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Introduction

The intrinsically disordered proteins (IDPs), also called intrinsi-
cally unstructured or natively unfolded, are either entirely disor-
dered or contain disordered regions in their native state. These 
proteins were found to be implicated in numerous cellular pro-
cesses including signal transduction, transcriptional regulation, 
and translation,1 protein–DNA2 and protein–protein3 inter-
actions. The disorder was demonstrated to play role in several 
human diseases,4,5 including AIDS,6 cancer,7 cardiovascular dis-
ease,8 neurodegenerative diseases,9,10 genetic diseases11 and amy-
loidosis.12 Moreover, IDPs have been shown to be abundant in 
complex organisms.6,13,14 Experimental annotation of disorder 
lags behind the rapidly growing sizes of the protein databases 
and thus computational methods are used to close this gap and 
to investigate the disorder. A curated repository of IDPs, Disprot 
version 6.01,15 contains 684 chains, whereas the Protein Data 
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Bank (PDB),16 which allows finding unstructured/disordered 
segments in the solved tertiary structures, includes over 82,000 
protein entries. To compare, the current 57 release of RefSeq 
database17 boasts over 27.8 million of non-redundant protein 
sequences.

The computational methods that predict disorder from pro-
tein chains can be divided into four categories: (1) approaches 
that utilize the relative propensity of amino acids to form dis-
order/ordered regions,18-21 (2) methods that are based on classi-
fiers generated with the help of machine learning algorithms,22-37 
(3) meta-methods that are based on a consensus of multiple 
base predictors38-44 and iv) approaches that find disordered resi-
dues through an analysis of the predicted 3D structural mod-
els.27,45 The disorder prediction is part of the biannual Critical 
Assessment of techniques for protein Structure Prediction 
(CASP) experiments since 2002,46 which further signifies inter-
est in this area. Although accuracy of the predictors continues to 
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CSpritz Long and outperforms all other considered methods, by 
a moderate to large margin that is in most cases statistically sig-
nificant. We note that differences between MFDp and MFDp2 
(including versions with and without the use of alignment with 
BLAST) are statistically significant since these methods generate 
similar results for similar chains, where MFDp2 provides consis-
tent improvements. For the disorder content prediction, which 
is evaluated at the chain level, a few methods, such as PrDos, 
ESpritz and IUPred, outperform MFDp2. However, these meth-
ods are (significantly) outranked by MFDp2 for the residue level 
predictions. That means that these methods predict the number 
of disorder residues more accurately, but they do not predict their 
position in a sequence as accurately as MFDp2 does. The CSpritz 
Long method, which provides predictions that are comparable 
to MFDp2 at the residue level, tends to overpredict the disor-
der, which is indicated by higher errors in content prediction and 
high Q

D obs
 coupled with a relatively low Q

D pred
.

Comparison of the MFDp2 on the DP_NEW data set where 
the unannotated residues are removed from the evaluation is pre-
sented in Table 2. In this case we could not evaluate the predic-
tion of the disorder content since this chain level measure cannot 
be calculated when annotations for some residues are missing. 
MFDp2 achieves the highest MCC and AUC. These improve-
ments are statistically significant, although in some cases the 
magnitude of the differences is moderate, e.g., MFDp2 improves 
over MFDp in AUC by 0.013. This small difference is statisti-
cally significant since MFDp and MFDp2 generate similar pre-
dictions for similar chains, with a moderate improvement in favor 
of MFDp2. The MFDp2 method also secures third best rank in 
Q

O obs
, fourth in Q

D obs
 and Q

O pred
, as well as the highest value 

of Q
D pred

 (when we exclude blast alignment which only detects 
0.5% of disordered residues). The values of Q

D pred
 demonstrate 

that over 80% of the disorder predictions by MFDp2 are in fact 
correct. We note that all considered methods have higher values 
of the corresponding quality meters (except for the Q

D obs
, which 

does not change since the number of disorder residues is the 
same) when compared with the evaluation where residues with 
the unknown annotation were assumed to be ordered (Table 1).

