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Heterogeneity and effectiveness 
analysis of COVID‑19 prevention 
and control in major cities in China 
through time‑varying reproduction 
number estimation
Qing Cheng1,2*, Zeyi Liu1,2, Guangquan Cheng1,2 & Jincai Huang1,2

Beginning on December 31, 2019, the large-scale novel coronavirus disease 2019 (COVID-19) emerged 
in China. Tracking and analysing the heterogeneity and effectiveness of cities’ prevention and control 
of the COVID-19 epidemic is essential to design and adjust epidemic prevention and control measures. 
The number of newly confirmed cases in 25 of China’s most-affected cities for the COVID-19 epidemic 
from January 11 to February 10 was collected. The heterogeneity and effectiveness of these 25 cities’ 
prevention and control measures for COVID-19 were analysed by using an estimated time-varying 
reproduction number method and a serial correlation method. The results showed that the effective 
reproduction number (R) in 25 cities showed a downward trend overall, but there was a significant 
difference in the R change trends among cities, indicating that there was heterogeneity in the spread 
and control of COVID-19 in cities. Moreover, the COVID-19 control in 21 of 25 cities was effective, and 
the risk of infection decreased because their R had dropped below 1 by February 10, 2020. In contrast, 
the cities of Wuhan, Tianmen, Ezhou and Enshi still had difficulty effectively controlling the COVID-19 
epidemic in a short period of time because their R was greater than 1.

On December 31, 2019, the Chinese city of Wuhan reported a confirmed case of the novel coronavirus disease 
2019 (COVID-19), and other cities in China also confirmed cases of COVID-19. Consequently, COVID-19 has 
been spreading to other countries through worldwide air transportation, such as the United States, Spain, Italy, 
the United Kingdom, Japan, and Thailand1, which triggered the global outbreak of COVID-19, similar to those 
of SARS and Ebola2. Because of this worldwide and rapid spread, the World Health Organization (WHO) listed 
the COVID-19 epidemic as a Public Health Emergency of International Concern (PHEIC) on January 31, 20203. 
The highly contagious COVID-19 has led to large numbers of infections, health care system overload, and lock-
downs in many countries, such as India, Italy and the United Kingdom4–6. China was the worst country in the 
early COVID-19 outbreak, and most Chinese provinces initiated first-level public health emergency responses to 
the COVID-19 outbreak. For example, Guangdong, Hunan, and Zhejiang provinces initiated a first-level public 
health emergency response on January 23, 2020, and Hubei, Tianjin, Beijing, Shanghai, Chongqing, Jiangxi, 
Sichuan, Yunnan, and other provinces also launched first-level public health emergency responses on January 
24. In particular, on January 19, 2020, Wuhan, where the COVID-19 epidemic was most severe, implemented 
strict government policies, including social distancing, extensive testing, and quarantining of confirmed infected 
subjects to minimize virus transmission via human-to-human contact, and these measures were adopted in 
other cities7. The effectiveness of government policies in slowing the spread of COVID-19 has been discussed 
by some scholars8, and how to measure the effectiveness of the control of the COVID-19 epidemic in each city 
is the focus of this article.

The effective reproduction number (R) is the expected number of secondary cases generated by an infec-
tious case once an epidemic is underway. R is able to measure the effectiveness of control of the COVID-
19 epidemic9. There is much research on estimating the R of early COVID-19 propagation10–12; for example, 
the key epidemiologic time-delay distributions and the basic reproduction number were estimated to predict 
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trends of the COVID-19 epidemic in mainland China and provide a theoretical basis for current prevention 
and control11–13. However, the estimated R of the COVID-19 epidemic in these studies is a static value, but R 
changes dynamically with the prevention and control of the COVID-19 epidemic. Therefore, a time-varying 
estimate of the effective reproductive number can better quantify the temporal dynamics of the disease14, such 
as the time-dependent reproduction number, which was employed to quantify the temporal dynamics of the 
disease in African counties and the USA15,16. Moreover, previous research focused on the R estimation of the 
overall transmission of COVID-19, but the epidemic trends in different cities vary considerably due to different 
policy-making and resource mobilization. This paper aims to answer the following questions. How effective were 
the control measures taken by cities in China in controlling the COVID-19 epidemic? When will COVID-19 
prevention and control measures begin to play an important role in different cities? Is the effectiveness of control 
of the COVID-19 epidemic the same across cities? A total of 37,726 people were confirmed with COVID-19 
in China by February 10, while the confirmed cases in 25 of the worst-hit cities accounted for 92% of the total 
number. Therefore, based on the number of confirmed cases in the 25 worst-hit cities from January 11, 2020 
to February 10, 2020, a dynamic estimation method of R17 was used to estimate the R changes in 25 cities to 
assess the degree of control of the COVID-19 epidemic, and a serial correlation method18 was used to analyse 
the differences in the control effect of the COVID-19 epidemic among cities. Additionally, critical time points 
for COVID-19 outbreak control in various cities were found by analysing the starting time of R < 1. This study 
helps to address the effects of COVID-19 control measures in different cities and the differences between cities. 
It is conducive to improving epidemic prevention measures and providing a reference for epidemic control and 
prediction of inflection control points19. It also provides guidance for the government to adjust prevention and 
control measures for the COVID-19 epidemic.

