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SUMMARY

Pathogen whole-genome sequencing has become an important tool for understanding the
transmission and epidemiology of infectious diseases. It has improved our understanding of
sources of infection and transmission routes for important healthcare-associated patho-
gens, including Clostridioides difficile and Staphylococcus aureus. Transmission from
known infected or colonized patients in hospitals may explain fewer cases than previously
thought and multiple introductions of these pathogens from the community may play a
greater a role. The findings have had important implications for infection prevention and
control. Sequencing has identified heterogeneity within pathogen species, with some
subtypes transmitting and persisting in hospitals better than others. It has identified
sources of infection in healthcare-associated outbreaks of food-borne pathogens, Candida
auris and Mycobacterium chimera, as well as individuals or groups involved in transmission
and historical sources of infection. SARS-CoV-2 sequencing has been central to tracking
variants during the COVID-19 pandemic and has helped understand transmission to and
from patients and healthcare workers despite prevention efforts. Metagenomic sequenc-
ing is an emerging technology for culture-independent diagnosis of infection and anti-
microbial resistance. In future, sequencing is likely to become more accessible and widely
available. Real-time use in hospitals may allow infection prevention and control teams to
identify transmission and to target interventions. It may also provide surveillance and
infection control benchmarking. Attention to ethical and wellbeing issues arising from
sequencing identifying individuals involved in transmission is important. Pathogen whole-
genome sequencing has provided an incredible new lens to understand the epidemiology
of healthcare-associated infection and to better control and prevent these infections.
© 2022 The Author. Published by Elsevier Ltd
on behalf of The Healthcare Infection Society. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Over the last decade pathogen whole-genome sequencing
has transformed from an emerging technology to become
established as an important tool for understanding pathogen
transmission and the epidemiology of infectious diseases. It has

0195-6701/© 2022 The Author. Published by Elsevier Ltd on behalf of The Healthcare Infection Society. This is an open access article
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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led to improved understanding of the sources of infection and
routes of transmission for several important healthcare-
associated pathogens. In this personal perspective, commis-
sioned following a Healthcare Infection Society Early Career
Award, | outline this progress and my own involvement, with
selected other illustrative studies. | also discuss how this has
been associated with changes in infection prevention and
control priorities.

Large-scale sequencing has challenged infection
prevention and control orthodoxies

Clostridioides difficile can spread readily in healthcare
settings in the absence of appropriate infection control.
C. difficile was previously believed to be predominantly
acquired from other symptomatic cases in healthcare settings,
with interventions focused on preventing this.

However, contingent on control efforts in place at the time,
large-scale sequencing of more than 1200 consecutive
C. difficile infection cases in Oxfordshire, UK, during
2007—-2010, revealed only a minority of infections, 35%, were
sufficiently genetically related to have been plausibly acquired
from another known case [1]. Additionally, only 19% of cases
overall were both genetically related and shared some form of
hospital contact. Similar findings have since been reproduced
in Leeds and Liverpool in the UK and in Canada [2—4].

These findings suggest that most C. difficile infections are
acquired from sources other than symptomatic infected hos-
pital inpatients. Recent exposure to C. difficile in hospitals
from other sources may still be important, with the associated
infection prevention and control implications. Supporting the
importance of recent acquisition leading to infection, in some
studies pre-existing colonization with C. difficile has been
reported to be protective against subsequent disease [5].
However, more recent data suggest the opposite with colo-
nization increasing subsequent risk of disease, therefore
highlighting the potential role of earlier healthcare and
community-based acquisition [6].

The search for other sources of C. difficile infection has
prompted studies of the role that asymptomatically colonized
hospital inpatients may play, with evidence from sequencing
and other high-resolution molecular typing, that asymptomatic
patients may be a source of some healthcare-associated
transmission [7—10]. Asymptomatic screening for C. difficile
has been investigated as a control strategy, with its intro-
duction associated with reduced infection incidence in one
interrupted time-series study [11]. However, the efficacy and
cost-effectiveness of such an approach still needs further
study, ideally using cluster-randomized designs. Patients
colonized with toxigenic C. difficile with diarrhoea of another
cause may also be a source of transmission, and may be missed
by infection control teams as they may test GDH-positive, but
faecal toxin-negative [12].

