an added bonus. These were profound

discoveries that laid the foundation for enzymology throughout

the 20th century.

The Michaelis–Menten equation was originally derived

assuming that substrate binding was at equilibrium, and was

later expanded by Briggs and Haldane [3] who used the steady

state approximation to include the rates of substrate and prod-

uct release in defining Km according to a minimal model.

A century later, we know the structures of enzymes and can

accurately determine their concentrations so we divide the

measured rates by the known enzyme concentration to get the

common form of the Michaelis–Menten equation:

(1)

Using this equation, the two parameters derived in fitting data

are kcat and Km, from which we can calculate kcat/Km. However,

kcat/Km is the most important parameter as it is used to quantify

enzyme specificity, efficiency and proficiency [4,5]. In fact, kcat

and kcat/Km should be considered as the two primary steady

state kinetic parameters, rather than kcat and Km. A half century

ago Cleland stressed that the two fundamental steady state

kinetic parameters were kcat and kcat/Km and that Km represents

an “apparent dynamic dissociation constant under steady state

conditions”, but noted that Km is not an independent parameter

[6]. This statement was based on the use of a Lineweaver–Burk

(double-reciprocal) plot [7] to fit data where the intercept

defines 1/kcat and the slope defines 1/kcat/Km.

In Cleland’s analysis, the two primary steady state kinetic pa-

rameters were kcat and kcat/Km because they were the parame-

ters derived in fitting data displayed on a double reciprocal plot.

Today, the emphasis is on interpreting the steady state kinetic

parameters in terms of enzyme structure and individual steps in

the reaction pathway. This leads to a new justification for

choosing kcat/Km rather than Km as a primary kinetic parameter.

Of the three steady state parameters (kcat, Km, and kcat/Km)

kcat/Km is the most important as it quantifies enzyme specificity,

efficiency and proficiency [4]. Moreover, both kcat and kcat/Km

place lower limits on rate constants for individual steps in the

pathway, while Km is largely un-interpretable.

Cleland published the first computer programs [8] to fit data

based on linear regression of data displayed on a double-recip-

rocal plot, and including a kind of global analysis in resolving

steady state inhibition patterns, which are defined by the effects

of inhibitors on the slope and intercept, i.e., kcat and kcat/Km.

However, there are serious disadvantages in using a double reci-

procal plot due to the unequal weighting of errors and the

compression of the most accurate data leading to a distorted

view of the results. The unequal weighting of errors can be

overcome if the standard deviations of the individual measure-

ments are included in the linear regression analysis, but that is

not always done.

Regardless of the method used to fit data, there is merit in

fitting to derive kcat and kcat/Km, rather than fitting to derive kcat

and Km individually then calculating kcat/Km from the ratio.

There are large errors in kcat and Km since these estimates each

rely on extrapolation to infinite concentration of substrate,

leading to larger errors in the calculated kcat/Km value. On the

other hand, the value of kcat/Km is generally well defined from

the initial slope of the concentration dependence, as illustrated

in Figure 1. Thus, kcat/Km can be understood as the apparent

second order rate constant for substrate binding. More precisely,

kcat/Km is equal to the true second order rate constant for sub-

strate binding to the enzyme multiplied by the probability that

the bound substrate will be converted to product and released

into solution. This principle can be illustrated using the simplest

model:
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The term, k2/(k−1 + k2), gives the probability that the substrate

reacts rather than dissociating. With more realistic models, the

more complex equations for kcat/Km can still be understood as

the product of the rate constant for substrate binding times the

probability of forward reaction.

Figure 1: Michaelis–Menten plot. The rate of product formation is
plotted versus substrate concentration and fit to a hyperbola. The
dashed lines illustrate kcat/Km (slope) and kcat. The intersection of the
two lines gives the substrate concentration at which kcat/Km [S]i = kcat,
so [S]i = kcat/(kcat/Km) = Km.

Interpretation of steady state kinetic parameters takes on new

significance in the current era of enzymology where the

emphasis is on relating the parameters to individual rate con-

stants and to structural and chemical transitions for each reac-

tion in the pathway. While kcat/Km can be directly interpreted in

terms of enzyme specificity, it also provides a lower limit

for the second order rate constant for substrate binding.

Similarly, kcat provides a lower limit for each first order

rate constant following substrate binding through product

release. On the other hand, the Michaelis constant cannot be

interpreted unambiguously in the absence of additional

information. In fact, Km can be less than, greater than, or equal

to the Kd for substrate binding. Here, the overly simplified

model  gives the wrong answer in  suggest ing that

Km is always greater than or equal to the dissociation constant

(Kd).

