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Implantation is one of the most critical steps in mammalian reproduction and implantation failure con-
stitutes a major cause of infertility in both animals and humans. The mechanism of implantation is exclu-
sively under the control of ovarian steroids progesterone and oestrogen whose actions are mediated in a
complex phenomenon that involves a number of cytokines and growth factors. According to a plethora of
literature on implantation in mammalian species, prominent of these cytokines and growth factor play-
ing crucial roles in implantation include integrin, osteopontin, integrin, insulin-like growth factor and
leukaemia inhibitory factor. Others are cluster domain 44, hyaluronan system and many non-adhesive
molecules such as glycoprotein mucin 1. In this review, the specific roles played by these molecules
are expatiated. Generally, they function as adhesive molecules that facilitate attachment of ligands/pro-
teins on the trophectoderm to their respective receptors on endometrial luminal epithelia or vice versa.
Sometimes, they also function as signalling molecules that enhance communication between implanting
blastocyst and receptive endometrium. This is of particular importance in embryo culture and embryo
transfer where in vitro derived blastocyst unlike the in vivo condition, is not exposed to these substances
and hence, their absence may be partly responsible for the low implantation rate observed in the surro-
gate. Appreciation of the roles played by these cytokines, growth factors and molecules as revealed in this
review will spur further research on these topics, facilitate their inclusion in embryo culture media (if
positively required) and are considered as vital aspect while developing strategies to improve fertility.
� 2017 Faculty of Veterinary Medicine, Cairo University. Production and hosting by Elsevier B.V. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Sources and roles of cytokines, growth factors and macromolecules mediating and
modulating implantation process in mammalian species.

Cytokine/growth
factor

Sources/location Proposed roles in
implantation

References

ITG Endometrium and
blastocyst

Adhesive
molecules

[146]

OPN Placental and
endometrial immune
cells

Adhesive
molecule

[35]

IGF Oviduct/Endometrium Metabolic
indicator/
signalling

[63,147]

LIF Endometrium Signaling [85,148]
HA Endometrium and

blastocyst
Adhesive
molecule

[95,99]

CD44 Endometrium and
blastocyst

Adhesive and
signalling

[119]

MUC1 LE of endometrium Anti-adhesive [149]

CD44; cluster domain 44, HA; hyaluronan, IGF; insulin-like growth factor, ITG;
integrin, LIF; leukaemia inhibitory factor, LE; luminal epithelium, MUC1; mucin,
OPN; osteopontin.
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1. Introduction

Sub-fertility is a pervasive problem affecting both human and
animal species. In humans, available evidence suggests that preg-
nancy loss predominantly during pre-implantation and the first
few weeks of pregnancy is one of the major causes of subfertility.
According to the global statistics presented by Boivin and Bunting
[1], an estimate of over 72 million women between the ages of 20–
40 years are infertile. In domestic animals, subfertility is a limita-
tion to animal production and is one of the main issues for dairy
cows selected for milk production [2]. An estimate of 60% preg-
nancy loss occurs in dairy cattle, with a significant number
observed during early stages of embryo development [3]. Fertiliza-
tion rates in cattle are around 90%, however, one-third of embryos
fail to survive the first 18 days of pregnancy [4]. This implies that
reproductive losses in dairy cows due to early embryo death are
3–4 times greater than losses due to fertilization failure. In spite
of almost 100% fertilization rate in sheep [2], only 60–80% of the
fertilized eggs proceed to live birth, while higher percentage of
these losses occur before day 18 of pregnancy [5]. Collectively, this
suggests that implantation failure constitutes a major source of
pregnancy loss and infertility in both human and animal subjects.

The early stage of pregnancy is thus termed ‘a critical period’
because of the high risk of embryo loss. One event known to occur
during this critical period is blastocyst implantation to the mater-
nal endometrium. Implantation is a complex process and has been
generally acknowledged as the most critical step in mammalian
reproduction. In primate and human, embryo stays momentarily
in the oviduct before being transported to the uterus between 72
and 96 h post fertilization, readily prepared for implantation. In
domestic ruminants, definitive implantation is achieved by adhe-
sion of the mononuclear trophoblast cells to the endometrial lumi-
nal epithelium and formation of syncytia by the fusion of
trophoblast binucleate cells with the luminal epithelium. The pro-
tracted period of peri-implantation embryo has made the ruminant
especially sheep a unique model for classical study on molecular
mechanism of implantation in mammalian species generally [6].