In part prompted by findings of limited within-hospital
transmission, other investigators have focused on
community-based acquisition and the role that disease-
causing C. difficile lineages in food production and domestic
animals might play. Isolates from these sources have been
found to be closely genetically related to those causing human
disease [13]. One specific example is C. difficile ribotype 078
where genetic overlap between strains in pigs, farmers and
clinical isolates was seen in a sequencing study from

the Netherlands [14]. Demonstrating directionality of trans-
mission, i.e. from an animal reservoir to human disease, is
challenging without temporal data showing human acquisition
(C. difficile negative followed by positive samples) associated
with an appropriate exposure. However, if genome sequences
from human C. difficile infection isolates are nested within
the genetic diversity found in an animal reservoir this supports
transmission from animals to humans. A limited example of
this was recently seen in a study of clinical and porcine iso-
lates from Ireland [15].

The logistical challenges in preventing acquisition with
these multiple potential sources of infection underline the
importance of antimicrobial stewardship as an intervention
that may prevent both acquisition and transition from colo-
nization to infection. Combined analysis of antimicrobial usage
data and antimicrobial resistance determinants in sequencing
data from Oxfordshire, UK, suggest that restrictions in fluo-
roquinolone prescribing were responsible for the successful
control of C. difficile in England over the last decade [16]. As a
result of these measures, the reduction in the prevalence of
fluoroquinolone-resistant C. difficile in England may mean that
the risk of C. difficile infection following fluoroquinolone
exposure is now not as high as it has been historically (although
selection pressure from increased fluoroquinolone use could
still potentially reverse this).

Sequencing studies of Staphylococcus aureus have also
yielded unexpected results. In common with C. difficile and
contingent on infection prevention and control practice,
sequencing suggests that the contribution of direct healthcare-
associated transmission may be smaller than previously
thought and that multiple introductions of S. aureus into hos-
pitals may be more important than has been realized. In a study
comprehensively sampling patients, healthcare workers, and
the environment in an intensive care unit in Brighton, UK, over
14 months, colonization of all three was common [17]. How-
ever, more than 600 genetically distinct subtypes were recov-
ered, and only 25 out of 92 acquisition events in patients could
be attributed to other sampled patients (16 instances),
healthcare workers (seven instances), or the environment (two
instances).

This study and the C. difficile studies above highlight a
limitation of pathogen sequencing in this context; it may pose
more questions than it answers. In both cases there was marked
genetic diversity in the bacterial isolates obtained from a single
geographic area over a relatively short time-period. This sug-
gests that the sequenced cases are unlikely to be responsible
for most transmission, but still leaves the question of what is
responsible? Several explanations are possible. First, it may be
that we have not sampled comprehensively enough to recover
all the bacterial lineages present in the known infected sour-
ces. However, at least in the case of C. difficile, such mixed
infections do not appear to explain transmission when a sweep
of all bacterial growth is sequenced from potential sources and
compared to closely epidemiologically linked cases not related
on standard single isolate sequencing [18]. Another explan-
ation is recent exposure to unsampled sources in hospital, e.g.
other patients, healthcare workers, visitors, or the environ-
ment. Exhaustive contemporaneous sampling of all these
potential sources is challenging or may be impossible, espe-
cially when colonization may be transient such that frequent
sampling is needed. The Brighton S. aureus study is close to
what is feasibly achievable even with highly motivated
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researchers and clinical staff. A third possible explanation is
that patients may be colonized at admission, and this is either
not detected due to the absence of admission screening, or not
detected as the admission screening is imperfectly sensitive
due to the organism being present at a low level, which may
subsequently be amplified, e.g. by antimicrobial exposure
disrupting competing flora.

Sequencing reveals epidemiological heterogeneity
within pathogens

Returning to the example of C. difficile, sequencing has
highlighted that the extent of healthcare-associated trans-
mission and environmental persistence may vary within a spe-
cies. For example, higher proportions of ribotype 027 cases are
closely genetically related to previous cases than many other
ribotypes [3]. Applying Bayesian statistical approaches to
sequencing and hospital data from Oxfordshire demonstrate
that ribotypes 027, 001, and 106 transmit more readily
between patients on the same hospital ward, and also persist
for longer in the ward environment following discharge or
recovery of infected cases [19]. Notably this study also showed
that, by 2010, transmission of C. difficile from known cases had
been largely stopped, with most apparently healthcare-
associated C. difficile acquired from other sources. In a pan-
European survey, healthcare-associated ribotypes such as 027
and 001 were found to cluster genomically by country and
region consistent with local transmission, whereas many other
ribotypes, including 078, showed no geographic structure,
consistent with transmission via widely disseminated sources,
such as food.