We also analyze improvements gained by enrichment of the 
predictions with the use of the alignment against the disorder 
segments from the training data set. The results in the last row 
in Tables 1 and 2 reveal that BLAST, which is used as described 
in the Materials and Methods section, predicts a small number 
of disorder residues (low Q

D obs
) but with high quality (high Q

D 

pred
). The low Q

D obs
 can be explained by the fact that the simi-

larity between the test chains and the chains in the alignment 
(training) data set is relatively low. The inclusion of BLAST-
based alignment into MFDp2 (see the first two rows in Tables 1 
and 2) results in small but statistically significant (i.e., consistent) 
improvements. Moreover, differences in the Q

D obs
 measure reveal 

that almost all disordered residues that were predicted based on 
the alignment were not predicted by MFDp2 without the align-
ment, i.e., the Q

D obs
 is improved by about 0.5 between MFDp2 

and MFDp2no blast, which is consistent with the Q
D obs

 of BLAST.
Importantly, for both evaluations (when removing unanno-

tated resides or assuming that they are ordered) MFDp2 is shown 

rise,47,48 the most recent evaluated CASP9 experiment observed 
lack/small progress in the last couple of years.49 New and more 
accurate methods are needed, particularly those that are acces-
sible to the end users via convenient web servers. Beside the 
abovementioned approaches that predict the disorder at the resi-
due level, a few methods that predict propensity of the entire pro-
tein chain to be disordered were proposed.50-54 Although these 
methods were shown to outperform the residues level approaches 
in some aspects, e.g., in prediction of the disorder content that 
is defined as fraction of disordered residues in a given protein 
chain,50,55 they were explored to enhance the residue level predic-
tions only very recently.50 To this end, we present and benchmark 
a novel disorder predictor, MFDp2, that combines residue-level 
(using MFDp39) and sequence-level (using DisCon50) predic-
tions to improve predictive quality. MFDp2 is implemented as 
content-rich and user-friendly web server, which allows predic-
tions from individual and multiple protein chains and provides 
additional helpful information to profile the predicted disorder.

Results and Discussion

Evaluation on the benchmark data set. We evaluated MFDp2 
and compared it against 14 state-of-the-art (18 with sub-versions) 
disorder predictors on the DP_NEW data set, which has low 
sequence identity with the training data sets used to build MFDp 
and DisCon. We considered other predictors that are available 
to the end user either as web servers or standalone implementa-
tions; we use the newest versions of these methods. They include 
publicly available versions of the top predictors from CASP9, 
such as PrDos, DISOPRED, Multicom (also called PreDisorder), 
SPINE-D and MFDp. The considered methods include 3 fast ver-
sions of ESpritz (X, N and D)22 with threshold selected to achieve 
5% FPR as this threshold results in higher MCC values (com-
pared with the second suggested threshold that optimizes the Sw 
measure), SPINE-D,59 2 versions of CSpritz (CSpritz Long and 
CSpritz Short),38 MFDp,39 PONDRFIT,40 MD,42 PreDisorder,41 
DISOCLUST,45 PrDos,27 NORSnet,25 UCON,18 2 versions of 
IUPred (IUPred Long and IUPred Short),20 PROFBVAL32 and 
DISOPRED2.36 PROFBVAL is designed to predict b-factors of 
residues, which are different than propensity for disorder; however, 
this method is included here since it is one of inputs of MFDp2 
and was often included in related studies.39,42 The results are sum-
marized in Table 1. Similarly as in other relevant works,38,39,50,55 
the unannotated residues in the DP_NEW data set are assumed to 
be ordered. Results marked as PSI-BLAST were obtained by align-
ing to disordered segments in the MxD data set, as described in 
the Materials and Methods section (subsection MFDp2). They are 
listed to investigate the impact of the inclusion of the alignment on 
the results from MFDp2.

When considering the evaluation at the residue level, MFDp2 
offers competitive predictive quality with the highest MCC and 
second best AUC. The improvements over the existing methods 
are statistically significant in almost all of the cases. Using the 
MCC and AUC measures, which were utilized in the most recent 
CASP9 experiment to evaluate binary predictions and prob-
abilities,49 MFDp2 provides similar predictive performance to 
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5–15 min for an average size protein chain. The time is mostly 
determined by the time to run PSI-BLAST and is comparable to 
other predictors such as CSpritz, MD and DISOPRED2.

