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Background and objectives: Statistical shape modeling (SSM) based on computerized
tomography (CT) datasets has enabled reasonably accurate reconstructions of subject-
specific 3D bone morphology from one or two synchronous radiographs for clinical
applications. Increasing the number of radiographic images may increase the
reconstruction accuracy, but errors related to the temporal and spatial
asynchronization of clinical alternating bi-plane fluoroscopy may also increase. The
current study aimed to develop a new approach for subject-specific 3D knee shape
reconstruction from multiple asynchronous fluoroscopy images from 2, 4, and 6 X-ray
detector views using a CT-based SSM model; and to determine the optimum number of
planar images for best accuracy via computer simulations and in vivo experiments.

Methods: A CT-based SSMmodel of the knee was established from 60 training models in
a healthy young Chinese male population. A new two-phase optimization approach for 3D
subject-specific model reconstruction from multiple asynchronous clinical fluoroscopy
images using the SSM was developed, and its performance was evaluated via computer
simulation and in vivo experiments using one, two and three image pairs from an alternating
bi-plane fluoroscope.

Results: The computer simulation showed that subject-specific 3D shape reconstruction
using three image pairs had the best accuracy with RMSE of 0.52 ± 0.09 and 0.63 ±
0.085 mm for the femur and tibia, respectively. The corresponding values for the in
vivo study were 0.64 ± 0.084 and 0.69 ± 0.069mm, respectively, which was
significantly better than those using one image pair (0.81 ± 0.126 and 0.83 ±
0.108 mm). No significant differences existed between using two and three image pairs.

Conclusion: A new two-phase optimization approach was developed for SSM-based 3D
subject-specific knee model reconstructions using more than one asynchronous
fluoroscopy image pair from widely available alternating bi-plane fluoroscopy systems
in clinical settings. A CT-based SSM model of the knee was also developed for a healthy
young Chinese male population. The new approach was found to have high mode
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reconstruction accuracy, and those for both two and three image pairs were much better
than for a single image pair. Thus, two image pairs may be used when considering
computational costs and radiation dosage. The new approach will be useful for generating
patient-specific knee models for clinical applications using multiple asynchronous images
from alternating bi-plane fluoroscopy widely available in clinical settings. The current SSM
model will serve as a basis for further inclusion of trainingmodels with a wider range of sizes
and morphological features for broader applications.

Keywords: statistical shape model, subject-specific, knee joint, digitally reconstructed radiographs, two-phase
optimization

INTRODUCTION

The knee joint plays an essential role in the normal function of the
lower extremities, providing stability and mobility necessary for
locomotion while bearing the body’s weight. Knowledge of the
biomechanical interactions of the bones and their surrounding
force-bearing tissues is thus crucial for a better understanding of
the functional changes of the knee under normal, pathological
and post-surgical conditions (Wilson et al., 1998; Eck et al., 2002;
Kleipool and Blankevoort, 2010). To this end, it is critical to be
able to describe accurately individual-specific morphology of
bones. These descriptions play important roles in various
clinical applications such as fluoroscopy-based kinematic
measurement (Lu et al., 2008), pre-surgical planning (Krekel
et al., 2006), customized finite element analysis (Fernandez
et al., 2004), joint implant design (Cheng et al., 1999;
Harrysson et al., 2007) and computer-aided orthopaedic
surgery (Gamage et al., 2009).

An accurate description of the shapes of bones is particularly
important in bone model-based tracking techniques for in vivo
measurement of three-dimensional (3D) joint kinematics for
evaluating functional changes owing to disorders and/or
treatments (Georgoulis et al., 2003; McDonald et al., 2014;
Kobayashi et al., 2015), and for deriving soft tissue
deformations and forces (Li et al., 2004; Haraguchi et al.,
2009; Wang et al., 2013; Ding and Khan, 2019). Among the
existing methods, fluoroscopy-to-CT or MRI registration
techniques have been shown to be effective and less-invasive
in measuring the 3D kinematics of various joints during weight-
bearing functional activities (Li et al., 2008; Anderst et al., 2009;
Tsai et al., 2013; Lin et al., 2014a). These techniques use subject-
specific, CT- or MRI-based bone models and determine their 3D
pose by searching for the final pose of the bone model whose
digitally reconstructed radiograph or projections on the image
plane best match the fluoroscopy image(s) (Tsai et al., 2010).
Techniques using single-plane fluoroscopy have been applied to
3-D kinematic measurements of normal (Lu et al., 2008;
Yamaguchi et al., 2009), pathological (Dennis et al., 2005;
Hamai et al., 2009; Kobayashi et al., 2015) and replaced joints
(Dennis et al., 2003; Liu et al., 2007; Yamaguchi et al., 2011), but
the measured translations normal to the image plane are
substantially less accurate than those of the other components
(Fregly et al., 2005; Lin et al., 2014b). Bi-plane approaches address
the issue by simultaneously incorporating an additional X-ray

image plane, achieving much higher accuracy (Li et al., 2008;
Anderst et al., 2009; Brainerd et al., 2010; Tsai et al., 2013; Lin
et al., 2014b; Kapron et al., 2014; Ito et al., 2015). Generally, CT-
based models are more accurate than MRI-based models but the
radiation exposure is of concern. Therefore, reconstruction of
three-dimensional patient-specific bone models of accuracy
comparable to that of CT-based models from planar
radiographs or fluoroscopy images will be useful for reducing
the radiation exposure.