However, for a more complete model we come to a different

conclusion:

(2)

We can now see that depending on the intrinsic rate constants,

Km can be less than, greater than, or equal to the Kd. Thus, in

the absence of additional information, Km cannot be interpreted

to imply anything about the intrinsic rate and equilibrium con-

stants governing enzyme catalysis. Although the Km defines the

concentration of substrate giving half maximal velocity, that is a

phenomenological description without any mechanistic implica-

tions. On the other hand, kcat and kcat/Km provide meaningful

lower limits on intrinsic rate constants.

The best understanding of Km is as the ratio of kcat and kcat/Km,

so we consider that the Michaelis constant is a derivative of the

two primary steady state kinetic parameters.

Although this statement appears as trivial algebra, it is profound

because kcat and kcat/Km can reflect different steps in the en-

zyme pathway as will be described below. Moreover, it shows

that the Km value represents the balance point between the rate

of turnover and the rate of substrate binding. The Km represents

substrate binding affinity only in the special case of rapid equi-

librium binding.

A primary goal of fitting steady state data should be to accu-

rately define kcat/Km. Rather than fitting to obtain estimates for

kcat and Km and then calculating kcat/Km as a ratio, a more accu-

rate view is to consider kcat and kcat/Km as the primary steady

state constants while Km is obtained from their ratio. Tradition-

ally, data have been fit using the standard form of the

Michaelis–Menten equation to derive estimates of kcat and Km

which are then used to calculate kcat/Km. However, there are

often large errors in kcat and Km because these parameters are

based on extrapolation to infinite substrate concentration, and

these errors are compounded in calculating kcat/Km. Thus it is

better to fit the data using an equation that provides kcat/Km

directly using the following form of the Michaelis–Menten

equation:
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(3)

We use the term kSP = kcat/Km to emphasize that the specificity

constant (kSP) is a single parameter rather than a ratio and to

stress that it represents the apparent second order rate constant

for substrate binding. The use of the new term, kSP, overcomes

the awkward use of kcat/Km, which is not only more difficult to

say and write, but it also presents the mistaken impression that

it is simply a function of the rate of enzyme turnover divided by

the substrate binding affinity. The awkwardness is the result of

historical precedent. Defining the specificity constant as kcat/Km

carries with it the baggage of thinking of the specificity con-

stant as a ratio rather than a single parameter. Logic is influ-

enced by the words we use to describe observations. It actually

might help to avoid confusion in interpretation of Km if we re-

ferred to the Michaelis constant as kcat/kSP.

Measuring kcat/Km
In order to get the best estimates of kcat/Km from steady state

kinetic data, it is preferable to fit the data to Equation 3 in

which kcat and kcat/Km are the two fitted parameters rather than

kcat and Km (Equation 1). To test this assertion, synthetic data

were generated by computer simulation with kcat = 50 s−1 and

Km = 20 μM. Data were generated at various concentrations of

substrate (5, 10, 20, 30, and 40 μM), with a Gaussian distribu-

tion of random noise added to the data with a standard devia-

tion of 0.5. The synthetic data were then fit to a straight line to

estimate the rate (Figure 2A), which was then plotted versus

substrate concentration and fit by nonlinear regression using

either Equation 1 or Equation 3, defining kcat and Km or kcat and

kcat/Km, respectively.

As shown in Figure 2B,C, the fitted curves derived from either

equation were indistinguishable, but as shown in Table 1 the

error estimates in the fitted parameters were markedly different.

The known standard deviation (sigma) values were included in

the linear regression to estimate the rates and then the standard

error estimates in fitted parameters were propagated to yield

error estimates in kcat/Km. That is in computing z from the ratio

of x and y, we compute the errors according to:

Figure 2: Fitting data to derive kcat and Km. A) Synthetic data were fit
to a straight line and then the observed rate was plotted versus sub-
strate concentration (B, C). In B), the data were fit to standard
Michaelis–Menten equation while in C), the data were fit to a modified
form equation. The equations used are shown in each figure.

where dx, and dy represent the error estimates on the variables x

and y, respectively.
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Table 1: Summary of fitted parameters. Synthetic data were generated as described in the text and then fit to derive estimates of steady state kinetic
parameters using different equations and different means of data fitting. Here we list the methods for fitting and the chosen fitted parameters for each
method. The values for kcat, Km and kcat/Km are shown. Values in brackets were calculated from the other parameters. For example, in the first row,
kcat/Km was calculated from kcat and Km, whereas in the second row, Km was calculated from estimates of kcat and kcat/Km. Standard error estimates
for calculated parameters were obtained by propagation of errors as described in the text. Note that the fitted parameters need not reproduce the
input parameters used to generate synthetic because of the added errors and the limited set of data. A more complete data set with lower errors
would return the input parameters.

