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Abstract

Single-cell sequencing is a biotechnology to sequence one layer of genomic information for individual cells in a tissue
sample. For example, single-cell DNA sequencing is to sequence the DNA from every single cell. Increasing in complexity,
single-cell multi-omics sequencing, or single-cell multimodal omics sequencing, is to profile in parallel multiple layers of
omics information from a single cell. In practice, single-cell multi-omics sequencing actually detects multiple traits such as
DNA, RNA, methylation information and/or protein profiles from the same cell for many individuals in a tissue sample.
Multi-omics sequencing has been widely applied to systematically unravel interplay mechanisms of key components and
pathways in cell. This survey overviews recent developments in single-cell multi-omics sequencing, and their applications
to understand complex diseases in particular the COVID-19 pandemic. We also summarize machine learning and
bioinformatics techniques used in the analysis of the intercorrelated multilayer heterogeneous data. We observed that
variational inference and graph-based learning are popular approaches, and Seurat V3 is a commonly used tool to transfer
the missing variables and labels. We also discussed two intensively studied issues relating to data consistency and diversity
and commented on currently cared issues surrounding the error correction of data pairs and data imputation methods. The
survey is concluded with some open questions and opportunities for this extraordinary field.

Key words: single-cell sequencing; single-cell multi-omics sequencing; COVID-19; integrative methods; variational
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Introduction

Single-cell sequencing was named the Method of the Year 2013
by Nature Methods to award its novel protocol to sequence a com-
plete layer of genomic information such as the DNA or the RNA
for individual cells from a tissue sample or a cell population [1].
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The first single-cell RNA sequencing (scRNA-seq) was invented
in 2009 [2]. Following that, the invention of microfluidics and
droplet-based methods have markedly improved the efficiency
and accuracy of scRNA-seq [3, 4]. The profiling of proteins at
the single-cell level is performed by mass cytometry, mass
spectrometry imaging or fluorescence-based imaging with
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high precision and throughput [5–7]. Developments in single-
cell epigenomics include single-cell bisulfite sequencing [8],
chromatin immunoprecipitation sequencing [9] and assay for
transposase-accessible chromatin sequencing (ATAC-seq) [10].
In general, single-cell sequencing has five different purposes:
single-cell genomics, single-cell transcriptomics, single-cell
epigenomics, single-cell proteomics and single-cell metabolomics.
These five essential components can be all coupled with their
unique spatial information within the same cell to uncover
more cellular information. In fact, DNA wraps around the
histone octamer in the eukaryotic cell nucleus, whereas RNA
and functional proteins exist in the cell cytoplasm; epigenetics
is composed of DNA modification, histone modification, DNA
accessibility and chromosome organization in the nucleus and
cytoplasm and metabolism consists of immediate feedback by
environmental stimulation.

Recent advances in single-cell sequencing have greatly deep-
ened our understanding of complex biological systems. Previ-
ously, poorly characterized cell populations and rare cell types
or tissues were challenging to comprehend because only the
average molecular profiles were acquired by the conventional
population-based sequencing strategy [11]. Phenotypically iden-
tical cells also posed challenges since they could exhibit dis-
crepancies during their lifespan corresponding to variations in
their molecular compositions [12]. Such challenges have now
been largely resolved through recent developments in single-cell
sequencing.

Why single-cell multi-omics sequencing?

Although single-cell sequencing methods have been well estab-
lished to provide unprecedented resolution to uncover the het-
erogeneity of cells [12], scRNA-seq or single-cell DNA sequenc-
ing alone does not provide sufficient information to elucidate
functional interplays of the cellular subpopulations [11]. At least,
single-cell epigenomics is needed to add information about epi-
genetic transitions, including transcription factor binding, tran-
scriptional response, active or repressive chromatin marks, DNA
methylation or chromosome organization, which may occur on
different time scales and indicate the past and future regulation
state of the cell [13].

Furthermore, the overall state of a cell comprises its potential
state and current functional state. The cell’s genotype, together
with epigenomics, determines its potential state, whereas the
cell’s proteins and metabolites are direct indicators of its current
state. The potential and current exact state of a cell therefore rely
on simultaneously extracting data from its genome, transcrip-
tome, epigenome, proteome and/or metabolome [14]. In addition,
DNA is transcribed to create RNAs, and then the coding RNAs are
translated to create proteins. These different molecular items
should have intensive communications with each other through
signals within the same cell. Single-cell multi-omics techniques
are therefore demanded to acquire these diverse molecular
layers of omics information to build a much more compre-
hensive molecular view of the cell than through each layer
individually [15]. This multi-omics approach can lead to truth-
closer discoveries of cellular interplays and functions in specific
cells. Attributed to this powerful full-coverage of the cellular
elements and interactions, single-cell multi-omics sequencing
was recently named the Method of the Year 2019 by Nature
Methods [16].

Distinction between single-cell multi-omics sequencing
and integrative multiple single-cell sequencing

Single-cell multi-omics sequencing is fundamentally different
from those approaches that integrate data from multiple single-
cell sequencing techniques. Consider that there are 100 cells
from different patient samples. Through single-cell multi-omics
sequencing, multiple types of omics data such as the tran-
scriptome and proteome can be generated simultaneously from
each of these 100 cells. In contrast, the integration of multiple
single-cell sequencing methods is to apply different single-cell
sequencing methods to different subsets of the cells to measure
distinct layers of omics information. As for the above example
of 100 cells, single-cell DNA sequencing may be applied to one
half of the cells, and scRNA-seq to the other half to acquire
integrated data for alternative splicing studies. However, these
data integration approach may cause severe problems because
the RNA profiles are not exactly mapped with the DNA data of
the same cell.

The integration of multiple single-cell sequencing datasets
is also prone to using different datasets across different single
cells in the same or similar tissue sample. For example, to define
the cell type in mouse frontal cortical neurons, the Linked Infer-
ence of Genomic Experimental Relationships (LIGER) method
integrated two single-cell datasets: gene expression data of 55
803 cells and DNA methylation data of 33 78 cells from the
same tissue [17]. Although the cells were from the same tissue,
they were not necessarily exposed to the same spatial locations
and might show different responses to the same stimuli. With
such an integration approach, it is impossible to infer a cell’s
multilayer responses to environmental stimuli or therapeutic
treatment accurately. Hence, the genotype and phenotype cor-
relations may only be accurately captured by single-cell multi-
omics sequencing.

In this review, we present the latest developments in
single-cell multi-omics sequencing and their application
trends. We describe advanced data analysis methods used for
processing single-cell multi-omics sequencing data, including
unsupervised learning methods (e.g. matrix factorization,
variational inference (VI), canonical correlation analysis and
clustering) and graph-based learning models. We also discuss
two intensively studied issues relating to data heterogeneity
in the preprocessing of single-cell multi-omics sequencing data
(consistency and diversity) and comment on two major currently
cared issues (correction of data pairs and data point imputation).
Moreover, we list open questions and suggest future perspectives
about integrating diverse modalities at the single-cell level. This
survey has a different focus comparing with three existing
reviews on single-cell multi-omics sequencing [18–20] that all
surveyed on critical technological details of the sequencing
techniques. Instead, our focus is placed on the application trends
particularly the up-to-date applications in the battle against
COVID-19 and on pertinent issues relating to data analysis. A
very recent survey [21] offered some interesting perspectives on
bulk and single-cell multi-omics techniques and commented
on their applications in precision medicine [21]. In contrast, our
survey provides details on the medical applications of single-cell
multi-omics sequencing as well as critical technical comments
on data analysis methods and data preprocessing issues. We
also provide fresh insights into open questions, challenges and
future prospects of this exciting technology.
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Table 1. Single-cell multi-omics techniques for genomic profiling together with their specific applications, conclusions and data sources

Method Data source Molecular layers Objective and outcome(s) Platform(s)

G&T-seq [22] Mouse data: Array
Express
(EERAD-381)
Human data:
EGA(EGAS000
01001204).