Statistical shape modeling (SSM) techniques have been used in
the development of fully automated bone segmentation methods
(Lamecker et al., 2004; Josephson et al., 2005; Fripp et al., 2006),
parametric descriptions of the bony geometry (Seber, 2009) and
reconstruction of subject-specific bone models using 2D/3D
registration (Baka et al., 2011; Valenti et al., 2016a; Valenti
et al., 2016b; van IJsseldijk et al., 2016; Yu et al., 2016; Cerveri
et al., 2017; Smoger et al., 2017; Yu et al., 2017; Zheng and Yu,
2017; Fotsin et al., 2019; Cerveri et al., 2020; Wu and Mahfouz,
2021). With the SSM, a bone model is described as the mean
shape superimposed by a linear combination of the principal
components of shape variations of the training dataset.
Reconstruction of a bone model thus involves determining the
coefficients of the linear combination that best match subject-
specific information such as from one or more radiographs
(Lamecker et al., 2006; Baka et al., 2011; Sarkalkan et al., 2014;
Karade and Ravi, 2015). So far, existing SSM models are built
based mainly on Caucasian populations (Baka et al., 2011; Baka
et al., 2012; Karade and Ravi, 2015; Tsai et al., 2015). However,
morphological differences have been noted between Chinese and
Caucasian population (Cheng et al., 1999; Mahfouz et al., 2012).
For example, Cheng et al showed significant differences in the
ratios of anteroposterior and mediolateral dimensions between
the resected surfaces of the tibial plateau in a Chinese patient
group and the tibial component of a total knee replacement
designed based on the Caucasian population (Cheng et al., 1999).
They suggested that between-population differences in the knee
morphology directly impact the design and implantation of total
knee replacements. Another study by Mahfouz et al. (2012) also
identified significant differences in the mean dimensions of the
three-dimensional morphology of the distal femur and proximal
tibia among different ethnic populations. These previous results
show that knee shape variations among multiple ethnic groups
are greater than those of a single ethnic group. Therefore, an SSM
dataset aiming to address more than one ethnic group would need
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a sample size greater than that for a single ethnic group.
Considering the challenge for a dataset big enough to cover
the shape variations in multiple ethnic groups and the gap in
the SSM for the Chinese population, there is a need to establish a
CT-based SSM for a Chinese group, which can be further
expanded to include a wider range of subjects for basic
research and clinical applications.

The accuracy of the model’s reconstruction using SSM can be
affected by the number of radiographic images and the algorithm
used. Theoretically, the more the images used, the more accurate
the reconstructed bone model. Alternating bi-plane fluoroscopy
systems are widely available in hospitals, providing a single pair of
asynchronous fluoroscopy images. More image pairs can be
obtained but movement of either the bones or the clinical
fluoroscopy systems cannot be avoided, leading to temporally
and spatially asynchronous images. Previous studies have mainly
used a single fluoroscopy image (Fleute and Lavallée, 1999;
Lamecker et al., 2006; Zheng et al., 2006; Wu and Mahfouz,
2021) or a single pair of fluoroscopy images (Laporte et al., 2003;
Tang and Ellis, 2005; Baka et al., 2011; Zhu and Li, 2011; Baka
et al., 2012) for 3D model reconstruction. More recent computer
simulation studies used multiple image pairs for model
reconstruction but considered only synchronous images
(Valenti et al., 2016a; Valenti et al., 2016b; Smoger et al.,
2017), so the methods proposed in these studies cannot be
applied to alternating bi-plane fluoroscopy systems in clinical
settings. Moreover, the accuracies reported were not
representative of those in the scenarios of clinical applications.
Up to the present, no study was found to evaluate the effects of
image number on the accuracy of SSM-reconstructed
personalized bone models of the knee to determine
systematically the optimum number of planar images for
personalized SSM-model reconstruction via an in vivo
experimental setup.

The current study aimed to develop a new approach for 3D
subject-specific knee shape reconstruction from multiple
asynchronous fluoroscopy images from 2, 4, and 6 X-ray
detector views using a CT-based SSM model of the knee; and
to determine the optimum number of planar images for the new
approach by systematically evaluating the effects of image
number on reconstruction accuracy via computer simulation
and in vivo data. It was hoped that the new approach would
be used not only with the current SSM model but also with other
existing SSM models for 3D subject-specific knee shape
reconstruction from asynchronous fluoroscopy images, and
that the current CT-based SSM model could form a basis for
further inclusion of a wider range of subjects for basic research
and clinical applications.

