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INTRODUCTION

The pulmonary circulation is comprised of several scales 
of biological complexity: the genes, molecules, cells, and 
tissues that–as in any other organ system–work in concert 
to determine resultant function. The main function of the 
pulmonary circulation is to optimize the exposure of blood 
to alveolar air whilst maintaining a low enough resistance 
to accommodate passage of the full cardiac output. 
Malfunctions of structural components of the lung at any 
spatial scale can result in pulmonary vascular disease, to 
the detriment of gas exchange and right heart function. 
Vast amounts of data emerge from studies at each of 
these biological scales–particularly with the development 
of genetic and proteomic databases. The question then 
becomes, how can scientists integrate this data and 
knowledge across all of the biological scales to build on each 
new discovery and provide a collaborative advancement 
of knowledge that is greater than can be provided by 

Computational models of the pulmonary 
circulation: Insights and the move towards 

clinically directed studies
Merryn H. Tawhai1, Alys R. Clark1, and Kelly S. Burrowes2

1Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand,  
2Oxford University Computing Laboratory, University of Oxford, Oxford, UK

ABSTRACT 

Biophysically-based computational models provide a tool for integrating and explaining experimental data, observations, and 
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of the mechanisms occurring in disease of the pulmonary circulation.
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studies at the individual scales? This integration of 
data and knowledge motivates the development of 
biophysically-based computational models in physiology. 
A mathematical model is a description of the behavior 
of a system using mathematical equations that describe 
physical processes, often in a simplified manner. (In the 
context of this review, the terms “mathematical model,” 
“computational model,” and “model” are synonymous and 
are used interchangeably throughout the text.) The use of 
such models in the biological realm is crucial to enable the 
integration and useful interpretation of data that results 
from experimental studies, and to provide an increased 
understanding of physiology.

Computational models have been used to investigate 
problems across a wide range of disciplines. Computational 
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modeling is well established in, for example, engineering 
and weather prediction; but its application to biomedicine 
is more recent. The two major initiatives in this field 
are the International Union of Physiological Sciences 
Physiome Project (IUPS: see www. physiome.org.nz) and 
the European Virtual Physiological Human initiative (VPH: 
see www. vph.noe.eu). The IUPS Physiome Project aims to 
construct integrative biophysically-based models across 
the range of biological organization within and organism 
(genes, molecules, cells, tissue, whole organ), to provide 
an understanding of the structure-function relationships 
within a living entity.[1,2] The VPH initiative is Europe’s 
rendition of the Physiome Project and aims to develop 
predictive computational models of a living human 
body. [3] The ultimate drive of these initiatives is towards 
the clinical environment, to create personalized medicine 
aimed at increasing the efficiency of medical practice.

The pulmonary vasculature in a typical human lung 
includes on the order of hundreds of thousands of arterial 
and venous vessels.[4-6] Gas exchange occurs across the thin 
walls of the alveolar capillaries, of which there are billions. 
The sheer number of vessels in this circuit–let alone the 
number of interactions at a cellular and sub-cellular 
level–means that numerous simplifying assumptions are 
required to enable construction of computational models. 
What is important to bear in mind is that a mathematical 
or computational model does not seek to represent each 
and every feature of an organ system. Such “mathematical 
microscopy” would do little to enhance understanding 
of function in the integrative system. A well designed 
model includes only the minimum information that is 
necessary to interpret a set of experimental data, or to 
test a specific hypothesis–for example, a modeling study 
of the distribution of humidity in the airways would not 
benefit from including the pulmonary circulation or the 
distal airways in the model, but it could be improved by 
coupling to distributed models of fluid transport through 
the ciliated epithelial cell.[7] Mathematical modeling of 
lung function has historically provided an important 
contribution to the understanding of pulmonary health 
and disease. The lung is a complex organ that works 
dynamically and reacts rapidly to changes in posture, 
environment and disease. Yet understanding of its 
different functions has been improved by using simplistic 
qualitative and quantitative models to explain inhaled gas 
transport,[8,9] respiratory gas transfer,[10] and pulmonary 
blood distribution,[11] amongst others. The continued 
increase in computational capability and the advancement 
of knowledge in related areas such as mathematics, 
computer science, image processing, biology and medicine 
has led, and is leading, to the development of ever more 
complex computational models in biomedicine. These 
advancements have made possible the creation of detailed 
anatomically-based models of the pulmonary airway and 

vascular geometries.[12,13] This has enabled the solution 
of functional model equations within geometries that 
closely resemble the structure of a real lung, with the goal 
of understanding structure-function relationships, their 
spatial distribution, and inter-subject and inter-species 
variability. But how complex does a model need to be for 
it to provide useful information about physiology? The 
answer to this is dependent on the functional aspect of 
the pulmonary circulation that is being investigated. For 
example, do we want to investigate heterogeneity in lung 
function; or are we interested in whole lung measures? 
Are we modeling a diffuse or localized disease state? Are 
we interested in small- or large-scale function?

Models that use simple geometries and few equations 
are easier to understand intuitively than complex multi-
physics and multi-scale models. The complex models 
also suffer from the perception that they have “too many 
free parameters” in comparison to the simple models. 
By and large, however, the situation is quite the reverse. 
The simple models rely on lumping together the detailed 
laws and principles that govern function in the lung, so 
these types of model often have to fit parameters that 
don’t have a specific physical meaning. An example is 
the Starling resistor model of the pulmonary circulation 
used by Mélot et al.[14] compared with their distensible 
vessel model, which is more strongly based on physical 
principles. In contrast, in the class of biophysically-
based models, each functional equation is a physical law 
with parameters that have a specific physical meaning. 
The model parameters are either well defined (e.g., 
viscosity of blood in the major arteries), estimated from 
experimental studies as invariable throughout the model 
(e.g., arterial wall elasticity), or poorly defined but still 
with a physical meaning that can be easily interpreted 
and quantified when experimental measurements become 
available. While a complex model may include explicit 
representation of each artery and vein in the pulmonary 
circulation, only a small set of equations with exactly the 
same parameters govern function within them; that is, 
the equations for flow, pressure, and vessel elasticity are 
identical at all levels of the trees. It is therefore exceedingly 
difficult to simply modify parameters in this type of model 
to better fit some functional outcome. The insights from 
a biophysically-based model often come from identifying 
how the model doesn’t fit some data–this can indicate 
the importance of otherwise neglected mechanisms in 
contributing to the integrated function of the lung.