The results are displayed at two levels. The first level is an over-
view of all submitted proteins; see Figure 1A. It lists the query 
proteins and for each provides information about the predicted 
disorder content, number of disorder segments and color-coded 
sequence where red/green residues correspond to predicted disor-
dered/ordered residues. Clicking on a protein name or sequence 
redirects the user to another (second level) page with detailed infor-
mation about the predicted disorder for this protein; see Figure 
1B. This page includes comprehensive information that allows 
profiling the predicted disorder. The profile includes conveniently 
visualized information concerning predicted secondary struc-
ture, relative solvent accessibility, profiles of disorder predictions 
that are used by MFDp2 and PSI-BLAST-based sequence align-
ment. The profile is color-coded to ease the interpretation where 
a spectrum of colors between red and green corresponds to the 
bias toward disordered and ordered conformations, respectively. 
For instance, using the example from Figure 1B, we observe that 
the disordered segment predicted by MFDp2 at the C-terminus  

to improve over its predecessor MFDp based on the key perfor-
mance indices including MCC, AUC and MAE. This indicates 
that optimizing MFDp predictions using the chain-level disor-
der content predicted by DisCon and adding annotations from 
aligned disorder regions is beneficial.

Overview and presentation of the web server. The web server 
is designed to be simple to use. The submission page includes a text 
field where up to 100 protein sequences in FASTA format can be 
pasted and another text field for a user email. The email is optional 
and is used to send notification once the predictions are completed. 
Server also provides an option to submit proteins in FASTA-
formatted file. The results are also shown and linked directly in 
a browser window. Once the protein sequences are provided, the 
user clicks “Run MFDp2” button, and this job is added to server’s 
queue. We process the requests in the order in which they were 
received. The user receives updates concerning the position of their 
job in the queue and confirmation once the job is being processed. 
Once computations are finished, the user receives direct links to 
the location of the results; the same links are sent via email, if it 
was provided. The results are stored online for at least 3 mo follow-
ing the submission. The MFDp2’s execution time is approximately 

Table 2. Comparison of MFDp2 against disorder predictors where residues without annotations are disregarded

Method Reference Year published MCC ± stdev Sig QOobs QO pred QD obs QD pred AUC ± stdev Sig

MFDp2 This paper 2012 0.729 ± 0.041 95.3 93.9 75.9 80.6 0.940 ± 0.011

MFDp2no blast This paper 2012 0.725 ± 0.043 ++ 95.3 93.8 75.4 80.5 0.938 ± 0.012 ++