method fitted parameters kcat (s−1) Km (μM) kcat/Km (μM−1s−1)

equations kcat and Km 58.6 ± 25 44.4 ± 31 [1.32 ± 1.08]
kcat and kSP 58.7 ± 25 [44.4 ± 23] 1.32 ± 0.37

simulation kcat and Km 57.2 ± 5.9 27.2 ± 5.1 [2.11 ± 0.45]
kcat and kSP 57.3 ± 6.1 [27.8 ± 4.1] 1.62 ± 0.21

simulation full reaction kcat and Km 54.3 ± 4.9 23.6 ± 4.0 [2.30 ± 0.44]
kcat and kSP 55.2 ± 3.9 [24.9 ± 2.2] 2.22 ± 0.12

input values 50 20 2.5

Table 1 illustrates the improvements in error estimates when

fitting the data to derive kcat/Km (kSP) directly rather than calcu-

lating the value from the ratio of kcat and Km. This is due to the

large errors in estimating kcat and Km which are both based on

extrapolation to infinite substrate concentration. In essence, the

extrapolation errors are counted twice since they are reflected in

both kcat and Km values. In contrast, when fitting to derive kcat

and kcat/Km, only kcat is based on extrapolation while

kSP = kcat/Km is obtained from the initial slope of the concentra-

tion dependence of the measured rate (Figure 1).

Admittedly, the “experiment” was set up to provide data only

up to twice the Km value to mimic those situations where the

substrate concentrations available for testing are limited, so the

exercise may not accurately reflect all laboratory settings. In

that sense, the example may be biased in favor of fitting to

derive kcat/Km directly. However, as a counterpoint, the only

“experimental errors” in the data are random since the added

noise conforms to a normal distribution, so this may make the

fitting to define kcat and Km more accurate than seen in the labo-

ratory. The “experiment” was repeated three times by gener-

ating new synthetic data and then fitting the data to derive inde-

pendent kcat and Km values. The averages from this analysis

were kcat = 45.4 ± 15.9 s−1 and Km = 33.2 ± 18.3 μM, which

give kcat/Km = 1.36 ± 0.9 μM−1s−1. Averaging multiple experi-

ments did not help to reduce errors as much as simply fitting

data to a better equation.

One could argue that the choice of which equation to use is

somewhat arbitrary. However, the common form of the equa-

tion was chosen over one hundred years ago for reasons that are

no longer valid. Therefore, this historical precedent should no

longer be followed given the advantage of fitting data to an

equation that affords kcat/Km directly.

Fitting by simulation
Significant errors are introduced when fitting the primary data

(product versus time) to a straight line because of the indepen-

dent variables for slope and intercept for each trace. In fitting

this data set with six concentrations of substrate and then fitting

the rate versus concentration to a hyperbola, a total of 14 inde-

pendent parameters were used. It is better to fit the data glob-

ally to derive only the two independent parameters from the pri-

mary data using computer simulation based on numerical inte-

gration of the rate equations [9].

In fitting steady state data by simulation, we start with the full

realistic model for an enzyme-catalyzed reaction including five

rate constants and then make approximations to simplify the

model to be consistent with the information content of the data

and the desired steady state parameters.

One could fit the data using all five rate constants, then calcu-

late the steady state kinetic parameters from Equation 2. It is

well known that steady state kinetics cannot define intrinsic rate

constants; a corollary of that statement is that a large combina-

tion of intrinsic rate constants can be found to fit the data and

provide estimates of steady state kinetic parameters. Thus, any

combination of rate constants that fit the data provides valid

estimates for the steady state parameters (kcat, Km and kcat/Km).

However, there will be large errors on each rate constant
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because of the large number of combinations of rate constants

that can account for the data. The large errors would then propa-

gate to large error estimates for each steady state parameter,

which would not provide a realistic estimate of the uncertainty

in measuring each parameter.

To limit the number of variables, we lock three of the parame-

ters at reasonable values to reduce the model to only two

unknowns. For example, we can modify the model to mimic

rapid equilibrium binding. To do so, we use a conservative esti-

mate for diffusion-limited substrate binding (k1 = 100 μM−1s−1)

then make the chemistry step irreversible and product release at

least 100-fold faster than k2 so that the rate of chemistry defines

kcat. This represents the standard (often erroneous) interpreta-

tion of kcat and Km. However, because we are only using this

approximation to fit steady state kinetic data, this model need

not to be true physically to give valid estimates of the steady

state kinetic parameters. The simplified model shown below

gives estimates of kcat and Km directly.

(4)

We can also use an alternative form of the model to obtain esti-

mates of kcat and kcat/Km directly. Here by setting k−1 = 0, after

substrate binds it is always converted to product so kcat/Km is

defined by the value of k1. This model gives estimates of kcat

and kcat/Km from the global fit.