The contact between the embryo and the maternal tissue soon
after fertilization is crucial for subsequent development and sur-
vival of the embryo in utero because it creates the medium of inter-
action between the two entities and also generates the platform
that eventually leads to the formation and development of pla-
centa [7] which is necessary to facilitate the exchange especially
of micronutrients and gases from the mother to the conceptus.

Endometrial cells undergo cyclic renewal, differentiation and
eventually apoptosis and shedding (in primate) as well as secretory
with the primary purpose of allowing implantation of a viable
embryo in a conceptive cycle. Many of these physiological pro-
cesses depend on the timely expression of cell adhesion, bridging
and signalling molecules as well as disappearance of others (such
as non-adhesive molecules) which maintain tissue micro-
architecture by mediating cell-to-cell and cell-to-substratum
attachments that constitutes endometrial remodelling. In other
words, endometrial remodelling is a prerequisite for the uterus
to attain structural and functional capacity during implantation.
This remodelling occurs only during the receptive phase of repro-
ductive cycle [8] and this period is termed ‘window of receptivity’
when attachment of blastocyst to the maternal endometrium is
physiologically possible [9].

Window of receptivity in mammalian species is exclusively
under the influence of ovarian steroids, progesterone and oestro-
gen [10–12]. High level of oestrogen at ovulation causes uterine
cell proliferation while subsequent increase progesterone during
dioestrus/pregnancy suppresses proliferation and causes cell dif-
ferentiation in preparing the uterus for receptivity [13]. In addition
to the steroids, a plethora of other molecules, including macro-
molecules, growth factors and pro-inflammatory cytokines medi-
ate and modulate the actions of these steroid hormones to bring
about the required changes in the uterine extracellular matrix
[14]. Among these cytokines/growth factors playing crucial roles
in implantation are integrins (ITG), osteopontin (OPN), insulin-
like growth factor (IGF) and leukaemia inhibitory factor (LIF).
Others are hyaluronan (HA) system, cluster domain 44 (CD44),
and many other non-adhesive molecules such as glycoprotein
mucin 1 (MUC1). To date, the list is inexhaustible and continues
to grow, however, the molecular mechanism underlying the phe-
nomenon of implantation still remains, in the word of Aplin [9],
elusive. For the purpose of simplicity in this review, they are better
classified as (i) adhesive and bridging molecules for those that ini-
tiate the visible actual attachment observed, (ii) signalling mole-
cules that induce the transcription and translation of other genes
and proteins that initiate communication/interaction between
the receptive maternal endometrium and implantation-
competent blastocyst and then (iii) the protective non-adhesive
molecules on the endometrium that have to be removed before
implantation could occur.

As reproductive biologists persist in their continued effort to
understand the mechanisms underlying implantation process for
a better development of strategies towards improving its success
rate, our present understanding on the mechanism of implantation
is still far from being complete. The objective of this review is to
highlight the roles of ITG, OPN, IGF, LIF, HA system, CD44 and the
non-adhesive MUC1 as mediators of implantation in mammalian
species.
2. Methodology

The preliminary search strategy involved using the Unites
States National Library of Medicine (https://www.ncbi.nlm.nih.
gov/pubmed/) while matching the word implantation with cytoki-
nes, growth factors and adhesive molecules. The plenty of papers
generated each time were selected based on their relevance to
the subject matter of this review by going through the titles and
abstract. These were read one by one and key references from them
were also reviewed to generate a broad knowledge on the roles of
ITG, OPN, IGF, LIF, HA, CD44 and MUC1 as mediators of implanta-
tion in mammalian species. Other relevant textbooks on the sub-
ject were also consulted to come up with a broad knowledge

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/


Fig. 1. Proposed Interactions between trophectoderm of implantation-competent
blastocyst and luminal epithelial cells of receptive endometrium mediated by
implantation-related cytokines and growth factors in mouse model. During
implantation, there is increase in expression of cytokines and growth factor such
ITG, OPN, LIF, IGF, HA and CD44 at endometrium, while MUC1 is proposed to reduce
at implantation site of endometrial LE in response to embryo signal. ITG is also
produced by the blastocyst and OPN being a receptor for ITG binds to OPN on the
endometrium to establish attachment with OPN on the trophoblast leading to
adhesion of the luminal epithelia and trophectoderm. Legends: CD44; cluster
domain 44, GE; glandular epithelia, HA; hyaluronan, IGF; insulin-like growth factor,
ITG; integrin, LIF; leukaemia inhibitory factor, LE; luminal epithelium, MUC1;
mucin, OPN; osteopontin.
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which has been summarised in the discussion that follows. It is
noteworthy to state that the aforementioned mediators are not
the only cytokines, growth factors or macromolecules involved in
implantation, they are selectively chosen based on compelling evi-
dence that suggests their synergistic and interlinked interactions
during implantation from bodies of previous studies on this subject
as summarized in Table 1 and subsequently illustrated in Fig. 1.