MFDp 39 2010 0.704 ± 0.038 ++ 92.2 95.0 80.9 72.8 0.925 ± 0.014 ++

CSpritz L 38 2011 0.621 ± 0.033 ++ 85.9 95.3 83.5 60.3 0.909 ± 0.014 ++

DISOPreD2 36 2004 0.614 ± 0.037 ++ 93.6 91.4 65.6 72.3 0.880 ± 0.019 ++

IUPreD L 20 2005 0.588 ± 0.027 ++ 94.3 90.3 60.4 73.1 0.851 ± 0.016 ++

DISOCLUST 45 2008 0.581 ± 0.047 ++ 87.4 93.2 75.3 60.6 0.904 ± 0.016 ++

MD 42 2009 0.576 ± 0.036 ++ 88.4 92.6 72.6 61.7 0.873 ± 0.022 ++

PrDos* 27 2007 0.576 ± 0.030 ++ 95.4 89.5 55.8 75.4 0.883 ± 0.014 ++

SPINe-D 59 2012 0.575 ± 0.039 ++ 85.4 93.9 78.4 57.9 0.893 ± 0.020 ++

PONDrFIT 40 2010 0.558 ± 0.026 ++ 90.3 91.2 66.3 63.7 0.850 ± 0.015 ++

NOrSnet 25 2007 0.540 ± 0.051 ++ 96.7 87.7 47.3 78.6 0.834 ± 0.024 ++

eSPrITZ X 22 2012 0.540 ± 0.024 ++ 94.5 88.8 53.8 71.6 0.845 ± 0.015 ++

IUPreD S 20 2005 0.525 ± 0.026 ++ 93.6 88.9 54.5 68.5 0.830 ± 0.016 ++

CSpritz S 38 2011 0.512 ± 0.031 ++ 83.6 92.5 73.5 53.5 0.857 ± 0.019 ++

PreDisorder* 41 2009 0.503 ± 0.030 ++ 82.4 92.7 74.5 51.8 0.850 ± 0.017 ++

eSPrITZ N 22 2012 0.492 ± 0.022 ++ 89.4 89.7 60.2 59.2 0.844 ± 0.012 ++

eSPrITZ D 22 2012 0.426 ± 0.043 ++ 94.4 86.2 40.9 65.2 0.866 ± 0.014 ++

UCON 18 2007 0.420 ± 0.032 ++ 84.4 89.3 60.5 49.9 0.780 ± 0.020 ++

PrOFBVaL 32 2006 0.167 ± 0.019 ++ 67.2 84.7 52.8 29.2 0.647 ± 0.014 ++

PSI-BLaST N/a N/a 0.066 ± 0.040 ++ 100.0 79.7 0.5 100.0 0.503 ± 0.002 ++

Comparison of MFDp2 against 18 state-of-the-art disorder predictors on the subset of residues from DP_NeW data set for which annotations are 
known. We do not use the residues with unknown annotation in the evaluation, which is why the disorder content cannot be computed and evaluated. 
“MFDp2no blast” denotes results from MFDp2 before the PSI-BLaST enrichment. results are sorted according to MCC and the best results for each con-
sidered quality measure are shown in bold. “Sig” column shows statistical significance of differences measured based on 10 repetitions on randomly 
chosen 2/3 of the proteins from DP_NeW data set; +/=/− indicate that MFDp2 is significantly better/not significantly different/significantly worse than 
another method; ++/− − at p-value < 0.01, +/− at p-value < 0.05. Mae and PCC values for this evaluation cannot be calculated. The methods that were 
used to design MFDp, a base predictor of MFDp2, are underlined. *PrDos and PreDisorder failed to predict the DP00623 protein; the evaluation is 
based on the remaining 104 chains.
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Materials and Methods

MFDp2 uses the disorder content predicted by DisCon50 to cor-
rect the per-residue predictions generated with MFDp.39 These 
corrected predictions are processed, by transformation of prob-
abilities and sliding window-based averaging, to further improve 
predictive performance. Finally, predictions are enriched by PSI-
BLAST56 alignments to (training) chains with annotated disor-
dered segments; we transfer annotated disordered residues from 
the aligned positions.

MFDp and DisCon. MFDp is an ensemble of three Support 
Vector Machines specialized for the prediction of short (< 30 resi-
dues; SVM

SHORT
), long (≥ 30 residues; SVM

LONG
) and generic 

disordered regions (all disordered residues; SVM
ALL

). This 
ensemble combines results generated by three disorder predictors 
together with the information extracted from the input sequence, 
sequence profiles (PSI-BLAST56) and predicted secondary struc-
ture (PSIPRED57), solvent accessibility (Real-SPINE358), back-
bone dihedral torsion angles (Real-SPINE3), residue flexibility 
and B-factors (PROFbval32). MFDp utilizes a custom-designed 
set of features that are based on raw predictions and aggregated 
(using sequence window) raw values. The real-valued prediction 
is computed as a maximum among the probabilities generated 
by SVM

ALL
, SVM

SHORT
 and SVM

LONG
 (we combine all predicted 

disordered residues), and the resulting value is binarized using 

(top of the panel B) is predicted by PSIPRED57 to include two 
helical segments, predicted by MFDp to be disordered, is solvent 
inaccessible as predicted by Real-SPINE3,58 and part of this disor-
dered segments was enriched using alignment with PSI-BLAST. 
This page also contains a list of predicted disorder segments along 
with their sequence, length, position in the chain and size relative 
to the size of the full chain. The overview page (see Fig. 1A) offers 
an option to download predictions as parsable text files. Along 
with the MFDp2 predictions, the user may choose to download 
additional information including predictions from MFDp and 
DisCon, secondary structure predicted by PSIPRED and relative 
solvent accessibility predicted by Real-SPINE3. The text files can 
be downloaded in two formats: as comma-separable CSV and/or 
FASTA.