These findings have led some clinicians to implement dif-
ferent infection control approaches for different C. difficile
lineages. In a Swiss hospital with robust standard precautions
and predominantly one- and two-bed hospital rooms, only
patients with ribotypes 027 or 078 or faecal incontinence were
subject to contact precautions and all other patients with
C. difficile infection underwent standard precautions with a
dedicated toilet. During 10 years, 451 contacts were exposed
to 279 index patients in two- to four-bed rooms, only six (1.3%)
contacts had C. difficile detected with the same ribotype, and,
of these six case—contact pairs, four pairs had isolates
sequenced and only two found to be closely genetically related
[20]. Therefore, stratification of infection control by trans-
mission risk appears safe as implemented in this setting and has
facilitated fewer barriers to patient care and conserved
resources. However, this strategy has not been widely reported
elsewhere.

Sequencing supports identification of specific sources
of infection

Sequencing can support identifying specific sources of
infection. Some of the clearest examples are for food-borne
infection, e.g. E. coli 0104:H4 and Salmonella outbreaks
across Europe [21—23]. In a healthcare context, a country-wide
outbreak of nine listeriosis cases occurred in England in 2017
associated with hospital-provided prepared sandwiches [24].
National prospective whole-genome sequencing allowed the
closely related cases of a not previously seen strain to be
identified, triggering epidemiological investigations and

subsequent identification of the food source of the outbreak,
with food isolates confirmed to be part of the same genomic
cluster.

Candida auris is an emerging multidrug-resistant fungus that
has caused large hospital outbreaks, particularly in high-acuity
settings. Between 2015 and 2017, 70 cases of colonization or
infection occurred in Oxford, UK, associated with a neuro-
sciences intensive care unit. Epidemiological investigations
revealed that C. auris infection or colonization was associated
with use of reusable axillary temperature probes. Sequenced
isolates from patients and the temperature probes formed part
of the same genomic cluster. The outbreak was only success-
fully controlled when the probes were withdrawn despite a
bundle of other infection control interventions [25]. The out-
break underlines the dynamic nature of infection prevention
and control, where precautions that were previously sufficient
may not adequately control a new threat. Although reusable
equipment is a well-recognized potential route of transmission,
it serves as a reminder that specific decontamination products
and methods may be needed for different pathogens.

Mycobacterium chimera infections associated with car-
diopulmonary bypass heater—cooler units are another example
where sequencing has helped to confirm epidemiological find-
ings [26]. Isolates from cardiac surgery-related infections, a
specific manufacturer’s heater—cooler unit and its production
facility all formed a distinct genetic clade, supporting the
implicated heater—cooler unit as the source of the outbreak
and that contamination likely occurred at the production site.

Sequencing and the role of individuals in transmission

Sequencing can also point to specific individuals as sources
of infection. This has potential personal, ethical, and legal
implications [27,28]. One early example relates to potential
transmission of cholera from Nepalese soldiers serving as Uni-
ted Nations peacekeepers following an earthquake in Haiti in
2010. Sequencing of isolates from Nepal and a global collection
revealed a cluster of isolates from Nepal that were highly
genetically related to those from Haiti [29,30].

Another investigation receiving public attention was a
meticillin-resistant S. aureus (MRSA) outbreak in Cambridge,
UK, associated with a special care baby unit [31]. The study was
one of the first using rapid benchtop sequencing as an infection
control tool, along with other similar studies [32]. A cluster of
26 related cases of MRSA carriage were identified, including
spanning a 64-day period following a deep clean during which
no admitted patients were colonized. A healthcare worker was
shown to be colonized during the intervening period, and
detailed sequencing of multiple MRSA colonies from the
healthcare worker revealed that their colonization was the
likely source of the reintroduction of MRSA back into the unit.

Sequencing also yields historical insights

Sequencing can be used to reconstruct the past history, or
phylogenetic ancestry, of a group of pathogens. This allows
sequencing of recently obtained samples to yield insights into
much earlier events. When combined with geographic or host
species data, sampling times and rates of evolution, this can be
used to reconstruct when specific lineages emerged and how
they have spread between places or species. For example, this
approach has been used to reconstruct the emergence of
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fluoroquinolone resistance twice in C. difficile ribotype 027
and its subsequent spread from North America to Europe
[33]. Recently, similar approaches have been used to show that
MRSA appeared in the pre-antibiotic era in European hedge-
hogs, with B-lactams produced by the hedgehog dermatophyte
Trichophyton erinacei providing a selective environment for
resistance to emerge [34].