3. Integrins

ITGs are members of a larger family of cell adhesion protein
believed to have major roles in cellular processes such as differen-
tiation, motility and attachment, apoptosis and cell survival [15].
Roles of ITG in implantation are hypothesized to be either through
ITG attachment of cells to the extracellular matrix [16] or ITG ini-
tiating a signalling transduction from the embryo to the extracellu-
lar matrix (ECM) leading to the transcription and translation of
genes critical for implantation [17]. The two major players of
implantation, maternal endometrium and blastocyst reportedly
expressed ITG [18,19]. Therefore, conceptualising a role for ITG
during implantation is reasonable.

ITG undergoes dynamic temporal and spatial patterns of
expression on endometrial cells during the menstrual cycle and
in the early stages of human pregnancy [20]. There are many iso-
forms of ITG in mammals, however, only three isoforms a1b1,
a4b1 and aVb3 are found to be particularly involved in implanta-
tion, with aVb3 seemingly playing more conspicuous roles than
others [21]. In human, these isoforms were shown to be expressed
in the endometrium during the window of implantation (day 20–
24) when the endometrium is structurally and physiologically con-
ducive to implanting blastocysts. On day 16 of bovine oestrous
cycle, ITG avb3 and the oestrogen receptor are detected in uterine
environment as molecular markers for the adhesion and signalling
[22]. ITG subunits are detected at sites of attachment between
uterine epithelial cells and trophectoderm on Days 12–15 of swine
pregnancy [23]. Expression of ITG aVb3 at the foeto-maternal
interface in many species including sheep, pigs, baboon and human
during blastocyst attachment and implantation further substanti-
ates the concept that ITG is an adhesion as well as bridging mole-
cule during the process of implantation [24–27].
On the contrary, several conditions that interfere with expres-
sion of ITG in the endometrium culminate into implantation fail-
ure. The blockade of the ITG aVb3 inhibits implantation in
mouse [28]. ITG expression was also significantly reduced in
human glandular epithelial cells and endometrial lumen as well
as stromal cells of the hydrosalpinx group when compared with
those of the control group [29,30], sequel to which is infertility
in the hydrosalpinx group. In addition, some treatments in IVF pro-
tocol such as ovarian stimulation may adversely affect the expres-
sion of ITG which may partly responsible for low success outcome.
For instance, all the three variants of ITG (a1b1, a4b1 and aVb3)
were reduced in glandular endometrium coupled with a reduced
expression of the aVb3 in the luminal epithelium after ovulation
induction with gonadotropin [31]. This was partially restored with
administration of GnRH agonist and not GnRH antagonist in
mice [32].

Synthetic ITG ligands are currently been explored in other fields
of research. Novel synthetic cyclic ITG aVb3 binding peptide ALOS4
was reported to initiate antitumor activity in mouse melanoma
models thorough inhibition of cell migration [33]. Considering
the importance of ITG in implantation, reduced or absence of ITG
in surrogate endometrium may be detrimental to the success out-
come of assisted conception. The question is, ‘Is it possible to com-
pensate for the reduced ITG in the endometrium through
exogenous addition of synthetic ITG in the embryo transfer media
or intrauterine infusion?’ Further studies are warranted to deter-
mine the possible roles of ITG as a media component for embryo
culture and embryo transfer since it is not included presently.
4. Osteopontin

Osteopontin (OPN) otherwise called secreted phosphoprotein 1
is an ECM proteins/cytokine capable of undergoing extensive phos-
phorylation, glycosylation and cleavage to yield molecular mass
variants ranging from 25 to 75 kDa [34]. It has multiple functions
by binding cell surface receptors to mediate cell-cell adhesion
and cell-ECM communication as well as cell migration.