192 Genomic DNA and 192
full-length mRNA sequencing
in over 220 single cells from
mice and humans.

To dissect genetic variation
and its effects on gene
expression. Cellular
properties could not be
inferred from DNA or RNA
sequencing alone.

Illumina
HiSeq X

DR-Seq [23] GEO (GSE62952) DR-Seq on E14 of mouse
embryonic stem cell line and
sequencing the mRNA from
13 single cells together with
gDNA from 3 of these 13 cells.

To correlate DNA copy
number variation to
transcriptome variability
among individual cells.
Genes with high cell-to-cell
variability in transcript
numbers generally had lower
genomic copy numbers, and
vice versa.

Illumina
HiSeq 2500

DNTR-seq [24] GEO (GSE144296). DNTR-seq on 607 cells from
two pediatric acute
lymphoblastic leukemia (ALL)
cases, human colon
adenocarcinoma cell line
HCT116, and melanoma cell
line A375 using
Whole-genome sequencing,
transcriptomics at single-cell
resolution.

To address how genetic
alterations affect
transcription and identify
minor subclones within
leukemia patients.
Tumorigenic alterations had
a large impact on gene
expression, whereas natural
X/Y chromosome differences
were largely silent.

Illumina
NextSeq 500

Holo-Seq [25] CRA001133,
CRA001131

Small RNAs and mRNAs of 32
human hepatocellular
carcinoma single cells.

To overcome the hurdles that
currently limit scRNA-seq
methods. The RNA
metabolism kinetics of core
genes were different from
housekeeping genes.

Illumina
HiSeq 2500

Wang et al. [26] GSE 114071 Cosequencing of microRNAs
and mRNAs across 19 single
cells that were
phenotypically identical.

To study how miRNAs
modulate nongenetic
cell-to-cell variability
posttranscriptionally. The
predicted targets mRNAs
were significantly
anticorrelated with the
variation of abundantly
expressed microRNAs.

Illumina
HiSeq 2000

Developments in single-cell multi-omics
sequencing
This section presents recent progresses of single-cell multi-
omics sequencing and their applications over the last 5 years
for genomic expression profiling, spatial information profiling,
epigenomic profiling and protein profiling (Tables 1–4). We also
describe COVID-19 studies that are based on single-cell multi-
omics sequencing and comment on some limits of multi-omics
sequencing.

Technical progresses of single-cell multi-omics
sequencing and its applications

Genomic profiling by single-cell multi-omics sequencing

Table 1 lists recent methods of single-cell multi-omics sequenc-
ing for genomic profiling together with their specific appli-
cations. By one of these studies, Genome and Transcriptome
sequencing (G&T-seq) [22] and gDNA–mRNA sequencing (DR-
Seq) [23] have been used to couple genomic DNA with mRNA

information from the same cell to decipher the relationships
between genetic variation and transcriptome variability.
By another study, Direct Nuclear Tagmentation and RNA
sequencing (DNTR-seq) [27] has been proposed to perform
simultaneous whole-genome sequencing and transcriptomics
to reveal the association of genetic alternation and transcription.
Single-cell holo-transcriptome sequencing (Holo-Seq) [25]
and the techniques introduced by [26] were shown to be
useful for understanding miRNAs and mRNAs in a single cell
simultaneously.

Spatial information profiling by single-cell multi-omics sequencing

Genomic spatial information represents another heritable
dimension in single cells. Especially, tissue transcriptomes incor-
porating spatial information have opened up new opportunities
for generating a comprehensive map of complex tissues such
as the human brain. Such spatially resolved transcriptomics
sequencing methods were recently selected by Nature Methods
[40] as the Method of the Year 2020. Spatially resolved
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quantitative gene expression techniques and their applications
were specifically reviewed elsewhere [41], whereas Table 2
summarizes important applications of spatial information
of single-cell multi-omics sequencing. These imaging-based
single-cell genomics and transcriptomics methods can be
grouped into two broad categories: in situ sequencing and
multiplexed fluorescence in situ hybridization (FISH) [42].

In situ multiplexed FISH requires specialized knowledge and
equipments as well as the upfront selection of gene sets for mea-
surement [35]. Multiplexed error-robust FISH (MERFISH) [28] has
been used for imaging thousands of RNA species in single cells
by combinatorial FISH labeling coupled with encoding schemes
used for detecting and/or correcting errors. For example, Moffitt
et al. [29] has employed MERFISH and scRNA to detect gene
expression of one million cells in situ. However, overlapping sig-
nal dots or the transcript length of Single-molecule fluorescence
in situ hybridization (smFISH) pose challenges in targeting bio-
logically relevant marker genes to map some cell types. To infer
a cell type map in the mouse somatosensory cortex, a nonbar-
coded and unamplified cyclic-ouroboros smFISH method (osm-
FISH) was proposed, so that gene expression and cluster localiza-
tion can be visualized [30]. In addition, sequential fluorescence
in situ hybridization (seqFISH) has been proposed, which imparts
sequential barcoding for multiplexing different mRNAs. For each
round of hybridization, each transcript with a set of FISH probes
is labeled with a single type of fluorophore [31, 43, 44]. Based
on this, an evolution of seqFISH+ has been invented [32] using
sequential hybridizations and imaging with a standard confocal
microscope. A sequencing technique was then developed by
Baccin et al. [39], aiming to combine transcriptomics and spatial
position information at the single-cell level to identify resident
cell types in the mouse bone marrow and their localization.

On the other hand, for in situ sequencing, barcoded oligonu-
cleotides have been used to capture spatially encoded RNA
sequences. For example, fluorescent in situ RNA sequencing (FIS-
SEQ), an untargeted in situ sequencing approach without any pre-
selection, was utilized to capture all RNA species [33]. However,
this approach might lead to lower detection efficiency compared
with target expansion sequencing [42]. And a high-resolution in
situ RNA sequencing (Slide-seq) was utilized for transferring RNA
from tissue sections onto a surface covered in DNA-barcoded
beads with known positions [35]. Then, high-definition spatial
transcriptomics (HDST) was employed to capture RNA from tis-
sue sections on a dense, smaller spatially barcoded bead array
[36]. A spatial transcriptomics (ST) method has also been pro-
posed to visualize and quantify the transcriptomic expression
in individual tissue sections with spatial resolution [34]. Based
on this, Visium Spatial Technology was developed by the 10
Genomics company to provide higher resolution for achieving
more successful gene expression visualization platforms. Deter-
ministic barcoding in tissue for spatial omics sequencing (DBiT-
seq) was used to couple the mRNAs and spatial information with
proteins in a fixed tissue slide to uncover the spatial pattern
of cells in the mouse embryo and define fine features such
as brain microvascular networks [38]. Furthermore, spatially
resolved Transcript Amplicon Readout mapping (STARmap) [37]
has been used to combine mRNAs and 3D spatial information
from intact tissue to identify the association between structure
and function at the single-cell level.