MATERIALS AND METHODS

Statistical Shape Modeling of the Knee
The general procedure of the SSM of the knee included 1)
obtaining a set of CT-derived training shape models, 2)
choosing a reference model with a predefined surface mesh; 3)
establishing shape (mesh) correspondence between individual

training models by transforming the reference model to
individual training ones; and 4) determining the mean model
and primary modes of shape variations using Principal
Component Analysis (PCA) (Figure 1).

Training Shape Models of the Knee
The training shape models of the knee were reconstructed from
the CT data of the distal femur and the proximal tibia from 60
healthy Chinese males (age: 22.89 ± 2 years; body height: 172.64 ±
5.2 cm; body mass: 66.35 ± 10.6 kg) who gave informed written
consent as approved by the Institutional Review Board. The CT
datasets were acquired for a total length of about 420 mm with a
voxel size ranging from 0.441 mm × 0.441 mm ×
0.625–0.822 mm × 0.822 mm × 0.625 mm (PQ-5000, Picker
International, United States). The regions of the femur and
tibia were segmented semi-automatically and reconstructed to
obtain subject-specific training shape models using ITK-SNAP
3.6.0 (University of Pennsylvania, United States).

Shape Correspondence
Shape correspondence between individual training shape
models was established by applying a self-organizing network
with the Growing and Adaptive Meshes (GAMEs) algorithm
(Ferrarini et al., 2007) to a randomly-selected knee model. A
reference model was then selected as the model that was closest
to the mean shape of the individual models. The reference
model was spatially aligned to each of the training shape
models via the Iterative Closet Point (ICP) method (Besl and
McKay, 1992), and subsequently deformed non-rigidly to match
fully with the shape model using the Coherent Point Drift
(CPD) method (Myronenko and Song, 2010), yielding
training shape models with corresponding meshes. The CPD
method has been proven to have robust and accurate
performance with respect to noise, outliers and missing
points (Myronenko and Song, 2010).

Shape Alignment and Shape Variation
All the training models with corresponding meshes were best-
aligned using Generalized Procrustes Analysis (GPA), minimizing
the surface distances between all the models (Goodall, 1991; Cootes
and Taylor, 2004). These best-aligned models were then analyzed
using Principal Component Analysis (PCA) (Wold et al., 1987) to
give a set of eigenvalues λi and eigenvectors ϕi, with which the form
of the SSM was given as follows.

ms � �m +∑c

i�1 biϕi (1)

where ms is a training shape model; �m is the mean shape of all
training models; ϕi indicates the principal modes of the shape
variation following the descending order of the corresponding
eigenvalues λi; bi are shape parameters bounded within an
interval of [−3 ��

λi
√

, 3
��
λi

√ ]] (Cootes and Taylor, 2004;
Sarkalkan et al., 2014); and c is the number of principal
modes used for generating ms such that the ratio of the
accumulated variance of eigenvalues to the total variance
reaches a given level such as 0.9–0.98 (Heimann and Meinzer,
2009).
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Reconstruction of Personalized Statistical
Shape Model
To generate personalized bone shape model using the trained
SSM with asynchronous 2D images of the bone, a two-phase
optimization scheme was developed as described below
(Figure 2).

Digitally Reconstructed Radiograph
The two-phase optimization scheme utilized a 2D fluoroscopy to
3D model registration technique. This required the generation of
digitally reconstructed radiographs (DRR) of the volumetric
model of the bone onto the image planes of the fluoroscopy
system. Generally, the planar detector of the fluoroscopy system
was modeled as a perspective projection system, and the
parameters for the positions of the X-ray sources relative to
the image plane and possible image distortions were obtained
via a validated calibration procedure (Tsai, 1987; Baltzopoulos,
1995; Kaptein et al., 2011). Under the perspective projection
model, DRR of the bone was then produced using the ray-tracing
method with trilinear interpolation (Otake et al., 2011), casting
rays from a point source of x-ray to each pixel position of an
image plane through the volumetric bone model. Each of these
rays went through a number of voxels of the volume, the linear
attenuation coefficient values of which were then integrated along
the ray and projected onto the imaging plane to obtain a DRR
image resembling a radiograph (Siddon, 1985; Penney et al., 2001;
De Bruin et al., 2008).