The help and tutorial page can be accessed at the top of 
the main web server page. This page provides tutorial on how 
to use the web server and detailed explanations on how to read 
the results. Individual subsections of this page are hyperlinked 
within this page and from the pages that the user encounters 
when interacting with the server to ease reading and finding of 
this information. The explanations are supplemented with anno-
tated screenshots. The “?” buttons are placed thorough all web 
server pages next to the sections which may require explanation. 
These buttons implement direct hyperlinks to the help and hints 
related to the selected section/task.

Figure 1. Screenshots of the pages that present results generated by the MFDp2 web server. (A) shows the overview page where basic information 
about predicted disorder for all submitted proteins is displayed. (B) shows a detailed results page where more detailed information about predicted 
disorder for a selected protein is presented.
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to detection of the fully ordered and fully disordered chain, 
respectively; the intermediate cut-offs correspond to a binary 
prediction that finds partially structured vs. partially unstruc-
tured chains, see Figure 3. Our analysis shows that DisCon 
outperforms MFDp in the above binary protein level predic-
tion when the MFDp predicted content is between 0.35 and 
0.85. Consequently, we change the threshold used by MFDp 
to match the content predicted by DisCon when the content 
predicted by MFDp is between 0.35 and 0.85, and otherwise 
we use the default 0.37 threshold. Next, the resulting thresh-
olds are shifted to 0.5, which is a value recommended in the 
CASP experiments. Specifically, we use min-max normaliza-
tion to shift (0, threshold) range to (0, 0.5) and to transform 
(threshold, 1) range to (0.5, 1). While shifting probabilities, we 
also adjust their values taking into account the predicted disor-
der content, i.e., we increase probabilities for predicted disorder 
residues for proteins with high-predicted disorder content and 
decrease probabilities for residues predicted as ordered for pro-
teins with low disorder content. Finally, we average the result-
ing probabilities using a sliding window with 21 residues. This 
step smoothes out the probability profiles; we used it to improve 
MFDp’s predictions for the CASP9. We selected the window 
size that provides the highest MCC when predicting disorder 
on the MxD data set. Afterwards, we remove (by adjusting 
probabilities) predicted ordered and disordered segments that 
are shorter than 4 residues, similarly as in the original MFDp.39 
Finally, the resulting predictions are enriched with disorder seg-
ments found by PSI-BLAST56 against the training data set. This 
step was introduced to improve prediction accuracy by finding 

the threshold = 0.37. In the final step, the predictions are filtered 
to remove short (2 or fewer residues) disordered segments. A 
method based on MFDp was ranked second best in the binary 
disorder prediction in the most recent CASP9.49

DisCon uses a small set of 29 custom-designed numerical 
descriptors that hybridize information concerning the input 
sequence, evolutionary profiles (PSI-BLAST), and predicted 
secondary structure (PSIPRED), solvent accessibility (Real-
SPINE3), flexibility (PROFbval) and annotation of globular 
domains (IUpred20). The features aggregate the abovementioned 
predicted structural and functional properties over the entire 
input protein chain and their values are fed into a ridge regression 
model that is used to generate the disorder content. The output is 
a real value in the [0, 1] range that corresponds to the predicted 
fraction of disordered residues in the input protein. DisCon was 
shown to predict the per-protein disorder content more accu-
rately than MFDp and several other disorder predictors.50

MFDp2. The overall architecture of MFDp2, which shows 
how MFDp and DisCon are combined together and enriched, 
is presented in Figure 2. The predictions generated by MFDp2 
are based on the per-residue disorder probabilities outputted 
by MFDp, which were converted into binary disorder predic-
tions using the default threshold of 0.37. We analyzed this 
conversion using a benchmark data set, called MxD, which 
was used to evaluate MFDp.39 We investigated the ability of 
MFDp to distinguish between proteins with high and low 
amount of disorder, i.e., above and below a cut-off value that 
is varied between 0 and 1 with step of 0.05, and compared it 
to the results of DisCon. The cut-offs at 0 and 1 correspond 

Figure 2. architecture of MFDp2.
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pr(i)/2 + 0.625], and minimum is used to assure that the final 
probability does not exceed 1.