Epigenomic profiling by single-cell multi-omics sequencing

The coupling of single-cell single-omics sequencing with epige-
nomic data can uncover the transition state of single cells as well

as cell fate decision into distinct lineages [53]. Table 3 presents
the current progress and applications of single-cell multi-omics
sequencing for epigenomic profiling. For example, single-cell
methylome and transcriptome sequencing (scM&T-seq) [46] can
allow scBS-seq and RNA-seq to be performed simultaneously in
the same single cell, which has the advantage of enabling intri-
cate investigations of gene methylation and transcription rela-
tionship within a specific cell. Single-cell chromatin accessibility
and transcriptome sequencing (scCAT) [51] has allowed simulta-
neous analysis on the accessible chromatin and gene expression
of a single cell to reveal the association of these two molecular
layers and their influence on cell fate. Single-cell combinatorial
indexing assay for transposase accessible chromatin (sci-ATAC-
seq) [50] has also been developed to combine the chromatin
accessibility and transcriptomics information simultaneously
to study cell clusters and regulatory networks in the mouse
hippocampus at single-cell resolution. In addition, droplet-based
single-nucleus chromatin accessibility and mRNA expression
sequencing (SNARE-seq) has been utilized to find the association
between a cell’s transcriptome and its accessible chromatin
for sequencing at scale [52]. Recently, the standard operation
research for single-cell Multiome ATAC + Gene Expression has
been developed by the 10 Genomics company to associate gene
expression with open chromatin from the same cell.

To detect the subpopulations of cancer cells, single-cell triple
omics sequencing (scTrio-seq) [48] has been developed to simul-
taneously profile genomic copy-number variations (CNVs), DNA
methylome and transcriptome. To further gain a finer resolution
about a single cell’s biological differences, simultaneous high-
throughput ATAC and RNA expression (SHARE-seq) [49] was
implemented for measuring in parallel chromatin accessibility
and gene expression within the same cell. The integration of
single-nucleus Droplet-based sequencing and single-cell trans-
posome hypersensitive site sequencing [54] has also shown the
possibilities to unravel regulatory elements and transcription
factors related to cell-type distinctions, enabling the study of
complex genetic programs in the brain as well as normal and
pathogenic cellular processes.

Furthermore, epigenomic regulation was found to be useful
for coupling with different components in the same cell to offer
new possibilities for studying cellular heterogeneity. For exam-
ple, single-cell chromatin overall omic-scale landscape sequenc-
ing (scCOOL-seq) [45] and single-cell nucleosome, methylation
and transcription sequencing (scNMT-seq) [47] have offered such
opportunities for understanding the epigenomic reprogramming
and dependency relationships among these different types of
omics.

Protein profiling by single-cell multi-omics sequencing

Proteins are critically important in the analysis of cell states [55].
Unbiased measurements of protein abundance levels play a key
role in understanding cellular response to the environment or
therapy and in modeling cellular dynamics [56]. The integration
of protein and transcription information even has the potential
to detect the dynamic change of RNA and protein abundance
in the same cell. This has been illustrated by fluorescence-
activated cell sorting and image-related approaches to mea-
sure RNAs and proteins in parallel [61, 62]. Table 4 presents
recent studies on single-cell multi-omics sequencing of protein
profiling. Examples of this technology also include proximity
extension assay (PEA) [55], RNA expression and protein sequenc-
ing (REAP-seq) [56] and cellular indexing of transcriptomes and
epitopes by sequencing (CITE-seq) [57]; all of which have been
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Table 4. Single-cell multi-omics sequencing for protein profiling together with their specific applications, results and data sources.

Method Data source Molecular layers Objective and outcome(s) Platform(s)

PEA [55] N/A Panel of up to 96 RNAs
and proteins for
individual cells from the
same population.

To interrogate cell state and find the
corresponding cell functions. For most gene
products, only a small portion of the
variation of protein levels could be explained
by measuring mRNA levels in single cells.

the Fluidigm
BioMark HD
System

REAP-seq [56] GSE100501 mRNA expression level
coupled with 82
antibodies among single
cells.

To identify drug response and describe the
unknown cell type.

Illumina HiSeq
2500 and 10X
Genomics

CITE-seq [57] GSE100866 Cellular proteins and
transcriptomes for
thousands of single
cells.

To combine highly multiplexed protein
marker detection with unbiased
transcriptome profiling for thousands of
single cells. Multimodal data analysis could
achieve a more detailed characterization of
cellular phenotypes than transcriptome
measurements alone.

Illumina HiSeq
2500

Morita et al. [58] GSE156934 DNA mutation and
cell-surface
immunophenotype at
the single-cell level in 26
AML patients.

To unravel clonal diversity and evolution
patterns of AML. Systematic investigation of
predictive and prognostic impact of clonal
diversity in AML was possible.

Illumina Human
Omni 2.5
BeadChip (hg19)
and Mission Bio
Tapestri
Analysis
Pipeline

DBiT-seq [38] GSE137986 mRNAs, proteins and
spatial information in a
formaldehyde-fixed
tissue slide.

To dissect the initiation of early
organogenesis at the whole embryo scale.
Deterministic barcoding in tissue enabled
NGS-based spatial multi-omics mapping.

Illumina HiSeq
4000 (Mus
musculus)

ASAP-seq [59] GSE156478 Chromatin accessibility
and protein levels in
single cells.

To decipher the underlying regulatory
mechanisms at their respective genomic loci.

NextSeq 550

Miles et al.[60] dbGAP
(phs002049.v1.p1)

Protein expression and
mutational information
in 17 samples from
patients with AML.

To find the correlation of somatic genotype
and clonal architecture with
immunophenotype. Multiple overlapping
immunophenotypic states occurred across
samples with divergent genotypes; no
community was exclusive to an individual
sample.

Illumina
NovaSeq and
Mission Bio
Tapestri
Insights

applied to simultaneously explore the transcript and protein
features of a cell, providing key information for identifying the
cell state and response to treatments. ATAC with select antigen
profiling by sequencing (ASAP-seq) [59] is another example capa-
ble of combining chromatin accessibility and protein profiling
to interpret regulatory mechanisms in immune cells. Further-
more, the sequencing techniques developed by Miles et al. [60]
can integrate mutational information and protein expression at
single-cell resolution to reveal the clonal diversity and evolution
patterns of specific diseases. Interestingly, reverse transcription
and the proximity ligation assay are able to couple with quan-
titative polymerase chain reaction (PCR) to study cell dynamics
and heterogeneity at single-cell resolution [63]. This method can
be extended to quantify any combination of DNA, RNAs (such as
mRNAs, microRNAs and noncoding RNAs) and proteins from the
same single cell.

Metabolomics profiling by single-cell multi-omics
sequencing: a brief highlight

Metabolomics constitutes another important molecular layer as
well, which is particularly relevant to phenotypic diversity of sin-
gle cells in response to environmental or chemical stimuli [14].

Mitochondria is a key component of cell metabolism, and muta-
tions of mitochondrial genes have been reported to link to clin-
ical phenotypes of the most common inherited metabolic disor-
ders [64]. Mitochondrial single-cell Assay for transposase acces-
sible chromatin with sequencing can be used to incorporate
mitochondrial DNA (mtDNA) mutations and accessible chro-
matin information to deduce mtDNA heteroplasmy, which is an
important factor for determining the severity of mitochondrial
diseases.