OPN is hypothesised to play significant roles in mammalian
implantation in a number of ways. Firstly, OPN is a component of
histotroph required for adhesion and signal transduction at the
uterine-placental interface resulting into conceptus attachment
[35]. Secondly, it is a gene product expressed by uterine stroma
as it decidualizes in response to conceptus invasion, and thirdly,
as a constituent of resident placental and uterine immune cells
that regulates immune cells behaviour and cytokine production
[36,37]. All mammalian uteri including human contain endome-
trial glands that secrete substances comprising enzymes, growth
factors, cytokines, lymphokines, hormones, transport proteins
and other substances altogether refer to as histotroph [38]. His-
totroph plays a role in conceptus nourishment, production of
maternal pregnancy recognition signals, immuno-tolerance of
semi-allograft embryo, blastocyst attachment and implantation
as well as placentation [38,39].

Uterine gland secretion is active and support pregnancy in
human during the first trimester (10 weeks) of gestation [40]. Pre-
vious studies with ewes in which uterine glands were epigeneti-
cally ablated (known as uterine gland knockout, UGKO ewes) by
neonatal progestin exposure confirmed that histotroph is required
to maintain pregnancy during peri-implantation period [41,42].
OPN, a key component of histotroph is distinctly absent in uterine
secretion of UGKO ewe such that UGKO ewes are infertile due to
failure to support pregnancy at the very early stage [43]. In sow,
OPN was detectable at the maternal-placenta interface from day
25 and remained elevated till day 85 [44]. Localisation of OPN at
the point of maternal-placenta interface is suggestive of ITG
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interaction with its receptors on the conceptus and uterus to pro-
mote conceptus development and signalling. In vitro modelling of
early implantation with human endometrial cells (Ishikawa) and
mouse or human embryos or ligand-coated beads showed that
OPN of epithelial origin binds the receptor ITG avb3 at the
maternal surface to support adhesion during the early stages of
implantation [45].

Non-interaction of ITG avb3 and OPN at the foetal-maternal
interface in ruminants especially bovine was reported by Kimmins
et al. [46]. On the contrary, other workers reported co-localisation
of both OPN and ITG avb3 in sheep uterus and trophectoderm to
induce adhesion between endometrial luminal epithelium and tro-
phectoderm during period of implantation [24,47,48] while a sum-
mary of these works has been reviewed elsewhere [49]. There are
limited studies of these cytokines in cattle possibly due to size of
the animal. Certainly, further studies are required to clarify this
ambiguity as regards simultaneous expression of OPN and ITG
avb3 at the foetal-maternal interface during implantation in
ruminants.
5. Insulin-like growth factor

According to Clemons [50], the insulin-like growth factor (IGF)
family includes the two ligands-IGF1 and IGF11, their receptors-
IGF1R and IGFIIR and six binding proteins (insulin-like growth
factor binding protein, IGFBP1-6). IGFs have structural (50%)
homology with pro-insulin and hence the name insulin-like
growth. IGF system is extremely complex and functions in a wide
variety of physiological and pathological conditions in tissues of
various types. It may promote differentiation and migration in
some cells while inhibiting apoptosis in some other cell type.
Besides, the binding of IGFs to their respective receptors may elicit
intracellular signalling cascade using Gi-coupled receptor or
Mitogen Activated Protein Kinase (MAPK) [51] and may involve
a5b1 integrin [52].

IGFs form a part of the body immune response mechanism and
may be produced in response to endotoxins [53], however, they are
reported to be involved in foetal and placental development [54].
During oestrous cycle, IGFs and their binding proteins are
expressed in the cow oviduct [55]. IGF1, IGF11 and IGF1-R are also
expressed in sheep endometrium during oestrous cycle as well as
in early pregnancy [56]. There is an increase in foetal hepatic IGFI,
IGFBP-2, -3 and -4 concentrations during gestation in sheep [57]
while high concentrations of IGF1 and 11 are detectable in human
maternal circulation during early pregnancy [58]. These data sug-
gest endocrine roles of IGFs in regulation of placental and foetal
growth.

Reproduction is a secondary characteristic and occurs essen-
tially when the primary metabolic requirement has been fulfilled.
IGF system also seems to be a link between nutrition and reproduc-
tion. The study of Fenwick et al. [59] demonstrated the effect of
negative energy balance on level of circulating IGF1 after calving
that may impede embryo development and causing embryo
mortality in dairy cow. In related study, low concentration of
IGF1 of live heifer calves indicated the survivability of calf post
partum in dairy [60]. Collectively, it could be inferred that IGFs
are key metabolic signalling molecules that may be used as
indicator/marker of metabolic stress in domestic farm animals
[61]. Stress is a limitation to attainment of full reproductive
potential in mammalian species.