Dataset. We follow definition of disorder as in,39 i.e., we 
use two types of annotations to label disordered residues: 
PDB REMARK 465 and curated annotations extracted from 
Disprot database.15 We validate our web server and compare it 
with 14 state-of-the-art competing methods on proteins added 
to Disprot after release 4.6 (which was used to build the MxD 
data set that was utilized to build MFDp and DisCon meth-
ods) and to PDB16 after August 1, 2011. Among these proteins, 
we removed those that share over 25% sequence identity to 
any chain in the MxD data set and the training data sets used 
by one of the most recent disorder predictors CSpritz.38 The 
remaining 105 proteins are unlikely to be used to build the 
other considered methods (they were deposited/annotated after 
these methods were developed) and share low similarity to our 
and CSpritz training proteins. These proteins were annotated 
using the Disprot and PDB disorder annotations, depending on 
their source. The PDB-based annotations follow the protocol 
from CASP.49 The Disprot annotations were enriched with PDB 
REMARK 465 annotations following procedures described 
in.55 Specifically, the chains taken from Disprot were searched 
using PSI-BLAST56 against PDB (3 iterations, e-value < 0.001) 
and we selected the best hit with sequence identity ≥ 98% 
(over aligned region) and alignment coverage ≥ 90%. Using 
the alignment, the PDB-based disorder/order annotations were 
mapped for the aligned region, and we kept the original disor-
der annotations from Disprot. The native disordered segments 
smaller than 4 residues were ignored during evaluation of the 
final version of the database; this is consistent with CASP. We 
note that 22.4% of residues lack annotations. The reason is 
that residues in some proteins from Disprot lack annotations 
and the annotation for these residues were not transferred from 

protein fragments that are similar to the disordered segments 
in the training data set. We hypothesize that segments in the 
input protein chain that are very similar or identical to the dis-
ordered segments in other proteins are likely to be disordered, 
and that the probability associated with their predicted disor-
der should be higher if they are aligned to a larger number of 
natively disordered segments. We use BLAST-based alignment 
to find similar segments. We also made sure to properly validate 
this approach, so that we do not overtif the results by allowing 
high similarity between training chains (that are aligned to) 
and test chains (that are inputs for the alignment); when test-
ing MFDp2, we used the MxD data set as the training data 
set and a test data set that shares low sequence identity with 
the MxD set (see Dataset section). We perform alignment with 
default parameters against chains in the training data set and 
consider all alignments below 0.001 e-value threshold; this cut-
off was found to be optimal based on 5-fold cross-validation on 
the MxD data set. For each position in a given query sequence 
we count n, which is the number of aligned disordered residues 
across all aligned sequences that satisfy the threshold. If n = 0 
then we do not change the current output from MFDp2. For 
every position where n ≥ 1 and which belongs to a segment of 
at least 3 consecutive residues with n ≥ 1, we compute the final 
probability, which is outputted by MFDp2, as:

where pr(i) is the probability of disorder for ith residue in a query 
chain generated by MFDp2 before the alignment is added, “1.5” 
is a constant that assures that the final probability will be ≥ 0.5 
when n ≥ 1 [given n = 1, the result will be (pr(i) + 1)/2 = pr(i)/2 
+ 0.5, which is ≥ 0.5 for any pr(i); given n = 2, the result will be 

Figure 3. Selection of disorder content thresholds for MFDp2 using sequence-based binary predictions. The MCC values (y-axis) for the sequence-
based binary prediction where the labels are defined as 1/0 when the amount of the native disorder is below/above a cut-off value shown on the x-
axis, respectively. The binary predictions are computed by thresholding the predicted disorder content generated by DisCon, MFDp and the 4 disorder 
predictors that are used as input to MFDp. The results were generated using the MxD data set and details concerning this analysis could be found in 
reference 50.
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Mean Absolute Error (MAE) =

 
where n is the sample size, y

i
ϵY is the native and x

i
ϵX is the pre-

dicted disorder content for the ith protein chain, avg
X
 and avg

Y
 are 

the sample means of X and Y, s
x
 and s

y
 are the sample standard devi-

ations of X and Y. Following CASP evaluations, we are reporting 
MCC, AUC, MAE and PCC with 3 digits after the decimal point 
and the remaining scores with one digit after the decimal point.