Structure-based modeling provides a non-invasive 
approach to investigation of function, particularly when 
intervention is not possible in clinical studies due to 
ill health. Predictive models are powerful tools for 
interpreting experimental measurements and forming 
new testable hypotheses. An example is the use of 
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appropriate computational models in conjunction with 
imaging modalities, each method acting as a means to 
verify and guide the other. For example, functional imaging 
data can be compared with model predictions of flow in 
large arteries, thereby validating some of the function of 
the model. The model predictions can then be used to 
postulate the flow distribution in smaller vessels, which 
are not directly visible on clinical imaging, or to investigate 
conditions that are difficult to investigate using imaging 
alone, such as the differences in perfusion distribution 
in the upright posture compared with the more readily 
imaged prone and supine postures. A model may also be 
used to help interpret results from functional imaging 
studies, if the quantities being measured are uncertain. 
Computational models may also be used to obtain quick 
predictions of the functional consequences of certain 
changes in vascular geometry, for example the effect of 
pulmonary vasoconstriction, pulmonary embolism, or 
pulmonary hypertension, for individual subjects.

To understand pulmonary disease and abnormal 
function first requires a thorough understanding of the 
mechanisms contributing to function in the “normal” 
healthy pulmonary circulation. Therefore, constructing 
physiologically realistic models of the normal pulmonary 
circulation has been a priority. These models must be 
validated–that is, compared with clinical or experimental 
data–before they can be used to investigate how 
perturbations to normal function manifest in disease. 
Validation remains the central challenge with this type 
of model, because the specific data that would provide a 
robust validation are often inaccessible to measurement. 
Studies of the pulmonary circulation generally aim to gain 
increased understanding of the mechanisms impacting 
on pulmonary vascular resistance (PVR), blood flow 
distribution, or the impact of alterations in pulmonary 
blood flow on gas exchange efficiency. Here we describe 
examples of models of the normal pulmonary circulation 
that have been used to investigate baseline function. We 
then discuss an example of model application in a clinically 
motivated problem: understanding the redistribution of 
blood flow and development of pulmonary hypertension 
in pulmonary embolism. 

USING COMPUTATIONAL MODELS 
TO DEVELOP NEW INSIGHTS INTO 
THE BASIC FUNCTION OF THE 
PULMONARY CIRCULATION

Predicting pulmonary vascular resistance and 
pulmonary blood pressures
In the healthy adult lung the pulmonary vascular resistance 
(PVR) is low, allowing delivery of the entire cardiac output 

with a relatively low right ventricular (RV) pressure 
(compared with left ventricular pressure). Total PVR can 
be calculated as the difference between mean pulmonary 
artery (PA) and mean left atrial (LA) pressure, divided by 
the cardiac output (where LA pressure is approximated 
by pulmonary wedge pressure). Because flow, pressure, 
and resistance are interrelated, elevation of PVR results 
in elevated RV pressure if the cardiac output is to be 
maintained. The lung has an in-built protective mechanism 
against elevation of PVR in the form of recruitment of 
capillaries and, to a smaller extent, distension of the elastic 
vessels comprising the circuit.[15] Under resting conditions 
a substantial portion of the capillary bed is un-recruited;[16] 
some or all of the de-recruited capillaries can open when 
cardiac output increases—and presumably under other 
conditions that elevate PA pressure—to increase the total 
cross-sectional area of capillary bed through which the 
blood traverses, and concomitantly decrease the PVR. 
The functional consequence is that during exercise in the 
healthy individual–when the cardiac output can increase 
six-fold–PA pressure increases only moderately.[17] When 
capillary recruitment is insufficient to prevent PVR rising 
above a critical level, this impacts on right heart function 
and capillary wall integrity, and potentially fluid filtration 
and edema formation will occur. Several modeling 
studies have investigated the relationship between vessel 
dimensions, vessel elasticity, and PVR. Most have taken 
a highly simplified approach to model geometry and 
fluid dynamics, which is sufficient for demonstrating the 
importance of vascular geometry and distensibility on 
pressure-flow relationships, and therefore on PVR. 

Perhaps the simplest approach to modeling blood flow 
in a complex vascular network is to represent the fluid 
flow as analogous to a current in an electrical circuit: if 
flow is steady then the analogue of a direct current (DC) 
circuit is used, and if flow is pulsatile the analogue of 
an alternating current (AC) circuit is used. Using the DC 
circuit as an example, Ohm’s Law states that the voltage 
drop (ΔV) across a circuit is equal to the current through 
the circuit (I) multiplied by the total resistance (R), so 
ΔV=IR. Similarly, in a steady fluid flow the pressure drop 
(ΔP) across a system of blood vessel ‘resistors’ is equal to 
the flow through the system (Q) multiplied by the total 
resistance (ΔP=QR). Most mathematical models of the 
pulmonary circulation use the electrical circuit analogy 
(e.g., references 18 through 22), but differ in two major 
features: (a) the structural representation of the blood 
vessels, which influences the estimation of the total 
resistance to blood flow; and (b) whether the model uses 
an AC or DC circuit analogy (so whether it includes or 
neglects the pulsatility of blood flow, respectively). 