The use of IGF in assisted reproductive technology is well doc-
umented. A reasonable number of studies have shown that IGF1
especially with oestrus cow serum can facilitate embryo develop-
ment and increase blastocyst rate [62], possibly by increasing
embryo signalling via MAPK [63]. In vitro culture of oocyte, luteal
and follicular cells and embryo are important aspect of assisted
reproductive technology. The morphological and functional char-
acteristics of cultured luteal cells are retained in media containing
insulin and luteal angiogenesis is also facilitated with IGF1 [64,65].
IGF1 produces anti-apoptotic effect in regressing porcine corpus
luteum [66] possibly through stimulation of progesterone secre-
tion as was observed in cultured luteal cells obtained from early
pregnant subject [67].

Inclusion of IGF11 to embryo culture media improves blastocyst
rate and blastocyst hatching in vitro in mouse [68]. Addition of 100
ng IGF-I per mL of embryo culture media shortens the transition
from the morula to the blastocyst stage and increases the propor-
tion of blastocysts and hatched blastocysts on day 13 [62]. One of
the major limitations of assisted conception is failure of the blasto-
cyst to implant. A recent study has shown that IGF1 improves
attachment of mouse blastocysts to Ishikawa cells in vitro [69],
thus indicates the potential of IGF1 to enhance adherence of
implantation-competent blastocysts in the surrogate. Summarily,
in spite of several reports of beneficial inclusion of IGF in experi-
mental studies, the clinical application of these findings to improve
results of assisted conception in animal and human has not been
optimised.

6. Leukaemia inhibitory factor

Leukaemia inhibitory factor (LIF) belongs to a group of cytoki-
nes known as interleukin-6 (IL-6) family. Other members in the
group are IL-6 and IL-11. Receptors for LIF are LIF receptor alpha
(LIFRa), LIF receptor beta (LIFRb) and glycoprotein gp130 [70].

The LIF receptor is expressed during secretory and post ovula-
tory phases of the oestrous cycle and is restricted to the luminal
epithelium [71]. The associated signal-transducing component of
the LIF receptor, gp130 is also expressed in both the luminal and
glandular epithelium throughout the mestrual cycle; however,
maximal expression of LIF was reportedly expressed during the
secretory phase at which time implantation occurs [72]. The coex-
istence of a high level of LIF protein, LIF receptor and gp130 on day
4 of gestation in gravid uterus further emphasizes the importance
of LIF in blastocyst implantation in mouse and LIF possible involve-
ment in signalling between the foetus and the endometrium [73].
The role of LIF in implantation was clearly demonstrated in studies
using LIF knockout model in which a LIF null female mice exhibited
failure of implantation that was restored on LIF administration
[74]. Such implantation failure was partly attributed to profound
disturbance of normal luminal epithelial and stromal differentia-
tion during early pregnancy in LIF-null mice which was charac-
terised by non-development of apical pinopods, increased
glycocalyx and failure of endometrial cell decidualization during
the peri-implantation period [75]. In addition, absence of LIFR to
activate Janus kinase-signal transducer and activation of transcrip-
tion 3 (Jak-Stat3) signalling pathway in the LE that could have
induced receptivity in the LE [76].

At early stage of pregnancy, LIF has also been detected in uterus
of mouse [77], rabbit [78], sheep [79], western spotted skunk [80]
and uterine flushing in human with good prognosis for implanta-
tion success [81]. Uterine expression of LIF in human is proposed
to play significant role in embryo implantation, possibly through
an autocrine/paracrine interaction between LIF and its receptor
at the luminal epithelium [72]. Similar effect is proposed in rabbit
[82]. To buttress this line of thought, low expression of endome-
trial LIF at the proliferative phase of the cycle has been associated
with infertility primarily due to implantation failures [83]. This
makes LIF one of the candidate genes/molecules to be considered
when investigating infertility in human especially with those
implantation failures after embryo transfer [84]. Progesterone
and IFNt were shown to regulate expression of LIF and its receptor
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LIFR in sheep GE and trophectoderm during the period of implan-
tation. This was also associated with increased phosphorylation of
signalling molecules STAT3 and MAPK3/1 protein [79] as well asso-
ciation of LIFR and gp130 forming a functional heterodimer in the
uterus during the attachment reaction to direct LIF signalling [85].