Phase 1: Pose and Shape Optimization
The first phase of the new method involved the search for the
optimum set of design variables to maximize the similarity
between the DRRs of the volumetric bone model and the

multiple asynchronous 2D fluoroscopy images (Figure 2). The
design variables were the pose parameters (i.e., six degrees-of-
freedom of the bone) and the coefficients for the firstm principal
modes of the shape variation, i.e., m shape parameters bi, i � 1,m.
The initial guesses of the pose parameters of themean shapemodels of
the femur and tibia were manually assigned separately by an operator.
For generating the DRRs of the volumetric bone model, the shape
model defined by the shape parameters was voxelized to simulate the
CT-based bone model by filling the interior of the shape model with
voxels by taking intersections of the interior of the shapemodel, and a
set of parallel virtual 2-D slices in the transverse plane with a pixel size
of 1 × 1mm and slice thickness of 1mm (Patil and Ravi, 2005). The
resulting virtual voxels interior to the shape model were assigned a
value of 700 to simulate theHounsfield unit (HU) value of bone, while
voxels outside the contours were assigned −1,000 to simulate air.

For a given set of design variables, the DRRs of the voxelized
bone model in space were generated and compared with each
corresponding fluoroscopy image according to the a similarity
measure calledWeighted Edge-Matching Score (WEMS, fw) that
emphasized the alignment of longer edges between the DRRs and
fluoroscopy images (Tsai et al., 2010). For the ith fluoroscopy
image, the edges of the image (Ef,i) were first detected using the
Canny operator (Canny, 1986), and then dilated with a given
band to giveBf,i. Similarly, the edges of the DRRwere also detected to
give EDRR,i. The separated edges in EDRR,i were given weightings
depending on their lengths and stored in a weighting image WDRR,i.
The WEMS values to be minimized were defined as follows.

fw(x, y, z, α, β, γ, b1, . . . , bm)i �
−∑(x,y)Bf,i(x, y) ·WDRR,i(x, y)

∑(x,y)WDRR,i(x, y)
(2)

FIGURE 1 | The general procedure of statistical shape modeling (SSM) for the human knee: 1) a set of CT-derived training shape models, 2) choosing a reference
model; 3) establishing shape (mesh) correspondence and alignment between individual trainingmodels; 4) determining the mean shapemodel and shape variations; and
5) determining primary modes of shape variations using Principal Component Analysis (PCA).
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For p fluoroscopic images, the combined similarity measure to
be minimized is defined as follows.

fw,p � ∑
p

i�1
fw(x, y, z, α, β, c, b1, . . . , bm)i (3)

The initial shape parameters b1, . . . , bm were set to be zero
because the mean training model and initial pose parameters
were manually given via a graphic user interface. The resulting
optimization problem was solved using a genetic algorithm
(Goldberg and Holland, 1988).

Phase 2: Sequential Refined Search
In the second phase, the shape model and its pose obtained in
Phase 1 were refined further in two steps. At the first step, the
shape model was further refined by including n additional shape
parameters, i.e., bm+1, . . . , bm+n, for a better match with p
fluoroscopy images taking the pose and shape parameters
obtained in Phase 1 as fixed parameters. The similarity

between the model-projected DRRs and the corresponding
fluoroscopy images for this refining search was defined using a
metric called the gradient correlation (GC, fGC) (Penney et al.,
1998). The sum of the −fGC of p fluoroscopy images was taken as
the cost function to be minimized, as follows.

fshape � ∑
p

i�1
−fGC(bm+1, . . . , bm+n)i (4)

The resulting optimization problem was solved using a genetic
algorithm (Goldberg and Holland, 1988), giving the final shape of
the bone model described by b1, . . . , bm+n. At the second step with
the final bone model, the pose parameters were further refined
such that the model-projected DRRs best matched the p
fluoroscopy images, minimizing the sum of the −fGC of p
fluoroscopy images as follows.

fpose � ∑
p

i�1
−fGC(x, y, z, α, β, c)i (5)

FIGURE 2 | Two-phase optimization scheme for reconstructing a personalized statistical shape model of the knee. In the current study, m � 10 and n � 10
were taken.
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The resulting optimization problem was also solved using a
genetic algorithm (Goldberg and Holland, 1988), giving the final
pose of the bone model.

Evaluation of the SSM
The performance of the proposed SSM method was evaluated
using computer simulation and in vivo studies as described below.

Computer Simulation
Computer simulations using a leave-one-out cross-validation
scheme were performed to evaluate the proposed SSM and
personalized reconstruction procedure under ideal conditions
using synchronized images. Six out of the 60 subjects from the
training shape model were randomly chosen one at a time, and
the corresponding CT-based model was used to simulate the
personalized reconstruction procedure, but was ruled out in
building the SSM. For each selected subject, multiple X-ray
image pairs simulating those produced from the bi-plane
fluoroscopy system were generated by perspective projection of
the CT-based volumetric knee model onto the image planes of the
simulated fluoroscope. The CT-based volumetric knee model was
positioned at the isocenter of the simulated fluoroscopy system,
and three combinations of asynchronous X-ray image pairs (DRR
pairs) were produced for evaluating the personalized
reconstruction process: 1) one image pair (two orthogonal
images) simulating the bi-plane fluoroscopy system; 2) two
image pairs (four images produced by rotating the simulated
bi-plane fluoroscope around the isocenter by 45°); 3) three image
pairs (six images produced by rotating the simulated bi-plane
fluoroscope around the isocenter by 30° and 60°) (Figure 3). The
3D personalized model of the knee was reconstructed from each
of the three combinations of asynchronous image pairs using the
proposed reconstruction procedure.