The most simplified approach to representing the vascular 
structure and hence estimating the distribution of vascular 
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resistance is to assume that the pulmonary blood vessels 
are a symmetrically branching tree. Total resistance can 
then be calculated as the series and parallel summation of 
the individual vessels/resistors: because all blood vessels 
in a single generation of a symmetric tree are identical and 
act “in parallel,” their combined resistance is calculated as 
the individual resistance divided by the number of vessels 
in the generation; and the total resistance is simply the 
sum of the resistances of each generation. An advantage of 
the symmetric approximation is that because all pathways 
from the PA to the pulmonary veins are identical, the whole 
vasculature can in effect be treated as a single pathway. 
Dawson et al.[23] used this type of mathematical model 
of the pulmonary arterial tree to investigate the effect 
of vascular geometry and vessel mechanics on the mean 
pressure-flow relationship and longitudinal pressure 
profile. This study aimed to use the experimental data 
available at the time of the study to construct a range 
of possible hemodynamic outcomes. They found that 
hemodynamics were sensitive to both the elasticity of 
blood vessels (highlighting the possible role of disease 
in affecting elasticity) and the rate of change of vessel 
diameter from the main PA to distal blood vessels. While 
symmetric models are convenient and computationally 
inexpensive, they are very limited in the studies to which 
they can be applied. For example, any study in which the 
spatial distribution of a structural or functional property 
of the pulmonary circulation is important cannot use a 
symmetric tree model. 

Zhuang et al.[22] considered more complex branching 
structures that statistically matched (the same) 
morphometric cat lung data and–by assuming that 
blood flow was equally divided through vessels of the 
same Strahler order (and so simplifying the resistance 
calculations)–they studied the pressure-resistance-flow 
relationships within two different geometric structures. 
They found that both of their model structures provided 
similar predictions, and their predicted pressure-flow 
relationships and the blood pressure distribution through 
the models had some consistency with experimental 
data. The distribution of pressure drop in the models is 
illustrated in Figure 1(a). The most significant decrease 
in pressure occurred across the capillary bed. However, 
they concluded that some important physiological data 
was lacking in areas where their model did not match 
the experimental data. For example they could not match 
the data well when the airway or pleural pressure was 
altered from its baseline value. In short, they concluded 
that an interaction between experiment and modeling 
was required to fully describe the pulmonary circulation. 
A non-symmetric extra-alveolar tree structure was 
considered by Bshouty et al.[24,25] (Fig. 2), with each blood 
vessel’s resistance set independently. Their study differed 
from that of Zhuang et al. in its asymmetry within blood 

Figure 1: Blood pressure drop across four models with symmetric large 
vessels. [a] Zhuang et al.[22] Curves (1 and 2) show pressure drop across two 
models that statistically match the same morphometric data. Capillary beds 
join arteries and veins in parallel. [b] Clark et al.[29] Model A (red) joins large 
vessels similarly to Zhuang et al.; Model B (black) joins arteries and veins 
via a ladder model for combined series and parallel perfusion of capillary 
sheets. Figure sources: [a] redrawn from Zhuang et al.;[22] [b] from Clark  
et al.[29], used with permission.

vessel generations as well as including an upper bound for 
vessel distensibility with pressure. The model asymmetry 
complicates the calculation of resistance, so this study 

Figure 2: The DC circuit representation of the pulmonary blood vessels 
reproduced from Bshouty et al. Each blood vessel is represented by a 
“resistor” with a unique resistance adding heterogeneity to the flow through 
each order of blood vessels. However, computational constraints prevented 
the construction of a model with more than four orders of arteries and veins. 
Redrawn from Figure 1 in Bshouty et al.,[25] used with permission.
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restricted the vessel tree to only 4 Strahler orders 
(compared with Zhuang’s 11-17). They investigated 
whether non-linearity in pressure-flow curves were 
a result of vessel distensibility or recruitment, and 
concluded that recruitment was likely the dominant factor. 

Each of these modeling studies assumed a steady 
blood flow (DC circuit analogue), which is considered 
a valid assumption in many models of the pulmonary 
circulation. [26] A class of pulsatile flow models also exists. 
The models are based on Zhuang’s geometrical approach 
and an AC circuit analogy to describe blood flow[18,19,21] 
in dogs, cats and humans. These models give additional 
temporal information compared with steady models. This 
additional information may be useful in some studies, for 
example in estimating the rate of change of shear stress at 
the endothelium due to the pulsatile blood flow. However, 
to date they have not been used widely outside the context 
of normal pulmonary function. 

The models described above take a simplifying approach 
to both fluid dynamics (the movement of blood through 
the lungs) and geometry. Therefore, they have the distinct 
advantage that they can be solved quickly and easily to 
study normal function or disease which manifests in a 
reasonably uniform manner throughout the vasculature. 
An alternative to this simplifying approach is three-
dimensional computational fluid dynamics (3D CFD). This 
approach aims to solve the most accurate equations in the 
most anatomically correct model geometries possible. 
Unfortunately, the equations that govern fluid (blood) 
flow–the Navier-Stokes equations–are very difficult to 
solve, especially when the flow is turbulent. This means 
that application of 3D CFD to compute pulmonary blood 
flow requires substantial computing power, and model 
geometries are usually restricted to a small subsection of 
the vasculature. However, the accuracy of these models 
allows investigation into shear-stress distributions along 
vessel walls, and blood flow characteristics within a vessel 
itself. Tang et al.[27] used 3D CFD to model blood flow in 
the central pulmonary arteries and provided detailed 
predictions of wall shear stress and energy efficiency in 
these blood vessels at rest and in exercise. Their vessel 
structure was constructed from MRI images and so 
provided a very accurate geometrical description of the 
central blood vessels, compared with the simple cylinder 
(non-elastic) or tapered cylinder (elastic) representation of 
a blood vessel that is required in 1D models. They predicted 
a non-uniform blood flow distribution within these vessels 
and determined that there was a 10% reduction in energy 
efficiency between rest and exercise conditions, noting 
that this may have implications for the long term results of 
surgical procedures. In addition they predicted wall shear 
stress over the entire surface of these vessels–a finding that 
is interesting in the context of vasodilation, where shear 

stress acts as a mechanical stimulus for the release of nitric 
oxide (NO). The major limitation of this field of modeling is 
that only a small subset of pulmonary blood vessels could 
be explicitly included, resulting in major assumptions 
concerning the behavior of the downstream blood vessels. 
In other studies by this group,[28] they have proposed a 
morphometry-based boundary condition to mimic the 
impedance of the downstream vasculature. Each sub-tree 
appending a 3D discretized artery has its parameters 
“tuned” such that the whole model has impedance that is 
appropriate for the intact pulmonary circulation. This is an 
important step in acknowledging the contribution of the 
downstream vasculature is determining the distribution 
of blood through the largest vessels, however this cannot 
account for the interaction between tissue mechanics, 
gravity, and blood flow, and how this changes with posture 
or increased cardiac output.