Results
By February 10, 2020, the number of confirmed cases in 25 cities (34,737) accounted for 92% of the total number 
of confirmed cases in China (37,726). The locations of the 25 cities and the number of confirmed COVID-19 cases 
are shown in Fig. 1. Most of the worst-hit cities are located in Hubei Province. The worst city was Wuhan (18,455 
confirmed cases by February 10), and other cities with cumulative confirmed cases exceeding 1000 included 
Xiaogan (2620), Huanggang (2284), Suizhou (1095), Xiangyang (1089) and Jingzhou (1075). This distribution is 
because the source of the outbreak in Wuhan quickly spread to the surrounding cities. Large cities outside Hubei 
Province with close transport links to Wuhan could also become outbreak epicentres1, such as Wenzhou (474), 
Chongqing (476), Shenzhen (357), Beijing (345), Guangzhou (317), Xinyang (227), Shanghai (302), Changsha 
(219), Nanchang (196) and Hangzhou (169).

Figure 1.   A geographic information map of the cumulative number of confirmed COVID-19 cases as of 
February 10, 2020 in the 25 worst-hit Chinese cities (the map was created using dituhui.com (www.dituh​
ui.com), and the right panel was created using Excel 2017).

http://www.dituhui.com
http://www.dituhui.com
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The R value of the 25 cities was estimated per day by using the time-varying reproduction number estima-
tion method (shown in Fig. 2). All cities’ R values obviously showed an downward trend overall, but there were 
differences in the R change trends among cities. For example, the R values of Huanggang, Suizhou, Xiangyang, 
Jinzhou, Huangshi, and other cities declined steadily, while those of Ezhou, Enshi, and Tianmen started to rise 
after a period of decline. To analyse the heterogeneity of the downward trend in R values among cities, a serial 
correlation method18 was used to calculate the correlation of the R time series among cities.

The correlation coefficient of the R time series among cities is shown in Figs. 3, and 4 shows the p values for 
testing the hypothesis of no correlation. From the black box in Fig. 4, it can be seen that except for Ezhou, Tian-
men, Xiaogan, and Wuhan, the correlation of the R time series among the other cities was significant. This result 
shows that although these cities are located in different places, the effectiveness of their COVID-19 control was 
similar. In addition, after a period of decline, the R values of Ezhou, Tianmen, and Xiaogan slowly increased.

Although most cities had strong correlations in R change tends, their R values were different. The relation-
ship between the R value of each city on February 10, 2020 (denoted as Rt) and the average decline in R in the 
last 5 days (denoted as ΔR) was used to find some patterns, and the result is shown in Fig. 5 (circle size measures 
the total number of infected cases). In addition, Rt = 1 and ΔR = 0 were used to divide Fig. 5. The Rt value of the 
city in the lower right quadrant of Fig. 5 was lower than 1 on February 10, and ΔR > 0 indicated that COVID-19 
was effectively controlled in these cities, such as Xiantao, Yichang, Xinyang, Xiangyang, Jingmen, Huangshi, 
Nanchang, Chongqing, Shiyan, Huanggang, Xiaogan, Shenzhen, and Guangzhou. It is worth noting that all these 
cities are outside Hubei. For the cities in the upper left quadrant of Fig. 5, not only the Rt value is greater than 1 
but also ΔR > 0, such as Tianmen (Rt = 2.17, 95% CI 1.73–2.67, ΔR = − 0.20), Ezhou (Rt = 1.85, 95% CI 1.62–2.10, 
ΔR = − 0.11), and Enshi (Rt = 1.22, 95% CI 0.88–1.62, ΔR = − 0.04). This result showed that these cities not only 
had a serious COVID-19 epidemic but also had a tendency to continue to deteriorate. As shown in the upper right 
corner of Fig. 5, Wuhan (Rt = 1.50, 95% CI 1.46–1.54, ΔR = 0.52) had a large R value on February 10, although 
it was consistent with the R trend of most cities. Thus, Wuhan had not yet stabilized control of the COVID-19 
epidemic, but the outlook was optimistic, as ΔR > 0.