In vivo Study
Ten healthy young male volunteers (age: 23 ± 2.36 years; height:
174.6 ± 4.27 cm; body mass: 63.6 ± 9.92 kg) without any
neuromusculoskeletal disease or any surgical history of the

lower limbs participated in the current study. The subjects
were fully informed of the experimental protocol as approved
by the Research Ethics Committee of China Medical University and
Hospital (approval number: CMUH107-REC2-078), and gave their
written consent prior to the experiment. All the subjects were scanned
by CT (PQ-5000, Picker International, United States) to reconstruct the
volumetric model of the knee with a voxel size of 0.709 × 0.709 ×
0.625mm. A bi-plane fluoroscopy system (Allura XPER FD 20/20,
PhilipsMedical Systems, Netherlands) was used to acquire the dynamic
X-ray images at 512 × 512 resolution during the experiment. Prior to
data acquisition, intrinsic and extrinsic parameters for the bi-plane
projectionmodels of thefluoroscopy systemwere determined following
well-established calibration procedures (Kaptein et al., 2011). Four lead
markers were attached on the distal thigh and proximal shank, and one
lead marker was attached on the patella. The subject was then asked to
stand on a rotating plate with the knee located at the isocenter of the bi-
plane imaging system. Using the plate, the lower limb was rotated
sequentially by 0°, 30°, 45°, and 60° about the vertical axis while the bi-
plane X-ray images were acquired. The 3D coordinates of the lead
markers were determined using radiostereometric analysis for each pair
of fluoroscopy images (Karrholm, 1989). Transformations between the
X-ray image pairs were obtained by co-registering the known
coordinates of the lead markers, from which the three combinations
of image pairs were obtained as in the computer simulation study.

Error Metrics
To evaluate the performance of the proposed SSM and subject-
specific model reconstruction procedure using different numbers
of image pairs, the shape differences between the reconstructed
model and the corresponding gold-standard CT-based model
were quantified using a metric based on point-to-surface
distances as follows (Cignoni et al., 1998):

e(p, S) � min
p′ϵS

d(p, p′) (6)

For each point p on the surface of the SSM-generated
personalized bone model, its shortest Euclidean distance e to a
point p′ on the surface S of the CT-derived bone model was

FIGURE 3 | Illustration of the views of simulated X-ray images for three image pair conditions. The first image pair was obtained from the starting reference detector
position. The second and third image pairs were obtained by rotating the bi-plane fluoroscope around the isocenter from the reference detector position by 30° and 60°,
respectively.
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calculated, and the root-mean-squared values of e over the surface
points (RMSE) was then obtained as a measure of the
performance of the proposed method.

Statistical Analysis
Means and standard deviations of the RMSE were obtained for
both computer simulation and in vivo study. For computer
simulations, univariate analysis with a polynomial linear test
was performed to determine the trend of the reconstruction
accuracy variables with increasing image pairs. For the in vivo
study, paired t-tests were used to compare the accuracy between
image pair conditions, and between the results of Phases 1 and 2
of the two-phase optimization method. All statistical analyses
were performed using SPSS (SPSS Inc., Chicago, United States) at
a significance level set at 0.05.

RESULTS

Principal Component Analysis
From the principal component analysis of the trainingmodels, it was
found that the first principal component of the femur and tibia
accounted for 70.7 and 58.9% of the total shape variance,
respectively, while the accumulated variance of the first ten, first
twenty and first thirty consecutive principal components were 85.32,
91.13, and 94.91% for the femur respectively, and 84.14, 90.45, and
94.86% for the tibia, respectively. For the femur, the first principal
component was related to the deformation of the overall shape of the
femur, while the second one was related to the deformation of the
medial and lateral condyles, and the third one to the medial and

lateral aspects of the femoral shaft (Figure 4). For the tibia, the first
principal component would deform the overall shape of the tibia
while the second one would deform the medial and lateral condyles
and the radius of the shaft, and the third one was related to the
variance in the shapes of the shaft of the tibia (Figure 4).

Computer Simulation
The RMSE of the reconstructed knee models using one image pair
for the femur and tibia were 0.62 ± 0.075 and 0.72 ± 0.076 mm,
respectively. The corresponding values for two and three image
pairs were 0.57 ± 0.088 and 0.67 ± 0.074 mm, and 0.52 ± 0.09 and
0.63 ± 0.085 mm, respectively, (Table 1). The RMSE of the
reconstructed knee models decreased linearly as the number of
fluoroscopy image pairs increased.