Examples of integrative multiple single-cell sequencing and their
distinction from single-cell multi-omics sequencing

Different to single-cell multi-omics approaches, the integration
of multiple single-cell sequencing data sets generally involves
merely merging multiple single-cell sequencing data sets from
similar cells or tissues to establish correlations between distinct
modalities [15, 65]. For instance, LIGER was developed such that
single-cell RNA and epigenome datasets collected within the
same tissue to reveal further information on cell types and the
relationship between transcription and epigenomic regulation
[17]. Stuart et al. [66] also conducted a study to integrate scATAC-
seq and scRNA-seq datasets from similar tissues to identify
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subpopulations of cells. In a more complex scenario, a trans-
fer learning method named scJoint was used to combine the
CITE-seq and ASAP-seq datasets from different tissues. It was
hoped that the joint profiling of gene expression and chro-
matin accessibility simultaneously with surface protein levels
could generate a more comprehensive understanding of cellular
phenotypes [67]. In addition, Clonealign [68] was used to infer
gene expression profiles to its clone of origin. However, this
tool has been used through single-cell RNA or DNA sequencing
independently instead of simultaneous DNA and RNA profiling
from the same cell.

As these different layers of genomic information are not from
the same cell, we suggest that the integration of these single-
cell sequencing datasets should be cautiously used for studies
in systems biology.

Applications of single-cell multi-omics sequencing in
the fight against COVID-19 and other diseases

Omics-based research into complex conditions including cancer
[69], drug resistance [70] and neurobiology [71] has been
intensively explored, ranging from the genome, transcriptome
and proteome to metabolome [72]. However, these approaches
can only reveal a modest level of the pathogenesis of complex
disease due to the focus on a single omics layer at a time. As
seen above, remarkable advances have been made in single-cell
multi-omics techniques that can refine our understanding of
complex diseases by gathering more than one modality at a time
in the same cell [73]. For example, PEA has been used to perform
parallel detection of RNA and protein traits for individual cells
to reflect cancer cell function and feedback in response to BMP-
4 treatment [55]. Morita et al. [58] integrated DNA mutation
and protein profiling simultaneously at the single-cell level
to study the clinical relevance and clonal diversity of acute
myeloid leukemia (AML) disease, whereas Miles et al. [60]
employed protein expression and mutational information at
single-cell resolution to infer the clonal evolution of myeloid
malignancies progression. Baccin et al. revealed the organization
of the bone marrow niche by integrating transcriptomics and
spatial information at single-cell resolution [39], whereas Lake
et al. [54] inferred pathogenic cell types for brain-related diseases
by integrating single-cell analysis of nuclear transcripts and DNA
accessibility.

Recently, extraordinary effort taking single-cell multi-
omics techniques has been dedicated to decipher the disease
mechanisms of COVID-19. For example, single-cell multi-omics
techniques have been used to investigate immune dysfunc-
tion in COVID-19 patients, particularly in peripheral blood
mononuclear cells (PBMCs). An investigation by Stephenson et
al. utilized full transcriptomes coupled with 188 cell surface
proteins to co-profile over 800,000 PBMCs from 130 patients
[74]. The researchers also utilized T and B lymphocyte antigen
receptor repertoires with COVID-19 across disease severities
ranging from asymptomatic to critical from three UK centers
to distinguish the host immune response corresponding to
SARS-CoV-2. Equipped with these multi-omics sequencing
datasets, the authors found that plasmablasts and B cells were
increased in severe and critical COVID-19 patients, whereas
their mucosal associated invariant T cells were reduced, leading
to the conclusion that the symptoms of critically ill COVID-19
patients fitted the main feature of prolonged infection course
for critical disease. In another study, scRNA-seq was applied to
PBMCs from 13 patients with COVID-19 ranging from moderate
to severe symptoms as well as cells from five healthy donors [75].

The incorporation of single-cell T cell receptor (TCR) and B cell
receptor (BCR) sequencing for each of the subjects in this study
was shown to be useful for gaining an in-depth understanding
of immune response and functional properties of immune cells
during disease progression following SARS-CoV-2 infection.
The authors also successfully assessed the immune responses
during disease progression and found that COVID-19 patients
had a strong interferon-α response for most cell types and an
overall acute inflammatory response. Furthermore, significant
expansion of highly cytotoxic effector T cell subsets was found to
be relevant in the recovery of moderate patients, whereas severe
patients faced the challenge of a deranged interferon response,
profound immune exhaustion with skewed TCR repertoire and
broad T cell expansion. In another comprehensive study, data on
immune response to SARS-CoV-2 were integrated to represent
all levels of disease severity [76]. It involved single-cell multi-
omics analysis of PBMCs, with coordinated profiling of the whole
transcriptome, 192 surface markers, TCR and BCR at single-
cell resolution from 16 healthy donors and 254 patients with
COVID-19 as well as the incorporation of metabolomics and
secretome from plasma, coupled with the patients’ clinical
information from electronic health records. The association
between the status and severity of COVID-19 infection revealed
that the immune response was coupled with major plasma
composition changes, and the clinical metrics of blood clotting
were consistent with the sharp transition between mild and
moderate disease.

Investigations on lung tissue and cells have been also an
urgent priority for COVID-19 research because respiratory failure
is the main reason for patient deaths [77]. From this respect,
single-nucleus ATAC-seq and matched single-nucleus RNA-
seq in nondiseased lungs from postnatal donors were used
to analyze the SARS-CoV-2 host entry genes ACE2, TMPRSS2,
CTSL, BSG and FURIN. This approach has also been used to infer
age-associated dynamics in gene expression and chromatin
accessibility as well as gene regulatory processes in human
lungs [78]. Findings suggested that the gene expression of
airway and alveolar epithelial cells played key roles in SARS-
CoV-2 entry among the barrier cell types exposed to inhaled
pathogens. Furthermore, simultaneous profiling of cell lineage
protein markers and gene expression in single cells were useful
for understanding asynchronization for innate and adaptive
immune interaction in progressive COVID-19 patients, and
effective for detecting type-1 interferon response across all
immune cells [79]. Data analysis indicated that in progressive
COVID-19 patients, the response of a dynamic type-1 interferon
for all cell types would be dropping along with a decreasing
viral load and that the clonal distribution of CD8 T cells and a
primary B cell response might be skewed due to existing memory
B cells.

On the side of single-cell sequencing (not multi-omics
sequencing) for COVID-19 research, scRNA-seq has been applied
to profile PBMCs from seven patients with COVID-19 and six
healthy controls to reveal the peripheral immune response to
severe COVID-19 infection and detect phenotype reconfiguration
for peripheral immune cells [80], and scRNA-seq datasets of
COVID-19 patients were used to establish a multilayer network
integrating intercellular and intracellular signaling subnetworks
[81]. Furthermore, the diverse changes in cellular responses and
gene expression following SARS-CoV-2 infection were studied
by analyzing the bulk transcriptome, bulk DNA methylome and
single-cell transcriptome of peripheral blood samples [82]. To
deduce the progression of SARS-CoV-2 infection within the body,
the bulk-to-cell method focusing on ACE2 areas was employed
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to integrate the genome, transcriptome, and proteome levels
in bulk tissues and single cells across species [83]. Although
some conclusions were made regarding COVID-19 treatments in
this study, using scRNA-seq alone might not generate as much
information or offer as much precision as single-cell multi-omics
sequencing data can.

Overall, the advances made by single-cell multi-omics
sequencing have given researchers an unprecedented capacity
to develop new therapeutic interventions, contributing to a
global coordinated effort to win the fight against the COVID-19
pandemic.

Limitations of multi-omics sequencing:
a brief discussion

Despite significant advances in the development of single-cell
multi-omics sequencing methods, many challenges remain that
are mainly associated with the limitations of individual omics
methods.