When R drops to 1, the control measures have effectively controlled the epidemic23. The starting time of 
R < 1 was considered the “turning point” for COVID-19 control in our study. It is obvious from Fig. 6 that the 
starting time of R < 1 was not the same in the various cities. The time at which each city initiated a first-level 
public health emergency response, how long it took to keep R below 1 and when R continued to decline are 
shown in Fig. 6. Except for Wuhan, Ezhou, Suizhou, and Tianmen, the cities needed an average of 14.9 days 
(95% CI 14.4–15.5 days) from the first-level public health emergency response initiated to achieve R < 1 without 

Figure 2.   Epidemic curves and R change trends of the 25 worst-hit cities in China for COVID-19.
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a significant increase. Thus, the “turning point” of COVID-19 control in most cities is thought to have occurred 
around February 7.

Discussion
Calculation and tracking of the R value can effectively monitor the COVID-19 epidemic and judge the effect of 
the current prevention and control measures. To better implement or modify the COVID-19 prevention and 
control measures, it is necessary to consider the instantaneous change in R, especially to find a downward trend 
in the R time series. It is possible to analyse the spatial heterogeneity of COVID-19 transmission by estimating 
the differences in the change in R among cities. In this paper, 25 of China’s worst-hit cities for the COVID-19 
epidemic were selected for R tracking and calculation.

All cities’ R values showed a downward trend overall (Fig. 2), which suggests that the prevention and control 
measures in these cities played an effective role. However, there was a difference in the R change trend among 
cities, indicating heterogeneity in the spread and control of COVID-19 in the various cities. Moreover, a major 

Figure 3.   The correlation coefficient of the R time series among cities.

Figure 4.   The p value of the correlation coefficient of the R time series among cities (if p < 0.05, the correlation 
is significant).
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Figure 5.   The relationship between the R value on February 10, 2020 (Rt) and the average decline in R in the 
past five days (ΔR), where the size of the circle represents the number of confirmed cases in each city.

Figure 6.   The time at which each city initiated a first-level public health emergency response and the start time 
for R < 1.
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pattern in the R change trend of these cities was found through correlation analysis. Enshi, Yichang, Jingmen, 
Wenzhou, Xinyang, Xiantao, Huanggang, Suizhou, Xiangyang, Jingzhou, Huangshi, Xianning, Shiyan, Chong-
qing, Shenzhen, Beijing, Guangzhou, Shanghai, Changsha, Nanchang, and Hangzhou displayed to this pattern, 
and their R change trends were very similar. We further analysed the R value of these cities on February 10, 2020 
and the average decline in R in the past 5 days. The R of these cities (except Enshi) dropped below 1, and ΔR was 
greater than 0 (the lower right quadrant in Fig. 5), indicating that these cities’ prevention and control measures 
were effective and that the risk of infection was decreasing. However, the R values of Ezhou, Tianmen, and 
Enshi were still greater than 1 on February 10, 2020, and the 5-day average decline in R was less than 0. It can be 
considered that these cities still had difficulty effectively controlling the high risk of COVID-19 in a short period 
of time, and their R fell for some time and then increased again. The government must continue to strengthen 
epidemic prevention measures and cannot ease interventions in these cities. It is also worth noting that Wuhan’s 
R was greater than 1, but it was more optimistic that its 5-day average decline was larger.

We compared the time when each city started the first-level public health emergency response and the 
time when R started to be less than 1. We found that except for in Wuhan, Ezhou, Enshi and Xiaogan, it took 
approximately two weeks for other cities from start the first-level public health emergency response to effective 
control of the COVID-19 epidemic. In other words, the “turning point” of COVID-19 control in these cities 
was considered to occur around February 7, which indicated that the strong measures taken by these cities were 
effective in containing the epidemic7.