Sequencing as a diagnostic tool

Whole-genome sequencing can also be used as a diagnostic
tool. It has replaced culture as the first-line antimicrobial
susceptibility test in England for Mycobacterium tubuculosis
[35,36]. Resistance prediction for other pathogens, e.g.
Enterobacterales or Neisseria gonorrhoeae, is possible, but
error rates are not yet consistently low enough to meet regu-
latory standards across commonly used antibiotics [37,38].
Sequencing also has an increasing role in reference laboratories
for confirming resistance mechanisms, e.g. as in the most
resistant case of N. gonorrhoeae infection described to date
[39]. Sequencing may also be useful to identify virulence
mechanisms; genome-wide association studies can be used to
search for genetic correlates of virulent phenotypes — for
example, in S. aureus, Panton—Valentine leucocidin has been
shown to be a key determinant of pyomyositis using this
approach [40].

Clinical metagenomic sequencing can be used to identify
the causative organism in an infection directly from a clinical
sample without the need for culture. As such it potentially
provides a rapid, culture-independent diagnostic and with
some methods it may also identify any antimicrobial resistance
determinates present. However, it remains largely at the
proof-of-concept stage with sensitivity versus culture in com-
mon sample types (blood, cerebrospinal fluid, orthopaedic
infections) ranging from 75% to 90% and specificity between
67% and 96% [41]. However, it may detect additional plausible
pathogens, both where prior antibiotic exposure has made
cultures negative or fastidious organisms including anaerobes.
Clinical metagenomics may also be useful where routine diag-
nostic workflows fail to reach a diagnosis, e.g. in central
nervous system infection [42].

SARS-CoV-2 sequencing and hospital infection control

The COVID-19 pandemic has seen pathogen sequencing
conducted on an industrial scale, e.g. through the UK’s COVID-
19 Genomics Consortium. Sequencing-defined entities such as
the alpha, delta and omicron variants have become part of
routine public language. The COVID-19 pandemic has also
necessitated protection of healthcare workers being a major
focus for infection prevention and control teams to a much
greater extent than previously, with healthcare workers at
increased risk of infection [43]. Sequencing and epidemio-
logical studies have identified healthcare workers as sources
for healthcare-associated transmission, but with most patient
infections attributable to transmission from other patients,
and patients with hospital-onset infection in particular [44,45].
There is also variation in the extent of onward transmission,
with relatively few highly infectious individuals being the
source for many infections [45,46], but also instances where
apparent ongoing outbreaks are the result of multiple intro-
ductions of SARS-CoV-2 into a hospital. In addition to detecting

new variants associated with increased transmissibility, viru-
lence, or immune escape, sequencing may also be used in
future for surveillance for resistance to SARS-CoV-2 ther-
apeutics and for targeting these treatments for individual
patients.

Future directions

More accessible sequencing and democratization of
access

To date, high-quality sequencing studies have required
specialist laboratory expertise and relatively complex bio-
informatic workflows. In addition, interpreting sequencing
results requires appropriate context including the reproduci-
bility of sequencing and its intrinsic error rates, and the dis-
tribution and pattern of genetic differences associated with
recent transmission. In some cases, this can be identified
directly, e.g. in relatively small outbreaks with clearly defined
transmission events, but in many cases with endemic or wide-
spread epidemic disease there are multiple plausible sources
for each infection. In these settings genetic distances asso-
ciated with transmission must be inferred from the extent of
within-host diversity and rates of evolution, alongside an
understanding of the background genetic diversity within the
wider community [1,47]. These metrics vary across different
pathogens.

Several developments promise to make sequencing more
accessible and available as a tool to a much wider group of
users. First, the knowledge base to interpret genetic distances
is increasingly mature for the major pathogens. How to define
it is also well understood for an emerging novel pathogen,
albeit requiring the necessary data, samples, and analysis.
Laboratory sequencing workflows are increasingly routine, and
improved capacity in molecular diagnostics as a result of the
COVID pandemic is likely to increase access to sequencing in
hospital laboratories. Processing the resulting data will become
simpler via availability of sequence data processing services
from commercial, academic and public health providers. Ide-
ally, these services will process data in automatic workflows, to
predefined and regulated standards, and generate stand-
ardized and exchangeable outputs and reports.

For several pathogens, hundreds of thousands or even mil-
lions of sequenced genomes now exist. This raises major
challenges when it comes to comparing each new genome with
what is already sequenced. Strategies for rapidly comparing
genomes and identifying closely related genomes are needed
and are in development, to replace existing tools [48,49]. Once
the closest ‘neighbours’ of a new infection are identified,
existing methods can be used to reconstruct relationships with
other closely related infections and likely transmission events
identified. For such a system to work well, sharing of sufficient
data across institutions, regions and countries will be required,
in a way that also respects data sovereignty.