The models that have been introduced so far have 
neglected the intricacy of structure in the pulmonary 
microcirculation. Whether symmetric or asymmetric, 
the arteries and veins were assumed to be joined by 
a capillary bed that was perfused strictly in parallel. 
That is, a unit of capillary sheet that was supplied 
by a symmetrically branching set of arterioles. This 
neglects the morphometric structure of the pulmonary 
microvasculature, where small pre-capillary blood vessels 
arise from Strahler ordered arteries with order as high 
as 8;[6] small arterioles feed into the capillary plexus, as 
well as supplying daughter arterioles. Recognizing the 
importance of the anatomical geometry in determining 
the distribution of intra-acinar flow and resistance, 
Clark et al.[29] developed a microcirculatory model with 
a “ladderlike” structure. As shown schematically in  
Figure 3(a), each “rung” on the ladder represents the 

Figure 3: Ladder model by Clark et al. In this ladder model of Clark et al.,[29] 

arterioles are in blue, venules in red, and capillary beds in purple. Arrows 
show direction of capillary blood flow. The schematic in Panel A illustrates 
the concept of the ladder model. This was the first computational model to 
include the serial and parallel capillary pathways. Panel B illustrates the 
ladder model implemented over a multi-branching asymmetric model of 
the human pulmonary acinus, from Clark et al.[32] Figure source: Reprinted 
from Clark et al.,[32] with permission from Elsevier; Panel A from Clark  
et al.,[29] used with permission.
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alveolar septae at a separate generation of a symmetrically 
branching tree. One set of “posts” on the ladder are the 
feeding arterioles, and the matching set of posts are the 
draining venules. The ladder model therefore includes 
combined series and parallel perfusion, where blood can 
either progress to the next generation of arterioles, or 
enter the capillary bed and pass to the venules without 
having to traverse the entire length of the intra-acinar 
arteriole tree. Coupling the symmetric ladder model to 
symmetric models for the arteries and veins confirmed 
earlier experimental observations of a stratified acinar 
blood flow from proximal to distal capillary beds.[30,31] The 
model also demonstrated that the hierarchical structure of 
blood vessels within the acinar unit pathways significantly 
decreases PVR when compared with capillary beds that 
connect only the most distal blood vessels. Figure 1(b) 
shows the pressure drop predicted through the symmetric 
large vessel and ladder model, compared with pressure 
drop in a model with symmetric arterioles supplying only 
a single distal capillary sheet. The number and size of the 
arterioles can be modified to give a similar prediction of 
pressure drop between the two models; however, the 
dimensions and effective numbers of these intra-acinar 
arterioles is unrealistic. Clark et al.[32] extended the model 
to an asymmetric acinar structure, showing heterogeneity 
in blood flow even at the level of the intra-acinar blood 
vessels. 

The resistance of individual vessels depends on their 
size, which in turn depends on their hierarchy within 
the pulmonary circulation, and their location within the 
lung. And because of the hydrostatic pressure gradient, 
blood pressures vary considerably depending on the 
vascular pathway that blood traverses from the right to 
the left heart. Clark et al.[33] developed a subject-specific 
anatomically-based model for the entire pulmonary 
circulation that can be used to predict the distribution 
of vascular resistances and the pressure fluctuations 
along individual pathways. The model geometry is 
anatomically-based in that it captures the branching 
asymmetry of the extra-acinar pulmonary blood vessels 
and the spatial relationship between blood vessels and 
lung parenchymal tissue. It is subject-specific in that it 
describes the lung shape, the distribution of the largest 
blood vessels and the regional tissue density measured 
from multi-row detector computed tomography (MDCT) 
data in an individual. Additional modeling methodology 
was used to supplement the model from the level at 
which the imaging data had insufficient resolution. The 
model includes anatomically-based geometry of the 
lung surface and central blood vessels; computationally-
generated morphometrically-consistent models of the 
“accompanying” arterial and venous vessels (i.e., not 
including supernumerary vessels[34]) to the level of the 
acini;[13] a ladder model[29] attached to each of the ~32,000 

acini, consisting of 9 symmetric branches of intra-
acinar arteries and veins coupled in a serial and parallel 
arrangement through a ‘sheet’ flow representation of the 
pulmonary capillaries;[35] and a model of parenchymal 
tissue deformation,[36] to which the vascular networks 
are tethered. The anatomically-structured models for the 
pulmonary arteries and veins are illustrated in Fig. 4. Blood 
flow through the entire circuit of arteries, capillaries, and 
veins can be simulated after applying boundary conditions 
for pressure or flow at the level of the heart. Then by 
solving equations for Poiseuille resistance, conservation 
of mass, vessel elasticity, and a microcirculatory 
model–including gravity–predictions can be obtained 
for the regional distribution of blood flow, blood and 
transmural pressures, capillary recruitment, and vessel 
radius. Blood within the larger vessels is assumed to be 
Newtonian, however in the microcirculatory vessels the 
shear-thinning properties of blood are accounted for via 
an apparent viscosity parameter in the model equations. 