The time at which omics information should be recorded
shows discrepancies among different methods. While the
genome is approximately static, the change time of the
transcriptome and proteome is on the scale of minutes to hours,
whereas the reaction time of the metabolome corresponding to
environmental influences is in seconds or even milliseconds. In
addition, single-cell multi-omics sequencing currently cannot
offer significant detail in the identification of RNA isoforms and
alternatively spliced variants [14, 84, 85].

Another challenge is that different sequencing methods have
distinct throughput levels. Metabolomics and protein-based
methods have lower throughput than scRNA-seq, limiting the
throughput of multi-omics sequencing in the same cell [13].
To circumvent this problem, some methods have made full
use of the existing single-cell datasets to conduct a relatively
comprehensive analysis of cells. However, the poor quality
of some layers of molecular data from single cells increases
the burden of subsequent data analysis. Data problems such
as missing data and mismatched data pairs from initial
omics aggravate cumulatively when biological knowledge is
combined among different layers at the single-cell resolution.
This presents a primary obstacle for uncovering accurate and
detailed information from heterogeneous data. For example,
dropout means that a gene has been falsely identified as
‘unexpressed’ due to lacking detection of the corresponding
transcript during the reverse-transcription step [86]. Dropout
in gene expression issues is a common challenge encountered
by distinct single-cell sequencing methods, particularly single-
cell RNA droplet-based methods, leading to sparse expression
[18, 87]. scRNA-seq often suffers from allelic dropout for library
preparation, resulting in incorrect detection of monoallelic
expression value [86]. In single-cell genomics, the traditional
PCR and multiple displacement amplification methods utilized
for amplification face the challenge of allelic and locus dropouts
across the genome [18]. Furthermore, it is essential to note
that single-cell chromatin accessibility expression is more
sparse than single-cell RNA data. The expression of single-
cell chromatin accessibility is nearly binary and has numerous
dropouts [88]. For downstream analysis, abandon genes may
narrow down the research field on highly expressed genes [18].
Thus, single-cell multi-omics sequencing and the integration of
diverse modalities from single-cell datasets face the challenge
of data fusion. Data analysis techniques are therefore an
essential part of processing single-cell multi-omics sequencing
data.

Advanced machine learning
and bioinformatics approaches
for preprocessing of single-cell
multi-omics sequencing data
Parallel acquisition of several molecular layers of omics infor-
mation from the same cell by single-cell multi-omics sequencing
always results in a multitude of heterogeneous data with distinct
data formats, which include but are not limited to substantially
different numbers of variables, different distributions and scal-
ing, diverse data modalities such as continuous and discrete data
forms and ordered and unordered categorical data [94]. There is
a critical unmet need in data science to develop methods that
can excavate the shared and data-specific information in diverse
single-cell measurements. Furthermore, since the missing data
problem can escalate in single-cell multi-omics datasets, data
imputation methods need to be used to prepare the data before
analyzing. Another challenge arises from use of different molec-
ular layers information at the same time. After projecting from
one molecular layer to another, single-cell multi-omics sequenc-
ing techniques may face failures in data pair mapping, so that
the original projection needs to be corrected and adapted to the
heterogeneous data.

Figure 1 and Table 5 provide a summary of the advantages
and disadvantages of nine popular tools for analyzing single-
cell multi-omics data. Most of these methods can be adopted
for data preprocessing including data imputation, batch effect
removal and data integration. Some of them can be utilized for
downstream analysis such as clustering, marker identification,
cluster annotation, trajectory analysis and inferring pseudotime
and regulators. These downstream analysis issues are presented
in this section, whereas the data preprocessing issues are dis-
cussed in the next.

Matrix factorization analysis

Matrix factorization-based approaches are unsupervised machine
learning methods for simultaneous data integration and
dimensional reduction. They are achieved by mapping the
multidimensional data space of different dimensions and scales
into a lower dimensional subspace of unified dimension and
scale at the single-cell level.

Matrix decomposition has been adopted by Multi-Omics
Factor Analysis (MOFA) [89] to aggregate transcriptome and
epigenome profiling data among 61 mouse embryonic stem cells.
An important step of this method is to decompose different data
matrices Y1, ...YM into the common factor matrix Z, the specific
weight matrices Wm and the view-specific residual noise terms
εm, as shown in Equation (1):

Ym = ZWmT + εm m = 1, . . . , M (1)

where, M denotes the number of data matrices. Prior distribu-
tions are applied in all unobserved variables – the weights Wm

can be considered to be as a product of a normally distributed
random variable and a Bernoulli distributed random variable;
the residual noise terms εm can be inferred following a Poisson
model, a Bernoulli model, Gaussian noise model corresponding
to count, binary, and continuous data types respectively and
the factor matrix Z can be assumed using a standard normal
prior.

MOFA can be extended to resolve the missing data issue
through observed variables. Actually the missing values ym

miss
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Table 5. Tools for processing single-cell multi-omics sequencing data with their functions and programming language

Tools Methods Functions languages References

MOFA Matrix
decomposition

Integration and data imputation,
clustering.

R [89]

LIGER Matrix
decomposition, SFN
graph

Integration and batch effect,
visualization, clustering, maker
identification.

R [17]

SpatialDE VI, multivariate
normal modeling

Clustering, identify spatially variable
genes, spatial and/or temporal
annotation, visualization.

Python [90]

TotalVI VAE Integration, batch effect and data
imputation,visualization,clustering.

Python [91]

Seurat V3 CCA, MNN Integration, batch effect and data
imputation, clustering, cluster
annotation.

R [66]

Seurat V4 WNN graph Integration, batch effect clustering,
trajectory analysis, cluster
annotation, response to vaccination.

R [92]

Mimitou et al. Seurat V3, harmony,
LMM

Integration, data imputation, batch
effect, clustering, trajectory analysis,
multiplexed CRISPR perturbations in
primary T cells.

R [59]

MATCHER Manifold learning Integration, inferring pseudotime,
trajectory analysis.

Python [93]

Ma et al. SNF, KNN Integration and data imputation,
clustering, visualization, pseudotime
inference.

R and
python

[49]

Figure 1. Advantages and disadvantages of nine single-cell multi-omics data analysis tools. The primary advantage and disadvantage of each method is represented

by the 1st and 2nd points in each box, respectively. Orange denotes matrix decomposition, green denotes graph-based methods, light blue denotes clustering methods,

navy blue denotes variational inference and gray denotes the CCA method. LIGER has employed both matrix decomposition and graph-based algorithms.

are not involved in updating parameters to compute the likeli-
hood. Instead, the parameters Z, Wm and εm are updated by the
observed variables ym

obs. Thus, the missing variable ym
miss can be

directly imputed by Equation (1).

Another extension of matrix decomposition called LIGER has
been developed for data integration [17]. In fact, the approach
has been used to disentangle single-cell multi-omics datasets
Ei into the latent metagene factors matrix Hi for each omics
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Figure 2. Three different tools base on variational inference algorithm for single-cell multi-omics data. SpatialDE can be used for data integration of the spatial

transcriptome; MATCHER can be used for data integration and batch effects removal of single-cell transcriptome coupled with epigenome and TotalVI can be used for

data integration, batch effects removal and data imputation of single-cell transcriptome coupled with protein.

profiling i, shared modality metagenes W across distinct omics
and dataset-specific metagenes Vi, which is shown in Equation
(2) as follows.

arg min
H≥0,W≥0,V≥0

d∑
i

‖Ei − Hi (W + Vi)‖2
F + λ

d∑
i

‖HiVi‖2
F (2)

Thus, these gene features can be classified into shared
metagenes and data-specific metagenes of different modalities,
thereby retaining data diversity of multi-omics profiling at the
single-cell level.