In vivo Study
The RMSE of the reconstructed knee models using one image pair
for the femur and tibia were 0.81 ± 0.126 and 0.83 ± 0.108 mm,
respectively, Figure 5). The corresponding values for two and
three image pairs were 0.68 ± 0.088 and 0.73 ± 0.04 mm, and
0.64 ± 0.084 and 0.69 ± 0.069 mm, respectively, (Figure 5). The
RMSE of both the femur and tibia for one image pair were
significantly greater than those for two and three image pairs,
while no significant differences existed between two and three
image pairs (Figure 5). The RMSE of the reconstructed knee
models were significantly reduced after Phase 2 optimization for
all image pair conditions for the tibia and for 1, 2, and image pairs
for the femur when compared to those with only Phase 1
optimization (Table 2). Comparisons of these results with
those of previous studies are also shown in Table 3.

FIGURE 4 | The 3D shape variation of SSMs models of (A) the femur and (B) the tibia with colors representing the difference caused by each principal component
on the reference model. The first few principal components account for most of the total shape variance.
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DISCUSSION

The current study aimed to develop a new two-phase
optimization approach for SSM-based 3D subject-specific knee
model reconstructions using more than one asynchronous
fluoroscopy image pair from widely available alternating bi-

plane fluoroscopy systems in clinical settings. The approach
was implemented and evaluated using a CT-based SSM model
of the knee for a healthy young Chinese male population. Both
computer simulation and in vivo evaluations shoCw that the new
two-phase optimization approach with SSM was capable of
reconstructing subject-specific knee models with high
accuracy, and two or three image pairs achieved a much better
accuracy than using a single image pair for both the femur and
tibia. It was also found the two-phase optimization was indeed
producing more accurate results than single optimization phases.
The performance of the SSM model of the knee was affected by
several factors, primarily the population and number of training
models, shape correspondence, shape alignment, and the
selection of the principal components (Baka et al., 2011;
Sarkalkan et al., 2014; Tsai et al., 2015). The number of
training models in the current study was higher than that of
most previous studies (from 22 to 43 training models) (Baka et al.,
2011; Zhu and Li, 2011; Karade and Ravi, 2015), covering greater
variability of the geometric features of the joint. The current SSM
of the knee joint based on a healthy young Chinese male
population has been shown to produce results with high
reconstruction accuracy for other subjects in the same
population. This may be expected to be better than using
Caucasian-based SSM because ethnic differences in knee
morphology have been observed (Baka et al., 2011; Baka et al.,
2012; Karade and Ravi, 2015; Tsai et al., 2015). However, further
studies will be needed to confirm whether the current Chinese-
based SSM would enable subject-specific reconstruction of a
Caucasian knee at the same accuracy. Further inclusion of
models with a wider range of sizes and morphological features
will also be needed for broader applications. In the current
approach, the entire pre-processing for mesh correspondence
between training models was fully automated and free from any
manual interventions, avoiding the possible variability in node
distributions resulting from manual digitization (Zhu and Li,
2011; Tsai et al., 2015), and thus contributing to the final
accuracy.

The shape modes used for representing subject-specific
models were chosen considering the accuracy and
computational efficiency. The first few principal components
with higher eigenvalues contributed to the major shape
variances, but the number of shape modes chosen may vary
among SSMmodels depending on the population or ethnic group
from which the training datasets were obtained. For example, the
femur was determined with the first 20, while the tibia was
determined with the first 30 by Tsai et al. (2015); Baka et al.
adopted the first 30 PCA to retain 95% of the variance (Baka et al.,
2011); while the first nine and first seven modes were chosen for

TABLE 1 | The means (standard deviations) of the RMSE (unit: mm) for the femur and tibia shape reconstruction using 1, 2, and 3 image pairs by computer simulation. p
values of a univariate analysis with a polynomial linear test are also given for the trend of reconstruction accuracy with increasing image pairs.

1 image pair 2 image pairs 3 image pairs p

Computer simulation Femur 0.62 (0.075) 0.57 (0.088) 0.52 (0.09) 0.048*
Tibia 0.72 (0.076) 0.67 (0.074) 0.63 (0.085) 0.049*

*: p< 0.05, significant linear trend.

FIGURE 5 | The means (standard deviations) of the RMSE (unit: mm) for
the in vivo femur (A) and tibia (B) shape reconstruction using 1, 2, and 3 image
pairs. The asterisks indicate significant differences (p < 0.05).

TABLE 2 | Means (standard deviations) of the RMSE (unit: mm) for the in vivo
femur and tibia shape reconstruction after Phase 1 and Phase 2 using the two-
phase optimization method.