Statistical significance of the differences between MFDp2 and 
the other considered predictors was measured based on values 
of the abovementioned quality measures over 10 repetitions on 
randomly chosen 2/3 of the proteins from the DP_NEW data 
set. The results were compared between a given pair of predic-
tors using the homeostatic Student’s t-test (for equal variances) or 
Student’s t-test (otherwise) if distributions were normal, or with 
the Mann-Whitney test, if not. Distribution type was verified 
using the Anderson-Darling test, and equality of variances was 
tested with Bartlett’s test.

Conclusions

We introduce a novel web server for disorder prediction, called 
MFDp2, which is based on MFDp disorder predictor and 
DisCon disorder content predictor. MFDp2 provides competi-
tive per-residue and disorder content predictions when compared 
with its predecessor MFDp and 18 other state-of-the-art disorder 
predictors, including publicly available versions of the top predic-
tors from CASP9. The server is free and open to all users, enables 
processing of large data sets and presents detailed results with a 
convenient color-coded disorder profile. The profile visualizes 
factors that influence the final prediction, including residue con-
servation, predicted secondary structure, solvent accessibility, flex-
ibility, disorder predictions that are used by MFDp2 and sequence 
alignment. We provide an easy download of parsable text-based 
results along with user-selected additional information concern-
ing predicted secondary structure and solvent accessibility. The 
server also includes tutorial and help pages to assist new users.
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PDB. Thus, we perform evaluations twice: (1) when assuming 
that these unannotated residues are ordered, which is consistent 
with several related studies,38,39,50,55 and (2) when disregarding 
these unannotated residues. Our benchmark data set with the 
105 annotated proteins, called DP_NEW, is available on the 
web server page at biomine.ece.ualberta.ca/MFDp2/.

Evaluation and statistical analysis. The assessment of 
the predictions uses the same criteria as in the CASP experi-
ments.47-49 Additionally, we also evaluate predicted disorder 
content. The predictions are at three levels: (1) the binary value 
that defines whether a given residue is or is not disordered, (2) 
the real value that quantifies probability of disorder and (3) a 
disorder content for a whole protein sequence. The binary pre-
dictions were assessed using five measures:

MCC = (TP*TN − FP*FN)/sqrt[(TP + FP)(TP + FN)(TN + 
FP)(TN + FN)]

Q
D
 observed (sensitivity) = TP/(TP + FN)

Q
D
 predicted = TP/(TP + FP)

Q
O
 observed (specificity) = TN/(TN + FP)

Q
O
 predicted = TN/(TN + FN)

where TP is the number of true positives (correctly predicted 
disordered residues), FP denotes false positives (ordered residues 
that were predicted as disordered), TN denotes true negatives 
(correctly predicted ordered residues) and FN stands for false 
negatives (disordered residues that were predicted ordered). The 
MCC values range between −1 and 1, and it is equal zero when 
all residues are predicted to be ordered or disordered. Higher val-
ues of these measures correspond to higher quality predictions. 
We do not include Q

2
 accuracy that was deemed unsuitable for 

disorder assessment in the last CASP9 evaluation.49 Moreover, 
balanced accuracy (average of sensitivity and specificity) can 
be easily inferred from Q

D
 observed and Q

O
 observed that we 

report, and S
w
 was shown to be linearly related to balanced accu-

racy; thus it was not reported in CASP9 and we opted not to 
report it either.49

The Receiver Operating Characteristic (ROC) curve was used 
to examine the predicted probabilities. For each value of prob-
ability p generated by a given method, all the residues with proba-
bility equal to or greater than p are set as disordered, and all other 
residues are set as ordered. Next, the TP-rate and the FP-rate are 
calculated, and we use the area under the curve (AUC) to quan-
tify the predictive quality.

The quality of the disorder content prediction was assessed 
using two popular measures:

Pearson Correlation Coefficient (PCC) = 
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