(5)

Again, it is important to note that this need not represent physi-

cal reality in defining the intrinsic rate constants; the approxi-

mations are acceptable because we are only using the results to

compute the steady state kinetic parameters. In fact, we illus-

trate below that either model can be used to fit the data to give

identical steady state parameters although the standard errors

will differ.

In Figure 3, we show the results of fitting the same data used in

Figure 2. In Figure 3A, the curves represent the global data fit

using only two unknown parameters, kcat and Km (Equation 4)

Figure 3: Fitting steady state data by simulation. A) Synthetic data
from Figure 2A were fit globally to derive estimates of kcat and Km or
kcat and kcat/Km as described in the text. B) Confidence contour analy-
sis from fitting to derive kcat and Km. C) Confidence contour analysis
from fitting to derive kcat and kcat/Km. The bar gives the color coding for
the normalized χ2 values [10].

or kcat and kcat/Km (Equation 5). Because the results of the two

fitting methods are indistinguishable graphically, we only show

one figure to represent both methods (Figure 3A). However, as

summarized in Table 1, the error estimates vary depending on
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the method used. As seen previously with equation-based data

fitting, using the model to define kcat/Km directly is more

precise than computing kcat/Km from individual estimates of kcat

and Km. It should also be noted that either method of fitting data

by simulation is more accurate than the corresponding equation-

based data fitting. This is because we are fitting the entire data

set using only two parameters rather than fourteen. Using extra-

neous parameters introduces additional errors in data fitting.

Fitting by simulation also affords confidence contour analysis to

more precisely estimate errors in data fitting and to reveal rela-

tionships between parameters [10]. In Figure 3B we show the

confidence contour analysis from fitting to derive kcat = k2 and

Km = k−1/k1. In this analysis, the two parameters are varied

systematically and then we compute χ2, which we plot using a

color scale to represent z-axis values on the plot of k2 versus

k−1. The colors represent the values of χ2 normalized relative to

the best fit so the red area defines the combinations of rate con-

stants that give a good fit while the yellow band shows the

χ2 boundary surrounding a good fit [10]. The elongated zone of

good fit illustrates the linear relationship between k2 (defining

kcat) and k−1 (defining Km). That is, this analysis clearly shows

that the ratio of k2/k−1 is known with greater certainty

than either parameter alone. In this simplified model

kcat/Km = k2k1/k−1 (k1 is fixed). Thus, the confidence contour

analysis reveals that the data define kcat/Km more accurately

than either kcat or Km.

The confidence contours for the global fit to derive k1 (kcat/Km)

and k2 (kcat) are shown in Figure 3C. The curvature of the red

area fits an equation of the form k1 × k2 = constant. This merely

states that the net rate of product formation is a function of the

combined rates of substrate binding and chemistry and that the

net rate is known with greater certainty than either rate constant

alone.

This analysis supports two important conclusions: (1) it is better

to fit steady state data to define kcat and kcat/Km rather than kcat

and Km; and (2) simulation affords more accurate data fitting

than the traditional methods of fitting to equations. Fitting data

to equations necessarily involves limitations to conform to the

approximations in defining the initial velocity of turnover

before the substrate is consumed and product builds up, and it

requires that the data be fit a second time in the form a plot of

estimated rate versus concentration. Fitting by computer simula-

tion overcomes these limitations.

Full progress curve analysis
The ability to fit data by simulation based on the numerical inte-

gration of rate equations frees the experimentalist from the

confines of initial velocity measurements. One can easily follow

the reaction to completion beyond the linear phase and even fit

the entire time course to derive estimates of kcat and kcat/Km. To

illustrate this, we simulated ten data points at the same concen-

trations of substrate examined in Figure 2, but here we allow the

reaction to go to completion (Figure 4A). The same standard

deviation (0.5) now leads to less apparent noise because of the

larger signal. The synthetic data were then globally fit to derive

estimates of either kcat and Km (Equation 4) or kcat and kcat/Km

(Equation 5). Like before, the choice of method for data fitting

did not affect the appearance of the fitted curves so we show

only one (Figure 4A). However, the confidence contour analy-

sis again shows the linear relationship between k2 (defining kcat)

and k−1 (defining Km), demonstrating that kcat/Km is

more accurately defined by the data than either constant indi-

vidually (Figure 4B). This analysis also revealed the lower

standard errors estimated for kcat/Km measured directly com-

pared to values calculated from the ratio of kcat and Km (see

Table 1).