The time-varying reproduction number estimation method used in this paper can estimate the real-time 
trends of the effective reproduction number with joint effects of the random process of personnel mobility and 
imported cases taken into consideration21. However, the local government in Wuhan issued a notice that all 
within-city and cross-border public transportation was suspended as of January 23, 2020. Since then, the other 
12 cities in Hubei Province also implemented similar public traffic control measures, and the interprovincial 
flow of people was greatly reduced (https​://qianx​i.baidu​.com). The earliest estimate of R was from on January 
30, 2020 in the 25 cities in this paper (the start time for R calculation in our model had to fulfil three criteria 
that will be discussed in detail below). The flow of people between cities was actually very low and had little 
effect on the reproduction numbers22 from January 30, 2020 to February 10, 2020. Therefore, we assumed that 
the estimation of R did not consider the effect of imported cases. However, it is worth noting that some cities 
still had imported cases after January 30 because the incubation period of COVID-19 is approximately 14 days 
or longer23. Therefore, the imported cases truly affected the R even after January 30, the estimate of R in our 
method may be biased24. However, because publicly reported data in most cities did not differentiate local cases 
and imported cases, it is not easy to estimate R by imported cases, so more detailed local and imported case data 
will be needed to estimate R more accurately.

On the other hand, the start time for R calculation in our model had to fulfil three criteria17. (1) R must be 
calculated after a time window (time window denoted as τ and set at 3 in this paper). (2) At least 11 cases must 
have been observed since the beginning of the epidemic (the time denoted as tc) because the minimum number 
of cases in the time window must satisfy 

∑

t

s=t−τ+1 Is ≥
1

CV2 − a(a = 1, CV = 0.3 in this paper). (3) The estimation 
of R depends on the probability distribution of the serial interval, that is, it is difficult to observe the complete 
data to estimate R in a serial interval; thus, an accurate estimation of R must be performed after a serial interval 
(the average serial interval in this article was 7.5). Therefore, we took the maximum of τ , tc and the serial interval 
as the starting time of the R calculation. Moreover, a smaller time window τ will result in faster detection of 
COVID-19 transmission changes, and a larger τ will result in a smoother estimation. To test the sensitivity of the 
time window for R estimation, we selected τ = 2, 3, 4, 5, 6, and 7 and analysed the R estimation in each city. The 
result is shown in Fig. 7. It can be seen that the R values are slightly different based on different time windows; 
thus, the selection of different time windows may have an impact on the time when R is first less than 1. However, 
the changing trend of R will not change, so it will not affect the results of our analysis of the effect of COVID-19 
prevention and control in the various cities. To enable faster detection of COVID-19 transmission changes, the 
minimum reasonable time window ( τ= 3 ) was chosen in the studies.

Identifying and tracking changes in R is a way to effectively handle the changes in the epidemic situation 
in various cities and assist in the guidance of epidemic prevention and control. However, this does not mean 
that the future R trend of each city will change according to the current development trend. For example, some 
imported cases from Wuhan may not show symptoms of infection but may be in an incubation period, but they 
may conceal their contact history and fail to effectively isolate, which may make prevention and control measures 
invalid and infect more people because it has been proven that COVID-19 can also be transmitted during the 
incubation period25. Therefore, it is necessary to continuously track the number of infections per day and imple-
ment an update to calculate the R value. Currently, no city in China can relax epidemic prevention and control 
measures to end the current epidemic, as imported cases from overseas pose a high risk of a second outbreak7.

Methods and assumptions
Data collection.  The data that support the findings of this study are available from the National Health 
Commission (http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml​) and the Municipal Health Commission of the 
provinces of the People’s Republic of China (see Table S1 in Supplementary Information). The data obtained are 
publicly available data. After merging COVID-19 data with city-level data by day, the study sample consisted of 
34,737 confirmed COVID-19 cases in 25 cities (Beijing, Shanghai, Hangzhou, Wenzhou, Nanchang, Xinyang, 
Wuhan, Huangshi, Shiyan, Yichang, Xiangyang, Ezhou, Jingmen, Tianmen, Xiaogan, Jingzhou, Huanggang, 
Xianning, Suizhou, Xiantao, Enshi, Changsha, Guangzhou, Shenzhen, and Chongqing) from January 11, 2020 
to February 10, 2020. Cities with a relatively low diagnosis rate were excluded from this analysis. The sample data 
are described in Table S2.