VI-based analysis

VI is a machine learning approach through approximating pos-
terior probability densities for Bayesian models. Comparing with
other methods, this algorithm is faster and easier to handle
large data sets [95]. As shown in Figure 2, the three VI methods,
SpatialDE, Manifold Alignment to CHaracterize Experimental
Relationships (MATCHER) and TotalVI have been applied to com-
bine data from distinct molecular layers at single-cell resolution.
These tools can also be leveraged for data preprocessing.

SpatialDE [90] has made use of VI and multivariate normal
models to process the seqFISH data [31]. Genes Y with spatial
expression patterns μ can be inferred. In addition, μ and Z can
be estimated using VI. The complete model covering all genes is
formulated as:

P
(
Y, μ, Z, σ 2

e , �
) = P

(
Y | μ, Z, σ 2

e

) · P(μ | �) · P(Z) (3)

where, the binary indicator matrix Z denotes the relationships
between the genes and the patterns. The parameter σ 2

e stands for
the Gaussian distributed noise for the model and � represents
the spatial covariance matrix.

VI has been adopted by the incorporation of manifold and a
shared Gaussian process for MATCHER [93]. The method can be
used to map the high-dimensional gene data Y(1) or methylation
measurement data Y(2) to a shared latent space t via different

mapping functions f coupled the noise ε:

Y(1) = f1(t) + ε1

Y(2) = f2(t) + ε2
(4)

f represents a Gaussian process function:

f (t) ∼ GP
(
0, k

(
t, t′)) (5)

MATCHER has used a radial basis function automatic relevance
determination kernel, which has the advantage of enabling a
different set of latent dimension weights for each data type.
Then VI can be utilized to compute the posterior and optimize
the value of different hyperparameters through evidence lower
round (ELBO).

An important extension of VI is named variational autoen-
coders (VAE). VAE is a generative model. It has potential to
integrate different molecular layers’ information at the single-
cell level and can correct mismatched data pairs and impute
the missing variables. For example, Gayoso et al. [91] generated
the paired matrices for RNA and protein counts using a VAE
model called TotalVI to integrate distinct omics knowledge in
single cells and infer parameters for CITE-seq data. By this
method, the batch index sn for the RNA expression xn and the
protein expression yn are taken to the encoder part to generate
the approximate posterior parameters qη

(
zn | xn, yn, sn

)
in shared

latent space, the RNA size factor qη

(
	n | xn, yn, sn

)
and the protein

background factor qη (βn | zn, sn), which is shown in Equation (6)
as follows:

qη

(
βn, zn, 	n | xn, yn, sn

)
:= qη (βn | zn, sn) qη

(
zn | xn, yn, sn

)

qη

(
	n | xn, yn, sn

)
(6)

The decoder part consist of three individual neural networks.
The outputs of the encoder have been utilized as input terms to
produce the likelihood parameters of the RNAs p

(
xng | 	n, zn, sn

)
,

and the proteins p
(
ynt | βnt, zn, sn

)
.



Single-cell multi-omics sequencing 13

TotalVI [91] has been proposed to handle the batch effects
for mismatched data pairs. TotalVI has a key step to generate a
joint probabilistic representation for the RNA and protein data.
In the encoder part, all the RNA expression, protein expression
and batch index are used to produce the approximate posterior
q

(
zn | xn, yn, sn

)
, which is robust to the batch effects. The param-

eters of the encoder and decoder part can be updated through
the gradient of ELBO.

Furthermore, TotalVI has handled the merging of CITE-seq
datasets with standard scRNA-seq datasets and has imputed
the missing protein measurements simultaneously. The missing
protein variables were all filled in with zeros, and the observed
values of CITE-seq and scRNA-seq were all sent to the encoder
part. Then, the gradient of ELBO was taken to update the param-
eters using the observed values x1:N and yobs

1:N . Finally, the missing
protein values ymiss

1:N were inferred by the shared latent parameter
zn and the protein background value βn through Equation (6).

Canonical correlation analysis (CCA)

CCA is a general unsupervised approach to maximize a shared
correlation space through the linear combination of features.

Seurat V3 [66] is a commonly used tool extended from the
CCA data fusion method [96]. This tool has been applied to
handle DBiT-seq datasets [38] for downstream data analysis.
MAESTRO [97] has also employed this tool to integrate scRNA-
seq and scATAC-seq datasets. Another application of Seurat V3
was to find the shared feature space and establish anchor pairs
for the CITE-seq [57] and STARmap [37] datasets. The shared data
part is defined as Equation (7):

max
u,v

uTXTYv subject to ‖u‖2
2 ≤ 1, ‖v‖2

2 ≤ 1 (7)

where, X stands for one molecular layer matrix and Y for another
layer expression; u and v denote the projection vectors.

Stuart and colleagues found that incorrect anchor pairs could
be detrimental for further analysis and could lead to a wrong
conclusion. To overcome this problem, an idea of mutual near-
est neighbors (MNN) [98] was implemented to adjust the mis-
matched anchor pairs through decreasing the scores and down-
weighting in Seurat V3. The weight matrix was formulated as
Equation (8):

Wc,i = D̃c,i∑j=k.weight
1 D̃c,j

(8)

where Wc,i is normalized across all the k.weight anchors using
the weighted distance and the Gaussian kernel D̃c,i.

Seurat V3 is highly informative as the transfer learning
framework which can propagate related information such as
labels and variables from one omics layer to another. SHARE-seq
[49] has utilized this idea to transfer cell-type labels from scRNA-
seq to scATAC-seq. Similarly, Mimitou et al. [59] has employed
this method to impute the RNA expression. Seurat V3 has also
been applied by MAESTRO to transfer the label information
from scRNA-seq to scATAC-seq [97]. After building the anchor
pairs from the distinct omics layers, the prediction of feature
expression Pf can be completed through the anchor feature-
transferred matrix F and the weight matrix W computed from
Equation (8). Thus, this missing variable can be imputed, as

shown in Equation (9):

Pf = FWT (9)

Clustering analysis

Clustering is an unsupervised learning method that can find the
internal structure among single-cell multi-omics data. By updat-
ing the input embedding and soft cluster, clustering methods
can be employed to integrate different omics information at the
single-cell level and correct errors in the data pairs.

This algorithm has been adopted by Mimitou et al. [59] cou-
pled with the Harmony method [99] to merge ASAP-seq [59]
and CITE-seq [57]. The principal component analysis result Zi

is utilized as the default input, then the Harmony approach
maximizes a diversity clustering on the low-dimensional space.
In addition, a k-means clustering with the restrictions of an
entropy regularization term σRki log (Rki) over the soft cluster’s
assignment matrix Rki and a low batch-diversity penalization

term σ
∑

f θf Rki log
(

O(f )
ki

E(f )
ki

)
can be determined by

minR,Y
∑

i,k Rki ‖Zi − Yk‖2 + σRki log (Rki)

+σ
∑

f θf Rki log
(

O(f )
ki

E(f )
ki

)

s.t.∀i∀kRki > 0,
∑K

k=1 Rki = 1

(10)

It can be seen that this approach has added a penalty to max-
imize the variety of different single-cell multi-omics data for
enlarging shared information, namely, maximizing the diversity
of datasets within each cluster.