Figure 5 shows the pressure variation through three 
pathways in the spatially-distributed model. The capillary 
pressure in each pathway is inversely proportional to 
the location of the tissue with respect to gravity: blood 
pressure upon entering the capillary bed is least in the 
non-dependent lung and greatest in the dependent 
lung. This can be explained by the larger hydrostatic 
pressure in the most dependent tissue. In contrast to 
the single pathway (symmetric) models where blood 

Figure 4: Anatomically structured model of the human pulmonary circulation 
by Burrowes et al. The pulmonary arteries are colored red, and the pulmonary 
veins are colored blue. The geometry of the first 10-12 generations was 
manually segmented from MDCT imaging. The remainder of the vascular 
trees were generated using a volume-filling branching algorithm. Figure 
source: Burrowes et al.,[13] used with permission.
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pressure systematically decreases, the three pathways in  
Figure 5 illustrate a deviation from this, with increase in 
blood pressure in the arteries of the dependent pathway, 
and in the veins of the non-dependent pathway. This 
occurs again as a consequence of the hydrostatic pressure 
gradient, and is influenced by the orientation of the vessels 
as they traverse to the parenchymal tissue. Pathways that 
are oriented towards the non-dependent tissue experience 
pressure loss due to friction on the vessel walls (energy 
dissipation) plus decrease in the hydrostatic pressure; 
pathways that are oriented towards the dependent 
tissue experience the frictional pressure loss, but have 
added increase in hydrostatic pressure. The vessel sizes 
are determined by transmural pressure (the difference 
between blood pressure and external pleural pressure 
acting on the vessel); in regions where blood pressure is 
smallest, the magnitude of pleural pressure is greatest, 
and vice versa for locations where blood pressure is larger. 
Vessel size is therefore dependent on spatial location and 
the distance that the vessel sits along the flow pathway.

The spatial distribution of blood in the lung
Early experimental studies suggested that gravity was 
the primary determinant of blood flow distribution in the 
lung, due to the hydrostatic pressure gradient affecting 
the balance of forces at the capillary level and hence 
allowing or limiting flow.[11] The classic “zonal” description 
of blood flow distribution is therefore gravitationally 
dependent, with lung tissue in the non-dependent region 
(apices of the upright lung) receiving proportionately 
less of the cardiac output than tissue in the dependent 
region (base of the upright lung). The zonal model has 
persisted as the primary hypothesis for the distribution 
of pulmonary perfusion for over 30 years. More recent 
studies have highlighted irreversibility of the flow gradient 
with reversal of posture,[37] and large iso-gravitational 
heterogeneity of flow,[38] both of which are inconsistent 

with a purely gravitational theory for flow distribution. 
These and other studies[37-41] have suggested that other 
factors play as much of–or even more of–a role in 
determining pulmonary blood flow distributions than the 
hydrostatic effects of gravity. For example, recent imaging 
studies have suggested that the influence of gravity on the 
regional distribution of blood flow in the lung is largely 
through the deformation of the parenchymal tissue[40-42] 
(the lung acting as a SlinkyTM), rather than via the balance 
of pressures at the microcirculatory level, as described 
by the classic zonal model. The anatomical geometry of 
the lung and vasculature have also been proposed to be 
important contributors.[38,43] The potential contribution of 
each mechanism has become a strongly debated issue. [44,45] 
What is clear is that reconciling data from different 
imaging or experimental studies is difficult–perhaps 
impossible–without a predictive, quantitative framework 
in which to test the different mechanisms that contribute 
to perfusion. Here we describe a fractal modeling approach 
that has been used to study an individual mechanism, and 
explain a recent physiologically-based computational 
model that seeks to reconcile data from different 
experimental studies, and to estimate the contribution 
of individual mechanisms when acting integratively in a 
single functioning lung. 

An important feature of pulmonary blood flow distribution 
is the large degree of heterogeneity that is observed 
within isogravitational planes. This heterogeneity is 
accompanied by a spatial correlation in perfusion (high 
blood flow regions neighboring high blood flow regions 
and vice versa), which again occurs within isogravitational 
planes, suggesting a structural influence on pulmonary 
blood flow distribution. These observations have led to 
the construction of fractal models to describe pulmonary 
blood flow.[46] The fractal approach assumes that each 
vessel bifurcation (which includes a parent and two 
daughter branches) is a simple scaling of the previous 
bifurcation; that is, the fractal tree has self-similarity. The 
fractal branching models relate one aspect of structure 
to one aspect of function of the pulmonary vascular 
tree. The fractal model is sufficient for explaining how 
asymmetry in flow distribution at a bifurcation can result 
in perfusion heterogeneity at the tissue level. They also 
provide a mechanism to describe the spatially correlated 
distribution of flow and the gravity-independent 
heterogeneity of blood flow.[46-50] The interaction between 
theoretical fractal models and experimental validation has 
provided an insight into the importance of blood vessel 
structure to pulmonary blood flow distribution that was 
not attainable via experiment alone. However this is an 
examination of a single mechanism, without interaction 
with tissue mechanics or the constraint that is introduced 
by the microvasculature. A further limitation is the basis 
for the fractal models: the assumption of self-similarity 

Figure 5: Variation in pathway blood pressure from right to left heart in the 
full-circuit model. Vertical lines show the capillary bed, where the greatest 
pressure drop occurs. Results differ substantially from previous models 
(Fig. 1), which show continuous blood pressure drop. In contrast this 
illustrates the influence of the hydrostatic pressure gradient, with pathways 
to non-dependent (A) tissue having decreasing arterial blood pressures and 
increasing venous pressure, while pathways to the dependent tissue (C) having 
increasing arterial pressures and decreasing venous pressures.
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may hold on average, but there is marked variability 
in parent to child diameter ratios at all levels of the 
vascular tree, spatial variability in vessel dimension due 
to the regional differences in transmural pressure, and 
potentially major differences in structure and function 
between the accompanying (conventional) vessels and 
the supernumerary vessels[34] that would violate the 
assumption of self-similarity.