These results indicate that LIF is involved in blastocyst implan-
tation to the endometrium. This is possible through generation of
paracrine signalling that complements the endocrine signal
between the mother and the conceptus [86] or through the indirect
local effect of LIF on other implantation-related cytokines pro-
duced by the endometrium or conceptus.
7. Hyaluronan system

Hyaluronan, otherwise known as hyaluronic acid or hyaluro-
nate (HA) is a unique high molecular weight anionic members of
a group of macromolecules called glycosaminoglycans (GAGs) that
constitute major components of the ECM in all animal tissues [87].
At low concentrations, HA is ubiquitous in the body tissue and
fluid. It is detectable in tendon, muscle, joint, uterus and cartilage
with more than 50% of total HA body content existing in the skin
where it keeps the dermis moisturized [88]. It is also present in
various fluids and tissues of the reproductive tract, in amounts that
vary from one mammalian species to another. In human follicular
fluid, HA concentrations range between 48 and 72.8 ng/mL with
significant variation in fluid with fertilized and unfertilized oocytes
[89]. In the serum, HA level gradually increases as the pregnancy
proceeds with the highest concentration (about 100.4 ng/mL)
occurring during labour [90]. There is a high concentration of HA
in the foetal circulation and amniotic fluid. In mice, the HA content
of the uterus is 4053.0 ± 651.4 ng/g during dioestrus [91].

HA is produced by three trans-membrane enzymes hyaluronan
synthases (HAS1, HAS2 and HAS3) and systematically degraded by
hyaluronidase (HYALs). It is also capable of altering cell structure
and function by binding to its receptor, mainly cluster domain 44
(CD44) and receptor for HA mediated motility (RHAMM) [92,93].
Many roles of HA in mammalian reproduction that include cumu-
lus expansion and oocyte maturation, sperm-oocyte interaction,
cervical ripening and dilation as well as development of embryo
have been reviewed elsewhere [94]. HA increases about five to
six folds in mouse uteri on the day of implantation with potential
to support attachment from observation of an embryo cultured on
HA-coated tissue culture plates [95].

During the early stage of its discovery, HA was originally
thought of fulfilling the functions of space filling and tissue hydra-
tion alone. Evidence in the last two decades implies that HA is
involved in diverse physiological processes in the body. The issue
of finding a suitable embryo transfer media partly brought HA into
the scope of reproductive biotechnology research. According to
available data, HA seems to be beneficial in assisted reproductive
technologies involving in vitro fertilization (IVF) and embryo trans-
fer (ET). Its use becomes attractive since HA is a naturally occurring
substance. HA is the only non-sulphated GAG that has been
detected in various segments of the mammalian reproductive tract
including oviduct and uterus [96,97] and expressed at different
stages of embryo development [98]. If HA is produced by the two
principal partakers of implantation (endometrium and embryo),
then, conception of HA roles in implantation is rational. Besides,
HA is up-regulated in endometrial stroma at the time of implanta-
tion in human [99] and enhancement of implantation in many clin-
ical trials in human using HA-supplemented media for embryo
transfer (ET) supports this line of thought [100–102].

As much as there is a plethora of data suggesting beneficial
roles for HA in human embryo implantation, the mechanism
through which HA promotes implantation still remains ambiguous.
It is generally proposed to be attributed to early stages of implan-
tation facilitating apposition and attachment of the trophectoderm
to the maternal endometrium [103]. A possible mechanism of HA
involvement in implantation may also be through the ability of
HA to promote angiogenesis [104], a process which is fundamental
to embryonic development [105]. Other known roles of HA includ-
ing facilitation of cell adhesion, cell to cell matrix and HA mediated
signalling [106,107], induction of heat shock protein and the sup-
pression of apoptosis by low molecular weight HA are all processes
essential for embryonic development and implantation [108].
Besides, HA or its related protein has been closely linked with
low molecular weight cytokines or growth factors such as prosta-
glandins, IGF, epidermal growth factor and LIF [109], which have
been individually implied to be involved in embryo implantation.
Moreover, sheep endometrial cell culture treated in vitro with
low molecular weight HA upregulated transcript expression of
LIF, CD44, IGF but reduced MUC1 expression into the culture
media [110].

Despite these studies indicating beneficial roles of HA in
embryo development, many other studies have failed to find a pos-
itive influence of HA inclusion in embryo transfer media on preg-
nancy rate [102,111]. The result of a recent study clearly
demonstrated the need for HA clearance at the foetal-maternal
interface in sheep for successful implantation to occur [112]. More
studies are required to clarify this ambiguity on the role of HA
inclusion in embryo transfer media and implantation.
8. Cluster domain 44 (CD44)

CD44 is a single-pass trans-membrane glycoprotein located on
the surface of most vertebrate cells [113]. It has been detected in
various segments of the reproductive tract in bovine, ovine, mouse,
mare and human under normal physiological [96,97,114,115] or
pathological conditions such as neoplastic endometrium in human
[116]. CD44 is also detected during early stages of embryo devel-
opment in mouse, bovine and human [117,118]. The specific roles
of CD44 at the blastocyst-endometrial interface during implanta-
tion were demonstrated by the study of Illera et al. [119] where
intra-uterine administration of anti-CD44 impeded implantation
in the rabbit, while no effect was seen in control rabbits with
intra-peritoneal administration of the same antibodies.