Mimitou and colleagues has also applied a Linear Mixture
Model Correction idea to handle the batch effects on clusters
in the low-dimensional space. They assumed that the low-
dimensional expression Zi follows Gaussian Mixture Model via
the cluster centroids μk, the batch offset of cluster centroid
βkφi and the soft cluster assignment matrix Rki (Equation (11)).
Under this assumption, the embedding expression Zi can be
replaced (as by Equation (12)). Moreover, this Additive Batch
Mixture Model is linked to every cluster, literately updating
the soft cluster assignment matrix Rki and the low-dimensional
expression Zi until it becomes convergent.

Zi ∼
∑

k

RkiN
(
μk + βkφi, σ 2I

)
(11)

Ẑi = Zi −
K∑

k=1

Rkiβkφi (12)

where k denotes the number of clusters.

Graph-based learning analysis

One common approach to tackling single-cell multi-omics
sequencing data is to apply graph-based learning models. The
graph’s neighborhood information can be utilized to correct
the mismatched data pairs when considering the incorrect
projection for data pairs. Furthermore, the graph can be
employed to make a prediction according to the k-nearest
neighbors (KNN) for within and cross-modality information. As
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Figure 3. Three graph-based learning models for single-cell multi-omics sequencing. All of them have leveraged on the neighborhood relationship for data imputation,

data integration and data pairs correction.

shown in Figure 3, the established graph models can propagate
the similarity information of different omics layers to preserve
the diversity of different omics data at the single-cell level.

We present some graph-based models that have been applied
to conduct data analysis for single-cell multi-omics sequencing
datasets. Ma et al. [49] utilised similarity network fusion (SNF)
[100] to aggregate ATAC and RNA signals of SHARE-seq into the
whole network. They have established patient-by-patient simi-
larity networks for each data type and adopted KNN relationship
to represent local affinity. Then, these networks in different
views have been integrated into a single weighted network. A
normalized weight matrix P(2)

t in t times and local affinity matrix
S based on KNN relationships have been utilized to update the
weight P(1)

t+1 in t + 1 times for the joint network until it converges
(formulated as Equation (13)).

P(1)
t+1(i, j) =

∑
k∈Ni

∑
l∈Nj

S(1)(i, k) × S(1)(j, l) × P(2)
t (k, l) (13)

That is using the local affinity matrix S to find the common
neighborhood in KNN (Ni for vertices i and Nj for j). Hence, the
similarity information can be propagated through the shared
neighborhood, and the individual information can be preserved
during a single SNF process.

To deal with the missing data problem, Ma et al. [49] adopted
three strategies including case-wise deletion, feature-wise dele-
tion and data imputation. The case-wise deletion can be utilized
when missing parts account for more than 20% of features in
a patient. Meanwhile, the feature-wise deletion can be adopted
when missing values take up more than 20% of the patients’
specific biological features. For the rest of the missing data part,
KNN imputation method [101] can be used to impute the value
g̃miss

t for missing gene t using the value Gkmiss
i of KNN gene i and

the distance dt,i between gene i and t.

g̃miss
t =

∑k
i=1 Gkmiss

i /dt,i∑k
i=1 1/dt,i

(14)

Welch et al. [17] found that for highly divergent datasets,
the maximum factor loading can generate spurious alignments
using iNMF representation of cluster assignments. Then, they
developed a shared factor neighborhood (SFN) graph for LIGER
to address this problem, leveraging the KNN to increase the
robustness of joint clustering results. Even though cells from dif-
ferent cell types may have factor loadings spuriously in distinct
datasets, SFN can still reduce these false matches among pairs
of distinct datasets since it is impossible for them to have the
same factor neighborhoods. Hence, corrections has been made
by connecting the pairs of cells with low Manhattan distance.

Furthermore, Seurat V4 [92] has been proposed taking a
weighted nearest neighbors (WNN) graph to find the relation-
ship between different molecular profiles for SHARE-seq [49],
CITE-seq [57] and ASAP-seq [59] datasets. Firstly, the within-
modality RNA prediction r̂i,knnr and protein prediction p̂i,knnp and
cross-modality prediction r̂i,knnr and p̂i,knnr are calculated through
the corresponding KNN. Then, with motivations from a Uniform
Manifold Approximation and Projection (UMAP) weight function,
this method also computes the weight of cell-specific modality
for RNA wrna(i) and protein wprotein(i) correspondingly. Meanwhile,
the affinity within-modality and cross-modality for RNA θrna and
protein θprotein are calculated respectively. Finally, the weighted
similarity of two cells i and j are used to build a WNN graph as
shown in Equation (15).

θweighted(i, j) = wrna(i)θrna
(
ri, rj

) + wprotein(i)θprotein
(
pi, pj

)
(15)

This approach has the advantage of learning the varying infor-
mation of each molecular perspective through each modality’s
weight.

Issues and open questions for preprocessing
of single-cell multi-omics data
Intensively studied issues: consistency and diversity

The integration of heterogeneous data of single-cell multi-omics
sequencing usually faces a consistency issue (common or shared
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information) and a diversity issue (complement or data-specific
information). While many single-cell multi-omics sequencing
studies have been focused on data consistency research, diver-
sity for different molecular layers’ information should not be
overlooked. The main reason is that different biological layers
convey their unique knowledge, so that the data-specific infor-
mation for distinct omics layers at the single-cell level should
be considered. Some methods attempt to maximize the shared
space of different molecular profiles. However, these approaches
are detrimental to the unique information of different omics
sequencing at the single-cell level since they squeeze the data-
specific space of different views to enlarge the shared knowl-
edge space. For example, Seurat V3 [66] has been carried out
through a variation of CCA to maximize a shared correlation
space through the linear combinations of features across multi-
sources datasets based on the same instances. Other unsolved
problems include how much should be divided for data-specific
and shared information to balance data consistency and diver-
sity for distinct molecular layers in single cells. For example,
LIGER [17] utilized iNMF to divide the single-cell multi-omics
data into shared modality metagenes and dataset-specific meta-
genes, but balancing these two components was limited by the
hyperparameter λ.

While these methods have achieved varying levels of success
at dealing with consistency and diversity, they still encounter
several issues. As an example, TotalVI [91] has been developed
to take the advantage of flexible networks of VAE to map RNA
and protein counts into shared latent embedding to preserve
the consistency of RNA space and protein space. However, they
faced challenges of poor generative quality and poor likelihood
estimation. While MOFA [89] can be employed by matrix fac-
torization to map the different omics datasets into a common
factor matrix, the uninformative prior for different distribution
has been restricted the solution space, thereby limiting the
generalization.

Currently focused issues: mismatched and missing data

Ensuring data consistency and diversity in single-cell multi-
omics sequencing is technically challenging. This is because
that single-cell multi-omics sequencing often has difficulties
in the management of mismatched and missing data. These
two currently-focused issues are critical since multi-omics in
the same cell need to integrate incomplete data from different
biological layers [13]. This may lead to obstacles for the interpre-
tation and therapeutic development of complex diseases. Thus,
data imputation and correction are essential as preprocessing
steps before downstream data analysis procedures.