https://qianxi.baidu.com
http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
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Time‑varying reproduction number estimation method.  We modelled COVID-19 transmission 
with a Poisson process by assuming the distribution of infectiousness through time after infection is independ-
ent of calendar time17, so the rate at which someone infected in time step t-s generates new infections in time 
step t is equal to Rtws, where Rt is the instantaneous reproduction number at time t, and ws is a probability dis-
tribution describing the average infectiousness profile after infection. The number infected at time t is a Poisson 
distribution, with Rt

∑

t

s=1 It−sws as the mean, It-s is the incidences at time step t-τ s, and the likelihood of the 
incidence is It given the reproduction number Rt, which is conditional on the previous incidences I0,…,It-1, is17

where �t =
∑

t

s=1 It−sws.
If the COVID-19 transmission rate is a constant within the time window [t- + 1, t], which is measured by the 

reproduction number, it is denoted as Rt,τ . The likelihood of the incidence during this time period, It−τ+1, ..., It 
given the reproduction number Rt,τ , which is conditional on the previous incidences I0, ..., It−τ , is

A Bayesian method using a gamma distribution with parameters (a, b) is used to represent Rt,τ , and the 
posterior distribution Rt,τ is expressed as

Therefore, the Rt,τ posterior distribution is a gamma distribution with ( a+
∑

t

s=t−τ+1 Is,
1

1
b
+
∑

t

s=t−τ+1 �s

 ) as 
a parameter. In this paper, we used a gamma prior distribution with parameters a = 1 and b = 5 to estimate Rt,τ . 
The method was implemented by using the R package “EpiEstim” (http://cran.r-proje​ct.org/web/packa​ges/EpiEs​
tim/index​.html).

(1)P(It |I0, ..., It−1,w,Rt) =
(Rt�t)

It e
−Rt�t

It !

(2)P(It−τ+1, ..., It |I0, ..., It−τ ,w,Rt,τ ) =
t
∏

s=t−τ+1

(Rt,τ�s)
Is e−Rt,τ�s

Is!
.

(3)

P(It−τ+1, ..., It ,Rt,τ |I0, ..., It−τ ,w) = P(It−τ+1, ..., It ,Rt,τ |I0, ..., It−τ ,w,Rt,τ )P(Rt,τ )

= R
a+

∑

t

s=t−τ+1 Is−1

t,τ e
−Rt,τ

(

∑

t

s=t−τ+1 �s+ 1
b

) t
∏

s=t−τ+1

�s

Is!
1

Ŵ(a)ba

.

Figure 7.   R estimation for 25 cities based on different time windows ( τ = 2, 3, 4, 5, 6, or 7).

http://cran.r-project.org/web/packages/EpiEstim/index.html
http://cran.r-project.org/web/packages/EpiEstim/index.html
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We used the number of confirmed cases per day as the incidence. Therefore, the unknown parameters in the 
above formula are the time window τ and ws. The estimated value of Rt depends on the choice of the size of the 
time window τ(assumed τ = 3 in this paper). According to formula (3), the posterior variation coefficient Rt,τ is 
1/

√

a+
∑

t

s=t−τ+1 Is  . Assuming that the posterior coefficient of variation must be less than a threshold CV, the 
minimum number of cases in the time window must satisfy 

∑

t

s=t−τ+1 Is ≥
1

CV2 − a . The infectivity profile ws 
can be approximated by the distribution of the serial intervals, and we assumed that the serial interval distribu-
tion had a mean (± SD) of 7.5 ± 3.4 days (95% CI 5.3–19 days) based on11. Actually17, showed that the estimates 
of R were poorly sensitive to the choice of the prior mean and variance of the serial interval.

In addition, a serial correlation method18 was used to calculate the correlation of the R time series among 
cities. Specifically, the change in the R estimation over time was considered to be a time series of R. Letting the 
time series of R of two cities be X and Y, respectively, then, the correlation coefficient of X and Y was

where C(X,Y) =
∑

n

i=1 (Xi−X)(Yi−Y)

n−1
 , and n was the length of the time series. In this paper, the latest time to start 

calculating for all cities’ R was February 10, 2020; thus, the time series of R from February 2 to February 10 was 
used to calculate the correlation, that is, n = 9 in this paper.

Data availability
We confirm that the data obtained is publicly available data, and the data is provided in the Supplementary 
Information file.
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