The signalling properties of CD44 embrace physiological pro-
cesses like oocyte maturation and implantation [120]. It is a major
receptor for HA [121] and also a receptor for OPN [122]. OPN, as a
primary ligand of ITG binds to cell surface integrins primarily aVb3
heterodimer expressed by trophectoderm and uterus to promote
cell-cell attachment and cell spreading [47]. ITG has been acknowl-
edged to bridge the gaps between the ITG family in the maternal
endometrium and trophoblast, an event that is critical for initiation
of initial attachment during implantation [123]. In the scheme of
attachment cascade, CD44 is proposed to play a crucial role of acti-
vating the OPN which unites ITG in the trophectoderm and the
endometrial luminal epithelia via the ITG avb3 (Fig. 1).

In vitro maturation of oocytes is widely used for in vitro fertil-
ization. The localisation of CD44 in the cumulus cells which pro-
duces HA matrix of the cumulus oophorus [124] is suggestive of
HA-CD44 induced signalling during oocyte maturation. The mech-
anism is that HA-CD44 interaction regulates the tyrosine phospho-
rylation of Connexin 43 (the major gap protein found in the
cumulus oophorus) leading to closure of the gap junctions and sub-
sequent upregulation of maturation promotion factor activity
[120]. The latter brings about resumption of meiotic division in
the oocytes. This line of thought is corroborated by the earlier work
of Schoenfelder and Einspanier [125] in which HA and its receptor
CD44 were reportedly involved in maturation of bovine oocyte.
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It should be reiterated that many studies on HA-CD44 signalling
have focussed on cancer. HA-CD44 signalling in cancer [106,126],
though well-documented in the literature is beyond the scope of
this review. However, HA-CD44 signalling is also observed under
physiological conditions. HYAL2 reportedly caused increased phos-
phorylation of MAPK1/3 signalling in bovine embryos [127]. A
recent study also showed induction of signalling by HA in human
placenta through MAPK1/3 and Phospho inositol 3 kinase sig-
nalling pathways; an event that enhanced trophoblast growth
and invasion possibly through placenta angiogenesis [128]. Even
though the latter study did not show clearly that the signalling
was through HA binding to CD44, it is likely to be through HA-
CD44 because CD44 is the major receptor for HA and earlier studies
have shown expression of CD44 in the human endometrium [96]
and trophoblast [117] where it was proposed to play a significant
role in placenta angiogenesis [129]. Collectively, it may be con-
cluded that CD44 is germane to implantation process specifically
and/or as receptors for other key cytokines OPN and HA already
shown to be involved in implantation cascades.
9. Glycoprotein mucin 1 (MUC1)

Mucins encompass a family of highly glycosylated and high
molecular weight (>250 kDa) glycoproteins expressed on the
epithelia surface subsequent to its production by epithelial tissue
[130]. There are about 15 variants of mucin in mammals, however,
MUC1 is the most widely distributed in reproductive tract
[130,131]. MUC1 expression has been reported in endometrial
luminal epithelia in most mammals that including human, sheep,
horse, pig and rabbit [132]. MUC1 is a non-adhesive molecule
whose regulation, expression and functions with regards to
implantation vary according to species. In sheep, endometrial
MUC1 expression is cyclically regulated by both oestrogen and
progesterone in vivo and in vitro, and directly down regulated by
interferon tau treatment in vitro [133]. Interferon tau is an agent
of maternal recognition of pregnancy produced by the blastocyst
to abrogate luteolysis in ruminants [134].