Gene expression data often contain sequencing discrepan-
cies after integrating distinct single-cell measurements. In ear-
lier studies, batch correction methods has been employed for
integration of scRNA-seq due to technical variability. To address
incorrect data pairs, many researchers has learned from the
experience of batch effects correction methods for single-cell
RNA and applied this in single-cell multi-omics data since dis-
tinct molecular layers in single-cells also have technical vari-
ability among distinct sequencing measurements in the same
cell. For example, Seurat V3 [66] has been inspired from MNN
[98] for batch effects removal to solve the mismatched anchor
pairs through decreasing scores and weights. Mimitou et al.
[59] has utilized the Linear Mixture Model Correction approach
[99] for batch effects method to correct mismatched pairs in
low dimensional space. Furthermore, Seurat V4 [92] has been
developed by MNN graph to find the corresponding weight for

different modalities, which can be considered as batch effect
correction.

Although many correction approaches to date overcoming
the batch effects have achieved positive outcomes, there are
always risk of overcorrection that may cover the true biological
expression data and lead to wrong conclusions for downstream
analysis.

Another issue in handling single-cell multi-omics data is
about missing data. Data acquired from high-throughput single-
cell sequencing platforms are known to have missing observa-
tions or variables due to various reasons, such as low coverage
of next-generation sequencing (NGS), low sensitivity in pro-
tein detection and faltered metabolite measurement by tandem
mass spectrometry. The problem of missing data in single-cell
multi-omics sequencing can be aggravated since multi-omics in
the same cell needs to integrate incomplete data from different
biological layers [13], and missing values in single-cell multi-
omics sequencing data can result in obstacles for downstream
analysis. Thus, solving the missing values should be essential as
a preprocessing step before the subsequent data analysis proce-
dures are performed. Deletion is the simplest method for han-
dling missing variables. However, it is difficult to represent the
complete information using remaining cases, which may lead
to a wrong conclusions. For example, Ma et al. [49] has employed
deletion in multivariate and multimodel analyses, which involve
many items and features. This can lead to a large number of
samples and variate to be discarded and biased results. The
remaining cases or features may not represent the complete
multi-omics information in the same cell [102]. Moreover, TotalVI
[91] and MOFA [89] have employed a similar strategy by using the
observed sample and variable to compute the parameter. Then,
inference parameters have been used to approximate the miss-
ing part. Although these single imputation methods appear to be
more advantageous than case deletion and feature deletion, they
are prone to adding biases and introduce difficulties in fitting
well with the true distribution, since the imputation quality has
a close relationship with the inference parameters and alleviates
the variability of the missing data.

Open questions

Although single-cell multi-omics sequencing is showing a vital
role in progressing our understanding of system biology and
pathophysiology, the handling of heterogeneous data remains
technically challenging. Compared with computer vision (CV)
[103] and natural language processing (NLP) [104] applications,
we believe that the sampling cost by single-cell multi-omics is
higher than acquiring the image and language data, whereas
that the technology of single-cell multi-omics sequencing is less
mature than CV and NLP algorithms. The magnitude of data
collection in single-cell multi-omics should be therefore much
smaller than in CV and NLP applications. In addition, we know
that many researchers collect distinct types of sequencing data
as much as possible to make up for the lack of data samples
in the attempt to convert the need for the number of samples
to the demand for feature types of samples. Hence, distinct
molecular layers at single-cell resolution can highlight the data
heterogeneity. This brings up several open questions as follows.

i Do we need all of these data on different biological traits
at the single-cell level for specific biological or medical
applications? or more image data can be supplemented?

ii How to evaluate and benchmark the performance of sin-
gle cell multi-omics tools when the ground-truth labels
are not available? Whether NLP algorithms can help the
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understanding of the cross talks between the different lay-
ers of omics data from a large population of cells?

iii How to systematically interpret the downstream biological
results from the single-cell multi-omics data?

Future perspectives
Every data processing method has its own advantages and dis-
advantages. To enable better decision-making or achieve greater
performance, we may need to combine multiple machine learn-
ing methods into one model to amplify the advantages and
compensate for the disadvantages of individual methods. Some
relevant machine learning approaches that may lead to effective
future developments in the single-cell multi-omics space are
suggested below.

Multimodel is a specific example of multi-view algorithms.
This method can utilize feature representations across different
modalities from multiple sources [105]. The diverse molecular
layers can be considered as the detailed multiple modalities
including genetics, epigenetics, metabolism, protein and spatial
information corresponding to different views. A joint embed-
ding can be leveraged to map the distinct model data into
shared latent space. Meanwhile, the neighborhood information
of the local affinity can be exploited to establish a relationship
with another modality corresponding to the other neighbor-
hood information. Thus, sufficient biological information can be
leveraged across and within molecular layers.

Deep learning is an exciting topic, where we have recently
witnessed a massive expansion in Deep Neural Networks
method development. These approaches have achieved ideal
results in different fields while still greatly increasing the
performance. The Convolutional Neural Network (CNN) [106],
Recurrent Neural Network (RNN) [107] and transformer model
[108] can be adopted for processing the heterogeneous data
arising from single-cell multi-omics sequencing.

The input format of CNN is multidimensional, which is well
suited for targeting the heterogeneous data simultaneously.
Moreover, CNN can abstract the features through layer-by-
layer filters to find the specific patterns. Some CNN models,
such as DenseNet [109] and ResNet [110], also make it possible
to alleviate the vanishing gradients. The loss landscapes of
these models can become smoother, and the gradients can
backpropagate the much further depth model, capturing a large
amount of complex information.

The RNN is also a well-suited model for processing multi-
omics sequencing data. The reason is that RNN can preserve
great amounts of semantic context information about past
states, such that it enables the learning of combined genetics
effects corresponding to phenotypes. Moreover, the hidden state
of the RNN model can be updated in intricate ways, thus making
it possible to learn specific sequence properties.

The transformer model has recently attracted increasing
attentions. Compared with the CNN and RNN, the transformer
model can process sequencing data simultaneously and
address long-term dependency problems. It can also utilize
self-attention to update the embedding outcome and weight
each word to represent the correlations of words. Thus, the
transformer model is expected to achieve better performance
in processing single-cell multi-omics data since it can find
the gene-to-gene correlation without considering the long
dependency of sequencing.

Transfer learning [111] can be used to address several
challenges on missing variables, batch effects in single-cell

multi-omics sequencing. Transfer learning can extract infor-
mation from one molecular layer to correct or impute related
information in another layer. By transferring the knowledge
from the source domain to the target domain, we can make use
of a vast amount of knowledge from biological layers to correct
the error of some variables or impute missing values at different
molecular layers.

Conclusion
Gathering information from different biological modalities at
single-cell resolution offers the possibility of gaining deep
insight into the cell state and function and refining our
understanding of the relationship between cell genotypes and
phenotypes. Recent studies have demonstrated the power
of single-cell multi-omics sequencing in various biological
and medical applications. Despite its extraordinary potential,
challenges relating to the analysis of heterogeneous data arising
from single-cell multi-omics sequencing remain to be addressed.
The performance of fusing heterogeneous data in diverse
molecular layers of single cells can vary depending on the
trade-off between data consistency and diversity, correction of
mismatched data pairs and imputation of the missing variables.
Machine learning methods have great potential to improve
the processing of single-cell multi-omics sequencing data as
suggested in our understanding of their prospects.

Key Points
• We presented technical developments and progresses

of single-cell multi-omics sequencing made over the
last 5 years and outlined the trends of their biological
and medical applications.

• We presented up-to-date applications of single-cell
multi-omics sequencing for fighting against the
COVID-19 pandemic.

• We described advanced machine learning and bioin-
formatics methods used in data preprocessing of
single-cell multi-omics sequencing data.

• We discussed data analysis issues, and suggested
open questions and prospects for the future research
of single-cell multi-omics sequencing.
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