Model No. of image pairs Phase 1 Phase 2 p

Femur 1 pair 0.89 (0.12) 0.81 (0.13) < 0.05*
2 pairs 0.79 (0.11) 0.68 (0.09) < 0.05*
3 pairs 0.79 (0.08) 0.64 (0.08) < 0.05*

Tibia 1 pair 1.06 (0.19) 0.83 (0.11) < 0.05*
2 pairs 0.91 (0.08) 0.73 (0.04) < 0.05*
3 pairs 0.83 (0.10) 0.69 (0.07) < 0.05*

*: p< 0.05, significant difference.
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the proximal and distal femur to account for accumulated shape
variances of about 85.9 and 86.1%, respectively, by Tang et al.
(Tang and Ellis, 2005). These previous SSMmodels were all based
on Caucasian groups or a Caucasian population. In the current
SSM model for the Chinese population, accumulated shape
variances of about 90% were achieved with the first 20 PCA
for both the femur and tibia. While the more the number of shape
parameters used, the higher the accuracy a training model can be
described, the choice of the number of shape parameters can have
direct impact on the accuracy and efficiency of the reconstruction
of a subject-specific 3D knee model from planar images.

The new two-phase optimization approach has several
important features to achieve high accuracy (sub-millimeter in
RMSE) and efficiency in 3D subject-specific reconstruction of the
knee. Firstly, the 2-phase optimization scheme used model-
generated DRRs for the 3D/2D image registration in the
optimization procedure, contributing to the observed high

accuracy in reconstructing subject-specific knee models
(Table 1; Figure 5). This is in contrast to previous methods
using mainly the contours of the model projected onto the
fluoroscopy imaging plane (Laporte et al., 2003; Baka et al.,
2011; Zhu and Li, 2011; Baka et al., 2014; Karade and Ravi,
2015). While the assumed homogeneous density of the bone
model did not reproduce the real CT radiodensity information,
the resulting attenuation of bony contours and structural
overlapping on the DRRs (e.g., bilateral condyles) helped
improve the structural similarities with the fluoroscopy
images. Secondly, by taking the shape and bone pose
parameters as design variables and the summation of the
similarity measures of all the image pairs as objective function,
the new 2-phase optimization approach was successful in tackling
the problems of temporal and spatial asynchronization of the
bones (changes in bone poses) involved in the imaging at
different time instances in the reconstruction of subject-

TABLE 3 | Comparisons of the bone type, number of reconstructed models, number of fluoroscopy images, methods of modeling (number of PCA if using SSM), absolute
mean errors, RMSE, image synchronization, and the experiment type for 3D knee shape reconstruction between published studies and the current study.

Bone No.
of

models
tested

No.
of

images

Method
(No.

of PCA)

Absolute
mean
error
(mm)

RMSE
(mm)

Fluoroscopy
images

Experiment

Fleute et al. Fleute and Lavallée
(1999)

Distal femur - 2 SSM (-) - 0.99–1.33 synchronized simulation

Laporte et al. Laporte et al.
(2003)

Distal femur 8 2 NSCC (-) - 1.4 synchronized in vitro

Tang and Ellis. Tang and Ellis
(2005)

Proximal/Distal
femur

2 3 Statistical Atlas
(9/7)

- 1.72/1.95 synchronized simulation

Filippi et al. Filippi et al. (2008) Full femur 5 2 FFD (-) 1.4 - synchronized simulation
Gamage et al. Gamage et al.
(2009)

Full femur 6 2 Generic
model (-)

0.86 - synchronized in vitro

Zhu and Li. Zhu and Li (2011) Distal femur 10 2 SSM (-) 0.9 - synchronized in vitro
Baka et al. Baka et al. (2011) Distal femur 10 2 SSM (30) - 1.68 synchronized in vitro
Karade et al. Karade and Ravi
(2015)

Distal femur 5 2 LSD (-) 1.2 1.4 synchronized in vitro

Tsai et al. Tsai et al. (2015) Distal femur/
Proximal tibia

4 2 SSM (20/30) 0.67/0.45 - synchronized in vitro

Yu et al. Yu et al. (2016) Proximal femur 10 2 SSM (-) 1.29 - synchronized simulation
Valenti et al. Valenti et al.
(2016a)

Distal femur 40 6 SSM (-) 0.43–2.19 - synchronized simulation

Valenti et al. Valenti et al.
(2016b)

Distal femur 1 6 SSM (-) Median errors:
3–4 mm

- synchronized simulation

van IJsseldijk et al. van
IJsseldijk et al. (2016)

Distal femur/
Proximal tibia

6 1 SSM (-) - 0.49–0.74 single plane in vivo

Cerveri et al. Cerveri et al.
(2017)

distal femur 6 2 SSM (-) - 0.7–0.8 - simulation

Smoger et al. Smoger et al.
(2017)

Patella 40 10 SSM (-) 0.45 - synchronized simulation

Yu et al. Yu et al. (2017) Proximal femur 20 2 SSM (-) 1.3 - synchronized simulation
Zheng et al. Zheng and Yu
(2017)

Femur 10 2 SSM (-) 1.3 - synchronized simulation

Fotsin et al. Fotsin et al. (2019) Femur/Tibia/Fibula 18 2 SSM (-) - 0.72/0.99/0.82 - simulation
Cerveri et al. Cerveri et al.
(2020)