In some animals like mice, rats, pigs, rabbits and ruminants,
MUC1 expression at the uterine luminal epithelium is attributed
to non-receptivity of the uterus and continued expression during
the period of implantation will hysterically hinder the access of
receptors to their ligands [6]. Therefore, in these species, it is
regarded as an anti-adhesive molecule that inhibits successful
interaction between the maternal endometrium and the implant-
ing embryo. In sheep, MUC1 is up-regulated in the LE of a
progesterone-dominant endometrium observed during the luteal
phase. This property is in consonance with its protective function
against pathogens because there is likelihood of reduced maternal
immune response during this period. Henceforth, for a successful
implantation to occur, MUC1 expression in the endometrial epithe-
lia has to be cleared. This down-regulation also coincides with loss
of progesterone receptor in the endometrial epithelia [135].
Removal of MUC1 from the epithelial surface at implantation sites
is accomplished locally through signals apparently produced by
the blastocyst [136]. In addition it is successively followed with
up-regulation in the expression of other adhesive molecule like
OPN and ITG in the LE [24]. In this context, MUC1 down-
regulation in the endometrial epithelia can be used as a marker
of endometrial receptivity in these species.

Human and mouse have the same haemochorial mode of pla-
centation. For obvious ethical reason, our current understanding
on human embryo implantation is based mostly on experiments
derived from animal models especially mice, even though there
is inverse expression of MUC1 in the endometrium during
implantation in the two species. In a clear contrast to mice,
MUC1 expression is highest at the time when the human endome-
trium is receptive, however, it is systematically removed from the
apical endometrial epithelia in a paracrine pattern by the embryo
just at the time of implantation [137]. MUC1 is regarded as inher-
ent constituent of secretory endometrium and its down-regulation
during this period is associated with recurrent miscarriage in
human [138].

In mare, MUC1 does not inhibit implantation. MUC1 protein is
expressed at foeto-maternal interface throughout the period of
gestation. Therefore, the protracted period of implantation in this
species is not attributable to adhesive property of MUC1 observed
in the LE and the trophoblast before implantation [139]. In the sow,
MUC1 expression is also unique. MUC1 protein was detected in the
attachment and inter-attachment region of the endometrium
between day 13 and 24 of gestation [140] and was found to be
down-regulated during the time of implantation in this species
[23,141].

It is concluded that MUC1 plays crucial roles in successful
implantation and embryo survival, possibly through establishment
of stromal decidualization and its down-regulation either locally at
the region of implantation sites or generally along the entire
endometrial luminal epithelia that is essential to allow ligands
on the trophoblast gain access to their respective receptors on
the endometrial epithelia and vice versa. Altogether, this implies
that MUC1 expression and regulation in endometrial epithelia dur-
ing implantation are species-specific.
10. Conclusions

Finally, cytokines, growth factors and macromolecules are all
chemical messengers that mediate intercellular communication
whose biological actions are mediated locally by specific receptors.
They have been associated with many functions in the body
including injury, inflammation, immune response and implanta-
tion. Pro-inflammatory mediators are produced in response to
inflammation very similar to what are observed during implanta-
tion [142]. Apart from the aforementioned cytokines and growth
factors discussed in this review, there are many more that partake
in implantation in mammalian species. Indeed, there are reper-
toires of genes ‘working behind the veil’ in a molecular template
to bring about the actual observable event of cellular adhesion of
the trophoblast to the maternal endometrium during mammalian
implantation [143–145] and the aforementioned have been shown
to play significant roles.

For implantation to be fruitful, the blastocyst must be implanta-
tion competent, while the endometrium has to be receptive. Cer-
tainly, the different modes of implantation across many
mammalian species dictate different molecular mechanisms to
be involved. Suitable universal markers and mediators of implanta-
tion have proved difficult to be identified partly because very few
morphological or molecular correlates of the receptive/implanta-
tion states are common to all species. No single reliable universal
marker that is strictly restricted only to the receptive phase is
yet to be identified across board. Therefore, a combination of
markers/mediators as done in this study seems logical.

The Assisted reproductive technology (ART) has contributed
significantly towards improving animal and human fertility.
Embryo culture is an emerging technical component of ART. How-
ever, the in vitro environment, no matter the level of simulation,
the immediate macro-environment remains sub-optimal when
compared to the in vivo condition. In the latter, the embryo is
innately exposed to arrays of growth factors, cytokines and macro-
molecules some of which are the subject matter of this review. The
high rate of implantation failure associated with embryo transfer
in assisted conception may possibly be due to absence of some of
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these cytokines/growth factors. It is hoped that a clear understand-
ing of the roles played by these cytokines and growth factors in
mammalian implantation as revealed in this review will motivate
further research on these topics to unravel some unresolved ambi-
guity on their roles in implantation. Such endeavours will facilitate
their inclusion in embryo culture media (if found positive) and ele-
vate them as a vital aspect to be considered along with steroid
functions while developing strategies to improve fertility or inves-
tigating infertility in mammals.
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