An alternative to the fractal approach to modeling blood 
flow is to construct anatomically-based models of the 
pulmonary vasculature and to solve equations describing 
blood flow within these geometries.[13,28] This type of 
model captures the structural aspects of the lung that lead 
to blood flow heterogeneity, and can accurately represent 
the hydrostatic effects of gravity and deformation of 
parenchymal tissue–ultimately allowing the relative 
contribution of each to perfusion distribution to be 
assessed. Anatomically-based models suffer from a high 
computational cost (unlike fractal models). However, 
advances in computational power have allowed rapid 
progression from models of blood flow in the arterial 
tree alone,[51] through coupling to a model of lung tissue 
deformation under gravity,[52] to a model that can describe 
the distribution of pulmonary blood flow though the full 
pulmonary circuit coupled to deformed tissue.[33] Using 
this modeling approach, one can investigate the effects 
of structure alone (heterogeneity and a reduction in 
blood flow through high resistance paths), hydrostatics 
(inducing a gravitational gradient in blood flow) and 
tissue deformation (increasing/decreasing gravitational 
gradients depending on lung size and posture).[33] This 
is achieved by ‘switching’ model components on and 
off–a task that can be achieved far more easily in a 
computational model than in a biological organism. The 
contribution of each of these factors–as revealed by a 
computational modeling study–is considered below. 

Clark et al.[33] developed an anatomically-based model 
of blood flow through the full pulmonary circuit of a 
single human subject coupled to a model of parenchymal 
tissue mechanics[36] to study the interdependence of 
structure, fluid transport, and mechanical behavior in 
perfusion of the lung. This complex multi-scale and 
multi-physics model is currently the only model in the 
literature that simultaneously includes all of the basic 
passive mechanisms that influence the distribution of 
blood flow in the lung. The model built upon previous 
structure-based models for perfusion[13,51-53] by coupling 
anatomically based pre-acinar geometries (representing 
the largest pulmonary arteries and veins) with the 
ladder model for perfusion in the pulmonary acinus,[29] 
as described in the previous section. Each artery, vein, or 
capillary is embedded within a model of the deforming 
parenchyma[36] such that the vessel-by-vessel transmural 

pressure has an appropriate dependence on vessel 
blood pressure and the local elastic recoil pressure of 
the tissue (elastic recoil pressure is approximately equal 
and opposite to pleural pressure), and in the case of the 
capillaries the additional dependence on local air pressure. 
The coupling of models describing the microcirculation 
in an anatomically-based large vessel structure enables 
application of readily measurable pressure and/or flow 
boundary conditions at the heart rather than at the 
micro-circulatory level as previous anatomically-based 
models had been constrained to do.[13,51-53] Previous 
modeling studies of the relative influence of gravity and 
structure[13,52,54] considered perfusion of the arterial tree in 
isolation from the structure of the capillary bed or veins, 
instead using a linear increase in acinar blood pressure 
with decrease in gravitational height, hence each acinus 
within a single isogravitational plane was assumed to have 
the same blood pressure. The full-circuit model removes 
the necessity for this simplifying assumption, which allows 
more meaningful predictions of pulmonary perfusion 
gradients and heterogeneity than has previously been 
possible from this type of computational model. That is, 
by including the structure of each level of vessel in the 
circulatory tree, simulations of perfusion only require 
setting cardiac output and LA pressure, and selecting 
the orientation of the lung with respect to gravity. The 
“full-circuit” model is a comprehensive tool for studying 
the integrated function of the pulmonary circulation, and 
provides the only tool for teasing apart the individual 
contributions of the various passive mechanisms that are 
at play. Clark et al.[33] specifically addressed whether tissue 
deformation is the major contribution of gravity to the 
pulmonary perfusion gradient in the human lung, whether 
the hydrostatic pressure gradient makes a quantifiable 
contribution, and whether the balance of pressures at the 
micro-circulatory level remains a significant feature in 
the presence of other mechanisms of gravitational origin. 

The vascular trees are tethered to the parenchymal tissue, 
which is highly compliant and deforms readily in gravity 
due to its own weight. In the upright lung the gradient 
of deformation is in the cranial-caudal axis, with tissue 
near the base on average less expanded than tissue near 
the apices.[40,41] Note that the word “compression” is often 
misused in this context, with many authors and textbooks 
describing the lung tissue as “compressed” in the 
dependent region rather than “less expanded.” A material 
that is in compression has restoring forces that will act 
to return it to a more expanded state; in contrast the 
parenchyma in the dependent tissue is in tension, just to a 
lesser degree than the parenchyma in the non-dependent 
regions. Understanding this distinction is important when 
studying the mechanical deformation of the lung tissue. 
The study of Clark et al.[33] found that postural differences 
in perfusion gradients could be attributed largely to tissue 
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deformation. Unlike previous findings in models of the 
ovine lung,[53] the orientation of the vascular structure 
with respect to gravity had little effect on perfusion 
gradients in the human lung. That is, the vascular structure 
did not contribute significantly to a persistence of the 
flow distribution pattern. Tissue deformation in the 
model supported experimental studies that describe 
the lung tissue as acting as a Slinky that deforms under 
gravity and hence changes the density of blood vessels 
and capillaries per unit volume,[40,41] but the model also 
added new insight into the individual contribution of 
each mechanism beyond the Slinky hypothesis. Each 
structural and gravitational feature of the pulmonary 
circulation was found to make a distinct contribution to 
the distribution of blood. Postural differences in perfusion 
gradients were explained by the combined effect of tissue 
deformation and extra-acinar blood vessel resistance to 
flow in the dependent tissue. The model also showed 
that gravitational perfusion gradients persisted when the 
effect of tissue deformation was eliminated, highlighting 
the importance of the hydrostatic effects of gravity acting 
directly on the weight of the blood (imagine a solid, 
non-deforming parenchyma with a vascular tree that 
contains blood). Heterogeneous large vessel resistance 
(due to geometric asymmetry of the vascular trees) was 
shown to cause variation in driving pressures across the 
microcirculation. This variation was amplified by the 
complex balance of pressures, distension, and flow at 
the micro-circulatory level. That is, the normal variation 
in resistance pathways of the vascular tree were found 
to result in isogravitational heterogeneity of flow and 
pressures at the entrance and exit of the microcirculation 
of each acinus. This heterogeneity was amplified by the 
zonal model, which considers the balance of arteriole, 
venule, and alveolar pressures, and the extent of local 
alveolar stretch. The influence of the vascular asymmetry 
combined with the zonal effect was enhancement of the 
isogravitational heterogeneity of tissue perfusion. The 
contribution of these mechanisms is summarized in the 
schematic in Fig. 6.