Analysis of full progress curve kinetics provides the most accu-

rate estimates. Given the experimental constraints of limited

substrate concentrations and the same number of data points

collected, it is better to spread the data points out and follow the

reaction to completion rather than restrict the measurement to

the initial velocity. One could stop data collection at any time

and still be able to fit the data without regard for maintaining

initial velocity conditions. Fitting data as was done by

Michaelis and Menten more than 100 years ago imposes signifi-

cant limitations on the quality of data that can be collected

because it restricts data fitting to the earliest part of the curve

with the only small amounts of product formed. It is more accu-

rate to monitor the reaction for longer times, allow the reaction

rate to fall off as substrate is consumed but account for the devi-

ation from linearity by fitting the data using computer simula-

tion. Product inhibition can also be resolved if it contributes sig-

nificantly to the data [11].

Standards for data collection
When it is possible, data should be collected at substrate con-

centrations exceeding the Km by at least 4-fold so that the data

reach 80% saturation. Concentrations 9-fold greater than the Km

are required to reach 90% saturation. The question of how high

to go in substrate concentration must also be considered rela-

tive to the availability and solubility of the substrate. The stan-

dard rules apply for measurement of initial velocities requiring

that less than 10% of the substrate should be consumed during

the measurement to support the steady state approximation. Of

course, this requirement does not apply if the data are fit by

computer simulation, so more accurate data can be obtained

based on formation of a larger signal in measuring product for-

mation.
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Figure 4: Fitting full progress curve data by simulation. A) Synthetic
data were generated and then were fit globally to derive estimates of
kcat and Km or kcat and kcat/Km as described in the text. B) Confidence
contour analysis from fitting to derive kcat and Km. C) Confidence
contour analysis from fitting to derive kcat and kcat/Km. The bar gives
the color coding for the normalized χ2 values [10].

It is always important to carefully select the minimal number of

measurements to provide the needed information to optimally

use limited resources. Here, full time course measurements are

by far the best, as described above. In the absence of product

inhibition, steady state kinetic parameters can be derived from a

single sample starting at a substrate concentration 8–10 fold

higher than the Km and following the reaction to completion. To

test for product inhibition, two replicates at lower substrate con-

centrations will suffice. At larger substrate concentrations,

larger concentrations of product formed toward the end of the

reaction alter the rate of approach to equilibrium if the

rebinding of product to the enzyme occurs appreciably. Glob-

ally fitting measurements at three substrate concentrations may

be sufficient to define kcat and kcat/Km and Ki for product inhibi-

tion. The ready availability of computer programs for fitting by

numerical integration of the rate equations renders the initial

velocity measurements obsolete.

In setting up initial velocity measurements one must first decide

on the range of concentrations to use and whether to space the

points evenly. It is generally accepted that concentrations

should be more closely spaced below and slightly above the Km

and spaced further apart at higher concentrations. The data at

low concentration define kcat/Km while the data at the higher

concentrations are only needed to extrapolate to get kcat.

Cleland has suggested collecting data with points evenly spaced

on a Lineweaver–Burk plot [12]. However, this conclusion

represents a mistake rooted in the distortion of the data when

viewed on a double reciprocal plot as shown in Figure 5A.

Spacing points evenly on a double reciprocal plot does not

provide the best distribution of data given the importance of

accurately defining kcat and kcat/Km. A better alternative is to

space points evenly on a logarithmic scale (Figure 5B,C). Here

11 points can be distributed on a log scale with [S]/Km ratios of

0.16, 0.25, 0.4, 0.6, 1, 1.6, 2.5, 4, 6 and 10 (rounded off). This

provides a convenient series that most accurately defines both

kcat and kcat/Km. These guidelines are predicated on having an

estimate of kcat and kcat/Km before setting up the measurements.

Since all experiments must be replicated prior to publication,

the first experiment can be used to explore the range of concen-

trations and time for data collection. A second experiment can

then be designed based upon the initial estimates to achieve an

optimal distribution of data points to get publication quality

data.

Another question is whether to collect triplicates at each con-

centration or to sample at three times as many concentrations.

Because all independent measurements are treated equally in

fitting by nonlinear regression, it is better to collect data at more

concentrations rather than in triplicate at fewer concentrations.

The average standard deviation of the measurements is

evident in the scatter of the data from the fitted curve

and can be estimated from the χ2 valued derived in fitting the

data.
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Figure 5: Optimal spacing of data points. Different scenarios for
computing the distribution of data points for steady state measure-
ments are shown. A) Linear distribution on a double reciprocal plot.
Sample data were calculated with kcat = 1 s−1 and Km = 0.2 (arbitrary
units). The inset shows the same data on a double reciprocal plot. B)
Logarithmic distribution of data points. Sample data were calculated
with kcat = 1 s−1 and Km = 1 (arbitrary units). C) Data in B on a loga-
rithmic x-axis. The smooth lines show the fitted curve.