Distal femur+ 99 - SSM (-) 1.28 - - simulation
Proximal tibia 5 1 SSM (-) - single plane in vivo

Wu et al. Wu and Mahfouz
(2021)

Femur/Tibia 1.19/1.15

This study Distal femur/
Proximal tibia

10 2 SSM (20/20) 0.61/0.68 0.81/0.83 asynchronized in vivo
4 0.58/0.60 0.68/0.73
6 0.52/0.55 0.64/0.69
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specific bone models. Using two or three pairs of fluoroscopy
images from a clinical alternating bi-plane fluoroscopy system,
very high accuracy with an RMSE of less than 0.74 mm was
achieved for both femur and tibia. This is better than most
previously reported SSM-based methods using a single
synchronized image pair for the femur with RMSE ranging
from 1.33 to 1.68 mm (Fleute and Lavallée, 1999; Laporte
et al., 2003; Baka et al., 2011; Karade and Ravi, 2015)
(Table 3). Baka et al. (2014) used multiple frames of images of
the knee during particular tasks from two fixed perspective views
of a synchronous bi-plane fluoroscopy system. The shape
customization process would thereby involve simultaneously
searching for the optimal shape parameters and the pose
parameters from a great number of image frames. In contrast,
the current approach acquired fluoroscopy image pairs from 4
different views (0°, 30°, 45°, and 60°) with respect to the subject’s
knee by rotating the subject with a custom-made rotating plate so
the x-ray image pairs from various perspectives could capture
more skeletal features (Figure 3). Also, the knee images were
collected in the standing posture instead of during motion tasks
as in Baka et al. for images with less motion blur. The
transformations among the fluoroscopic views were
determined during an experimental calibration procedure, so
the shape customization process involved fewer unknown
parameters (i.e., shape parameters and pose parameters in one
instant). All these features were considered beneficial to the shape
reconstruction process. Thirdly, by taking only the first 10 shape
parameters with an accumulated variance of 85% in Phase 1, the
new approach enabled a relatively fast search of a first estimate of
the shape and pose of the bone. This was then followed by the
refined search with the second 10 shape parameters with an
accumulated variance of 90% in Phase 2 for a significantly
increased accuracy (Table 2). With these new features, the 2-
phase optimization approach was able to produce results with
sub-millimeter accuracy in the 3D knee shape reconstruction as
compared to previous studies (Table 3).

The current computer simulations showed that more
synchronized image pairs improve reconstruction
performance. Similar outcomes were also found in previous
computer simulation studies (Tang and Ellis, 2005). However,
under real life conditions, the addition of an extra pair of images
did not increase the reconstruction accuracy as shown by the
current in vivo study (Tables 1), presumably owing to the errors
arising from the temporal and spatial asynchronization of the
images. The current results suggest that the reconstruction
accuracy could benefit from more images as long as the
temporal and spatial asynchronization of these images are
taken into account in the reconstruction procedure.
Considering both reconstruction quality and computing
efficiency, two image pairs would be the best choice for
subject-specific model reconstruction when using clinically
obtained asynchronous images.

The current study established the first SSM model of the
knee for a healthy young Chinese male population. With the
proposed 2-phase optimization approach, the reconstruction
of subject-specific knee model from two or more pairs of
temporally and spatially asynchronous fluoroscopy images

was made possible, and was shown to produce highly
accurate results. Further inclusion of other types of knee
models, such as females and older people and those with
disease or deformities, in the training database would be
helpful for expanding the current database for future basic
research and clinical applications such as studies of the
features of specific diseases or deformities of the joint.
Further inclusion of Caucasian knee models in the training
database or as test models would also enable quantitative
comparisons of the performance of the new approach in
subject-specific model reconstructions for Chinese and
Caucasian subjects using different datasets. With the
accuracy of the SSM model and the 2-phase reconstruction
method, the proposed approach will also be useful for studying
image-based knee kinematics during functional activities, as
well as for clinical applications using asynchronous
fluoroscopy systems.

CONCLUSION

A new two-phase optimization approach was developed for SSM-
based 3D subject-specific knee model reconstructions using more
than one asynchronous fluoroscopy image pair from widely
available alternating bi-plane fluoroscopy systems in clinical
settings. A CT-based SSM model of the knee was also
developed for a healthy young Chinese male population. Both
computer simulation and in vivo evaluations show that the new
optimization approach was capable of reconstructing subject-
specific knee models with high accuracy, and two or three image
pairs achieved a much better accuracy than using a single image
pair for both the femur and tibia. Considering computational
costs, two image pairs may be preferred over three image pairs.
The new approach will be useful for generating patient-specific
knee models from SSM models for clinical applications using
multiple asynchronous images from alternating bi-plane
fluoroscopy widely available in clinical settings. The current
SSM model will serve as a basis for further inclusion of
training models with a wider range of sizes and morphological
features for broader applications.
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