An important outcome of the modeling study was the 

ability to reconcile the experimental measurements 
that formed the basis of the zonal model with more 
recent studies using higher resolution (microsphere) 
techniques, and even more recent imaging studies that 
demonstrated the importance of tissue deformation. The 
model showed that each theory can co-exist within the 
same structure, and that each makes an important and 
distinct contribution to the distribution of blood flow. 
The model encapsulates each of the theories related 
to microcirculatory pressures, vascular geometry, and 
tissue deformation, and shows that these can be predicted 
on the basis of the physical behavior of the pulmonary 
circulation. This is only predicted however when structure 
and function are considered in parallel: a model with 
symmetric geometry (neglecting vascular asymmetry) 
or lacking a realistic spatial distribution of blood vessels 
(so neglecting the interaction with the deforming tissue) 
would only recognize the contribution of the hydrostatic 
pressure gradient.

Species differences in perfusion distribution
Experimental measurements of pulmonary perfusion are 
more easily obtained in animal studies than human. High 
resolution methods using microspheres are destructive, 
hence can only be used in animals, and MDCT imaging–
which gives highest resolution for lung tissue–requires 
radiation exposure, so must be used minimally in 
humans. However humans have quite different vascular 
branching asymmetry to most other mammals, and this 
could influence the translation of outcomes from animal 
experiments to human physiology and pathophysiology. 
Species-specific branching and diameter asymmetry in the 
vascular trees of the lung has been well documented. [6,55] 
The quadruped pulmonary arteries and veins branch 
monopodially (a parent vessel gives rise to a major branch 
with relatively large diameter at a small branching angle 
to the parent, and a minor branch with relatively small 
diameter at a large branching angle). If the supernumerary 
arteries and veins are neglected, then the human 
pulmonary vascular trees are relatively more symmetric 
than in the quadruped lung. Various measurements of 
pulmonary perfusion gradients in animals and humans in 
different postures and at different lung volumes[38,40,41,47,56-60] 
have suggested differences between quadruped and 
human pulmonary perfusion gradients.[45] Burrowes 
et al.[53] used species-specific computational models of 
the pulmonary vasculature to study whether species 
differences in vascular asymmetry were sufficient to 
produce characteristic differences in pulmonary perfusion 
gradients in the human and ovine lung.

Species-specific models were derived from MDCT 
imaging, using the lung and lobe shapes as boundary 
conditions and the MDCT-segmented arteries as initial 
conditions for generating a volume-filling tree to 

Figure 6: Schematic of contributions to distribution of blood. (A) Vascular 
asymmetry contributes to heterogeneity, and decrease in perfusion in the 
extremities; (B) hydrostatic pressure gradient acts directly on blood to drive 
it preferentially downwards, and introduces a constraint at the capillary level; 
(C) deformation of tissue establishes a gravitational gradient of vessels per 
unit tissue, enhancing the flow gradient; also contributes to reduction in flow 
in most dependent region; (D) combined result is a gravitational gradient 
and isogravitational heterogeneity, each affected by multiple mechanisms.
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represent the pulmonary vasculature of each species.[53] 
The governing equations, method for numerical solution, 
and parameters in the two species models were the 
same. The only difference was in the branching pattern 
and branch diameters. This meant that any predicted 
difference in flow distribution was due to species-specific 
pulmonary arterial geometry. The regional distribution 
of perfusion in the ovine model was consistent with 
microsphere measurements in supine pig[47] and dog[61] 
lungs. The microsphere measurements showed the same 
characteristic distribution as the model, with flow lowest 
near the ventral and dorsal surfaces, and maximum at 
about 40% (dorso-ventral) height. Perfusion gradients 
in both species were smaller than those measured 
via imaging, which was likely due to neglecting tissue 
deformation in the model. Importantly, in both the model 
(after exclusion of decreasing flow in zone 4) and in 
experimental studies, animal perfusion gradients were 
generally larger than in human. The model predicted only 
a modest change in flow gradient with posture (supine 
to prone), similar to measurements from Glenny et al.,[47] 
suggesting that the arterial structure has a persistent 
effect on regional perfusion regardless of posture. 
When the ovine model was supine there was large flow 
resistance in the dorsal pathways that acted to reduce the 
flow in this region; the human dorsal pathways provided 
relatively less resistance than those to the ventral tissue, 
so there was a smaller reduction in flow. 

A species comparison such as this is clearly only possible 
using a structure-based model that accounts for the 
species-specific morphometry of the vascular trees. Sheep 
and other quadrupeds with monopodially branching 
pulmonary vasculature are more frequently used as 
experimental animals in studies of lung function than 
primates, whose lung geometry is most similar to human. 
Sheep, pigs, and dogs are variously described as having 
lungs that are ‘similar to human’. While this may be true 
of lung size, and distribution and density of some cell 
and receptor types, it is not correct with respect to the 
tree geometries of the airways and blood vessels. The 
monopodial animal vasculature has markedly greater 
asymmetry of child vessel diameters than in the human 
lung, so greater potential for the vasculature to contribute 
to flow heterogeneity. The animal pulmonary vasculature 
also has long wide vessels that extend to the dorsal-
diaphragmatic region. The modeling study demonstrated 
the consequence of these geometric differences on 
distribution of blood flow. Important species differences 
were highlighted that need to be accounted for when 
interpreting animal measurements in the context of 
human lung physiology. One caution is that the modeling 
study of Burrowes et al.[53] did not explicitly couple the 
arterial tree to the geometries of the capillary bed and 
venous tree, as in the later study of Clark et al.[33]

Interesting future extensions to this work would be in 
considering smaller animals that are used as genetic 
models for disease, such as rats and mice. The same 
methodologies and governing equations apply, only now 
working with a smaller sized organ. 