Active site concentration
Interpretation of steady state turnover rates is dependent on an

accurate estimate of the concentration of active sites. There are

significant systematic errors in measurements of protein con-

centrations using dye-binding assays or by absorbance measure-

ments, and the fraction of protein that is active is not known

without direct measurement. For these reasons, it is important to

perform an active site titration to establish the concentration of

active sites. One method is isothermal titration calorimetry

relying on the heat change upon binding of a substrate analog.

Because the method is relatively insensitive it requires high

concentrations of protein (usually μM) so the stoichiometry is

easy to determine when titrating with a known concentration of

a substrate analog [13]. In addition, many proteins show a

change in fluorescence (tyrosine and tryptophan residues) upon

substrate binding, affording accurate measurements of the stoi-

chiometry and dissociation constant for binding from an equi-

librium titration [14]. Other methods, such as rapid gel filtra-

tion and filter binding assays are limited by the rate of ligand

dissociation relative to the time required to perform the separa-

tion. Alternatively, the kinetics of a pre-steady state burst of

product formation can be used to estimate the concentration of

active sites under favorable conditions [15]. In any event,

kinetic data should be normalized by dividing the rate by the

concentration of enzyme active sites, and the basis for esti-

mating enzyme concentration should be clearly stated. It is no

longer acceptable to report enzyme specific activity in units of

product/min/mg of enzyme; rather, report values of kcat and

kcat/Km.

Interpretation of kcat/Km
The steady state kinetic parameter, kcat/Km is not merely the

ratio of kcat and Km; rather, it should be considered as a single

parameter because it quantifies enzyme specificity, efficiency

and proficiency [4,5]. Intuitively, it may seem that the substrate

with the greater kcat reacts faster and would be preferred, but

that is not necessarily the case when two competing substrates

are present as the one with a lower Km would occupy more of

the enzyme. However, simple algebra shows that the relative

rate of turnover of two competing substrates is defined by their

relative concentrations and kcat/Km values for substrates A and

B.

Thus, enzyme specificity is quantified by kcat/Km. It is for this

reason that kcat/Km is called the specificity constant. Specificity

is a function of the apparent second order rate constants for sub-

strate binding and conversion to product. When competing sub-

strates are both present, the one that binds to the enzyme the

fastest and is then converted to product wins the competition. In

contrast, kcat defines how fast the enzyme catalyzes a given

reaction, not which substrate the enzyme prefers.
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Although kcat/Km provides a quantitative measure of enzyme

specificity, it does not define the underlying basis for speci-

ficity. Therefore, a major effort is currently underway to under-

stand how elementary steps in catalysis contribute to the ob-

served specificity and to understand how enzymes evolve to

acquire new specificities. Analysis of enzyme families has

revealed that members within a family share a common catalyt-

ic core and a variable loop domain that closes over the sub-

strate and confers substrate specificity [16,17]. Moreover, speci-

ficity could be dependent on conformational changes in the loop

domain after substrate binding. The concept of induced-fit,

where the substrate induces a change in enzyme structure to

align catalytic residues, was first proposed in somewhat vague

terms by Koshland [18] in an attempt to understand how

an enzyme can exclude a smaller substrate than the preferred

one.

The induced-fit model proposes a two-step binding pathway in

which the substrate first binds to an open form of the enzyme

and then the enzyme closes leading to tighter binding and orga-

nization of catalytic residues.

For decades debate raged as to whether a two-step binding

mechanism could lead to increased enzyme specificity. Most

notably, Fersht argued that because a two-step binding se-

quence has the same net free energy change as a corresponding

one-step mechanism, a two-step binding sequence could not

lead to greater enzyme specificity [5]. This logic is flawed

because it follows from the simple definition of Km as equal to

the Kd for substrate binding and assumes the conformational

change step is fast and at equilibrium preceding catalysis. Thus,

the conclusion is a restatement of the assumptions used to

define the model.

More recently, Warshel has asserted that pre-chemistry barriers

cannot contribute to enzyme specificity unless they are rate

limiting [19]. In his arguments, Warshel fails to appreciate the

distinction between steps in the pathway that govern specificity

(kcat/Km) versus those that govern the net turnover rate (kcat).

The terminology in which the specificity constant is given by

the ratio of kcat divided by Km contributed to the confusion.

Throughout his recent paper, Warshel continually referred to

the rate-limiting step as if it also defined specificity. In general,

it does not.

To resolve this controversy, a direct measurement of the rates of

the conformational change and the chemical reaction at the

active site of the enzyme was required. Steady state kinetic

methods do not suffice. Transient state kinetic analysis

are needed to measure events occurring during a single

enzyme cycle, but in the end, we must account for steady

state kinetic parameters calculated from intrinsic rate

constants. Resolution of the longstanding controversy over

the role of induced-fit in enzyme specificity illustrates the

importance of properly interpreting kcat and kcat/Km based on

asking how each step in the reaction contributes to

the observed kcat/Km values for the correct and incorrect sub-

strates.