Smarter sampling and refined insights from sequencing

Whereas the C. difficile and S. aureus sequencing studies
described above were able to show that sampled patients are
not the source for many infections, quantifying the extent of
transmission from other sources will require carefully designed
studies that undertake longitudinal sampling of humans, hos-
pital and community environments, and likely animals as well.
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There is also a need to better understand the directionality
of transmission to generate actionable information on sources
of transmission. Sequencing can identify closely related or
indistinguishable infections, but it may not be clear who
infected whom. This is partly a limitation of the relative rates
of transmission and evolution. Often multiple transmission
events can occur between each observed mutation event,
resulting in several individuals with genetically indistinguish-
able infections. Addressing this, linkage to epidemiological
data — e.g. sampling times, contact events, or contact net-
works — may allow joint reconstruction of transmission chains,
ideally within a probabilistic framework so the degree of cer-
tainty about who infected whom can be captured too.
Improvements in sequencing technology may also help, as
current ‘whole-genome’ sequencing may only reconstruct
80—95% of the genome due to divergence of samples from
reference genomes and the inability of short-read sequencing
platforms to resolve repetitive regions of the genome. Another
approach, possible with current technology but more resource
intensive, is to sequence multiple bacterial colonies from each
infected or colonized individual. Where sufficient within-host
diversity exists, this allows higher-resolution reconstruction
of transmission [50].

Even with better sampling and these approaches, it may not
be possible to exhaustively sample and sequence all possible
sources of infection. Here ecological approaches that model
rates of transmission between particular host types (e.g.
infected patients, healthcare workers, domestic pets, etc.),
reservoirs, or niches based on a representative sample of all
possible infections/colonizations may be needed. There are also
further challenges involved in developing methods to model the
transmission of Gram-negative pathogens where transmission of
a specific gene, mobile genetic element, or plasmid between
host bacteria adds additional complexity [51].

Sequencing as a real-time tool for infection prevention
and control

In addition to the epidemiological insights discussed,
sequencing has been proposed as a real-time tool for infection
control. This is possible where the necessary genomic context
is well understood, such that the species-specific genomic
distances between sequences that are compatible with trans-
mission have been robustly defined, as discussed above.

Potentially real-time sequencing has advantages: trans-
mission events and pathways supported by sequencing can be
targeted for infection prevention and control efforts, and time
is saved by not focusing on instances where transmission is
excluded based on sequencing.

However, evidence is limited that implementation of
sequencing improves outcomes, e.g. reduces healthcare-
associated infection, and is cost-effective [52,53]. In part this
is because the range of possible interventions triggered by
sequencing — that would not otherwise be implemented as part
of routine infection prevention and control efforts following
identification of a case — is not well defined. Randomized trials
to assess the impact of sequencing should be considered, which
could include a pre-determined suite of additional measures
that might follow a sequencing-confirmed transmission.

Sequencing for benchmarking and surveillance
Whereas the incidence of healthcare-associated infections
can be monitored, sequencing can be used to also assess the

proportion of infections that were likely acquired in hospital.
Proof of concept for this has been shown for C. difficile where
routine sequencing of all cases during a year at six English hos-
pitals showed differing incidence and rates of transmission [54].

Sequencing also has a role in population-level surveillance
where it may be used to identify emerging lineages, e.g. with
enhanced virulence or antimicrobial resistance. Prospective
sequencing may also help to detect clusters of infection more
rapidly than traditional outbreak detection algorithms at an
institutional level, as exclusion of transmission by sequencing
can reduce background noise.

Ensuring consent and understanding of sequencing

Most pathogen sequencing is performed without explicit
consent. This may be because it is done retrospectively, on an
opt-out basis, as part of service planning and delivery or epi-
demiological research. In this context, the findings from
sequencing are unlikely to relate back to a specific individual,
although care is needed to prevent inadvertent disclosure of
identities if de-identified data are made public.

However, where sequencing is performed to reconstruct
individual transmission events, then it may be possible that
individual patients, healthcare workers, or members of the
public become aware or suspect that they are a source for
someone else’s infection. This may have implications for their
wellbeing and for healthcare workers may also have occupa-
tional health implications. Similarly, it may also be possible
that individuals become aware of who may have infected them.

Ongoing ethical research and open patient, public and
healthcare worker engagement is needed to ensure that the
benefits of sequencing remain well supported and that people
are protected from avoidable harms. Training of healthcare
professionals to understand, interpret and communicate
sequencing results will also be needed.

Conclusion

Pathogen whole-genome sequencing has provided a
remarkable new lens through which to understand the epi-
demiology of healthcare-associated infection. Insights gained
have improved our understanding and ability to better control
and prevent these infections. Whether real-time pathogen
sequencing becomes routine for all healthcare-associated
infections depends on better demonstrating its benefits, and
this will likely become clearer over the next few years.
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