Figure 6 shows three possible scenarios for the effect of the

conformational change on kcat and kcat/Km. In this figure, we

show free energy profiles computed from different combina-

tions of rate constants for a minimal three-step reaction where

product release is fast after the chemistry step.

In each figure, the slow step in the pathway defines kcat and is

identified as the step with the largest local barrier (relative to

the local minimum) in the free energy profile. On the other

hand, the specificity constant, kcat/Km, can be identified as the

steps leading from the starting state up to the highest overall

barrier.

Case 1
In Figure 6A, kcat/Km and kcat are both governed by the chem-

istry step. In this model, the initial binding and conformational

change are both rapid equilibrium reactions leading up to chem-

istry. In this case, kcat and kcat/Km can be approximated as

follows (Note Ki = ki/k−i):

Note that kcat is not simply defined by k3; rather, the equilib-

rium constant for the conformational change step defines the

fraction of the bound substrate that is in the FS state

(K2/(1 + K2)). An unfavorable equilibrium constant for

the conformational change (K2) could reduce both kcat and

kcat/Km.
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Figure 6: Free energy profiles. Free energy profiles are shown for a
three step model with different rate constant relationships as de-
scribed in the text and summarized on each figure. The free energy
profile was calculated using transition state theory:
ΔG‡ = −RT·ln(k/(kBT/h)), where k is the rate constant, kB is the Boltz-
mann constant and h is Planck’s constant. Second order rate con-
stants were converted to pseudo-first order rate constants using an
estimated physiological concentration of substrate.

Case 2
We next consider the case shown in Figure 6B where the con-

formational change is rate-limiting. Here it can be seen that

the rate of the conformational change governs both kcat and

kcat/Km.

This model mimics the standard view of catalysis with a single

equilibrium binding step followed by a single rate limiting step,

but in this case, the conformational change, not chemistry, is

rate limiting.

Case 3
Finally, we consider the case where chemistry is rate-limiting,

but the reverse of the conformational change step is slower than

the rate of chemistry (Figure 6C). Here we see that the confor-

mational change step governs specificity (kcat/Km) but the rate

of chemistry governs kcat.

This leads to a surprising result that had not been anticipated in

decades of research. To fully understand this, it is instructive to

examine the equation for kcat/Km calculated from the three-step

model (Equation 2).

When k−2 << k3, this reduces to:

By dividing the numerator and denominator by k3, this reduces

to an equation that no longer includes kcat (k3).

This equation can be further reduced by assuming that the sub-

strate binding to the open state is in rapid equilibrium, i.e.,

k−1 >> k2.
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This leads to the surprising result that the Km is defined by:

The product, K1k2 defines the second order rate constant for

substrate binding. Thus the Km is defined the balance between

the rate of enzyme turnover relative to the rate of substrate

binding. Because the reverse of the conformational change step

is very slow, the two-step binding reaction does not come to

equilibrium. Rather, the substrate binds and the enzyme closes

leading to rapid catalysis and product release. Because the

reverse of the conformational change step is so much slower

than chemistry, the initial weak substrate binding and the con-

formational change are the primary determinants of specificity.

DNA polymerase fidelity
DNA polymerases provide ideal model systems to study en-

zyme specificity because fidelity is high and physiologically

relevant, and the alternate substrates are well known. Moreover,

it is easy to perform single turnover kinetic measurements to ex-

amine steps leading up to the chemical reaction by mixing an

enzyme DNA complex with only one nucleoside triphosphate.

Recent work on DNA polymerase fidelity has shown that the

rate of the conformational change from open to closed state is

much faster than chemistry [20,21]. If we were only concerned

with defining the rate-limiting step (kcat) we would stop at this

point and simply conclude that chemistry was rate limiting; and

since kcat/Km defines specificity, the chemistry step must also

define specificity. However, that would be wrong. An addition-

al experiment was required to measure the rate of substrate

release using dideoxy-terminated DNA to allow the conforma-

tional change but prevent chemistry. This experiment allowed

the measurement of the rate of enzyme reopening to release

substrate before chemistry. The results showed that once the en-

zyme closes over a correct substrate, it almost always continues

to react rather than release the bound substrate. Globally fitting

multiple experiments yielded the following rate constants [21]:

where EDn represents an enzyme–DNA complex in the open

state with a primer strand n residues long, while FDnN

Figure 7: Free energy profile for DNA polymerization. Free energy
profiles for a correct base pair (solid blue line) and a mismatch
(dashed green line) were computed from data presented in [21].

represents the closed state with nucleotide (N) bound.

Note that we show 1/K1 = 200 μM for the initial weak binding

step.

The initial weak binding of nucleotide to the open state

(Kd = 200 μM) is followed by a very fast conformational

c h a n g e  t o  t h e  c l o s e d  s t a t e  t o  a f f o r d  a  n e t

Kd = 1/(K1(1 + K2)) = 200 nM. Because the chemistry step (k3)

is so much faster than the rate at which the enzyme opens to

release the substrate (k−2), the FDnN state goes forward 95% of

the time. Thus, the conformational change is the primary deter-

minant of enzyme specificity because it commits the substrate

to forward reaction. For the DNA polymerase studied, the

rate of product release is much faster than chemistry

so the model reduces to a three-step model. Accordingly

the specificity constant is defined by the two-step binding

reaction, while kcat is defined by the rate of the chemical reac-

tion.

This result was a big surprise, which had not been anticipated in

attempts to foresee the ways in which induced-fit could contrib-

ute to specificity [22]. For 20 years numerous investigators in

the DNA polymerase field had attempted to resolve whether the

conformational change or chemistry was rate limiting. We had

neglected to measure the rate of the reverse of the conforma-

tional change (enzyme opening to allow release of bound sub-

strate) relative to the rate of chemistry, and that proved to be the

key to understanding specificity. As shown in Figure 7, the free

energy profile shows that after the conformational change, the

enzyme is committed to go forward because there is a larger

barrier to going backwards. The highest overall barrier is the

conformational change step, thus defining the specificity con-

stant [21,23,24].
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We compare a free energy profile for correct nucleotide incor-

poration with that for a mismatch (Figure 7). With a mismatch

(dashed line), the chemistry step becomes very slow, while the

rate of enzyme opening is much faster. Thus, for a mismatch,

the conformational change step comes to equilibrium prior to

rate-limiting chemistry. In this case, the chemistry step governs

both specificity and rate-limiting steps.

Mismatch recognition by the enzyme leads to a change in the

specificity-determining step, but not the rate-limiting step.

We can now understand that the conformational change is the

major specificity-determining step. The substrate binds weakly

and then the enzyme closes. If the substrate shows the right ge-

ometry (structurally and electrostatically) the closed state is

stabilized and organization of catalytic residues leads to fast ca-

talysis. If the substrate is not the right size and shape, the en-

zyme fails to close tightly, chemistry is slow, and the enzyme

rapidly opens to release the mismatched substrate [23,24].

This new paradigm for enzyme specificity provides a very satis-

fying resolution of the long-standing controversy over the role

of induced fit in enzyme specificity. The conformation change

serves as a gate-keeper to facilitate catalysis of the favored sub-

strate while promoting release of alternate substrates.

Conclusion
This short review shows that the traditional Michaelis–Menten

equation defined in terms of kcat and Km should be replaced by

one in which the two variable parameters are kcat and kcat/Km.

There are two reasons for this change: (1) kcat/Km is the most

important steady state kinetic parameter because it quantifies

enzyme specificity, efficiency and proficiency; and (2) there are

smaller errors in fitting to derive kcat/Km directly rather than by

calculation of the ratio of kcat and Km derived independently in

fitting steady state kinetic data. In addition, there are significant

advantages in fitting by computer simulation rather than in

using the conventional approach using equations. Instead of

fitting steady state data to a straight and then fitting the concen-

tration dependence of the observed rate, the raw data can be fit

directly in a single step with fewer unknown variables, result-

ing in less error on the estimates for steady state kinetic parame-

ters.

The use of the ratio kcat/Km to describe the specificity constant

has long been a source of confusion. We now recognized that

kcat/Km and kcat can reflect different steps in the enzyme path-

way. Although kcat is a function of rate limiting steps in the

pathway, steps defining kcat/Km establish specificity and need

not be identical to the rate-limiting steps. Here the longstanding

use of kcat/Km as the specificity constant gets in the way of

proper understanding because, of course, one expects that kcat is

part of kcat/Km so they must be measuring the same step. This

simplified logic overlooks the situation where kcat in both the

numerator and denominator of kcat/Km cancel so that the ratio is

no longer related to kcat; such is the case for DNA polymerase

specificity.

Results presented here also document the advantages of fitting

kinetic data using computer simulation based on the numerical

integration of rate equations. Beyond what is shown here, one

can also simultaneously fit steady state data along with equilib-

rium binding and pre-steady data kinetic data to derive a single

unifying model to account for all of the results. This approach

provides the most robust and accurate method for data fitting to

ensure that the model fully accounts for all experimental obser-

vations. Moreover, confidence contour analysis provides a criti-

cal check to show the extent to which the fitted parameters are

constrained by the data, and thereby support the model.
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