CLINICALLY DIRECTED MODELING 
STUDIES 

Models describing pathophysiology in the pulmonary 
circulation are fewer in number than those describing 
normal physiology. However, they have been able to 
provide useful insights into disease and provide advances 
towards improving clinical practice. In 1999 Taylor  
et al. [62] proposed that surgical planning could be improved 
via predictive medicine. That is, that a simulation-based 
set of tools that could predict patient outcomes and test 
hypotheses would allow better surgical planning than 
diagnostic imaging and empirical data based on past 
treatments alone. The concept of predictive medicine 
is not restricted to the surgical arena; it can be–and 
should be–used in developing diagnostic procedures and 
treatment strategies for acute and chronic illnesses. Here 
we describe models that aim to advance understanding of 
the development of pulmonary hypertension (PH) in the 
presence of vascular obstruction.

Pulmonary embolism
Thromboembolic pulmonary embolism (PE) is a relatively 
common clinical condition that can result in acute or 
chronic elevation in PA pressure, thereby inducing 
secondary PH. Clinically, acute PE is poorly diagnosed and 
is responsible for many thousands of deaths each year.[63] If 
left untreated, chronic elevations in PA pressure may lead 
to RV hypertrophy (cor pulmonale) and ultimately to RV 
failure. PE is difficult to diagnose because of its range of 
symptoms and clinical features, and the response to acute 
PE is heterogeneous. The capability of stratifying risk 
amongst PE patients is therefore vital to enable optimal 
management.[64] PE is also often used to induce PH in 
animal models,[65] either by instilling inert beads, inflating 
a balloon catheter to obstruct an artery, or injecting 
autologous blood clots. 

Arterial thromboembolic PE have been proposed to raise 
PA pressure by two mechanisms: first, by mechanical 
obstruction of the arterial tree, reducing the effective 
size of the vascular tree so elevating PVR; and, second, by 
release of vasoactive mediators (for example, serotonin 
and thromboxane A2) from the blood clot, causing 
vasoconstriction and an increase in PVR.[66-68] There is 
some uncertainty as to the action of the second mechanism 
in the human pulmonary vasculature. It is clear clinically 
that while patients can tolerate occlusion of a major PA 

Tawhai et al.: Computational model of the pulmonary circulation



Pulmonary Circulation | April-June 2011 | Vol 1 | No 2 234

by a passive obstruction (such as a balloon catheter) 
or indeed removal of an entire lung, thromboembolic 
obstruction of a far smaller proportion of the vascular 
tree can result in RV failure via elevated PVR and PA 
pressure.[69,70] Many animal studies have demonstrated 
that PVR is far more sensitive to vascular occlusion by a 
thrombus than by a passive occlusion (e.g., references 65 
through 67); others have demonstrated elevated levels 
of vasoactive mediators in the circulation in the presence 
of a blood clot in both animals and humans.[71-73] These 
studies have hence concluded that–more definitively, in 
animal lungs–vasoconstriction is an important mechanism 
for developing high PA pressure. The same amount of 
direct evidence for vasoconstriction in humans is not 
available, but the indirect evidence does suggest that 
‘something other’ than mechanical obstruction must be 
contributing to the response to APE, and that this is likely 
to be vasoconstriction mediated by vascular interaction 
with the thrombus. 

Despite the prevalence of clinical PE and numerous animal 
experimental studies to understand its mechanisms, it is 
still not clear precisely how it affects gas exchange on a 
patient-specific basis, and how the degree of hypoxemia 
and elevation of RV pressure varies according to embolus 
distribution and severity. There is also some lack of 
certainty concerning the development of PH in human 
APE. The aim when developing computational models is 
to include only as much detail as is necessary to address 
the specific question of the study. Examples of this in the 
area of PE are the models of Mélot et al.,[14] who were the 
first to propose theoretical models for PE, and Roselli 
et al.,[74] who used a rudimentary model to investigate 
the effect of embolization on measurement of capillary 
pressure via venous occlusion. Mélot et al.[14] adopted 
a simplified Starling resistor model (based on Mitzner 
et al.[75]) that included 100 parallel resistors (each 
representing a pulmonary vessel), each with a randomly 
generated critical closing pressure, and a distensible 
vessel model based on Haworth et al.[76] and Zhuang 
et al.,[22] to investigate which model best described the 
relationship between PA pressure and flow in embolic PH 
in dogs. They found that the distensible vessel model was 
able to reproduce blood pressure-flow curves measured 
in dogs with embolic PH (induced using 500-μm glass 
beads). Their simulations provided reasonably accurate 
predictions of experimentally-derived PA pressure-flow 
and PA pressure-LA pressure curves pre- and post-
embolic occlusion. These early studies were designed 
to answer specific experimentally-led questions. At least 
part of the variable response to PE treatment is due to 
heterogeneity in embolus location. A structure-based 
model for PE is therefore essential to capture regionally-
varying changes in the distribution of perfusion post-
occlusion. 

Burrowes et al.[77] presented a pilot study using the 
full-circuit model of Clark et al.[33] to investigate the 
extent to which RV dysfunction in PE can be attributed 
to mechanical obstruction of the vasculature, and 
whether the contribution of signaling from the embolus 
via vasoactive mediators can be estimated. Computed 
tomography pulmonary angiography (CTPA) from 10 
patients acquired during routine clinical examination 
for PE was used to define the location of emboli in each 
subject. For each of the 10 subjects, the percentage of 
arterial occlusion in each artery from the main PA to 
the level of the segmental arteries was estimated from 
their CTPA, for use in post-occlusion simulations. Partial 
occlusions of individual arteries identified on the imaging 
were mapped onto the computational model, and their 
hemodynamic consequence was predicted by solving the 
functional flow model of Clark et al.[33] with application 
of boundary conditions for pressure and flow that 
assumed no increase in LA pressure or decrease in cardiac 
output. All but one subject demonstrated preferential 
redistribution of blood flow to non-dependent regions. 
This pattern of redistribution was because of increased 
potential for capillary recruitment in the non-dependent 
lung due to lower baseline capillary pressures and 
therefore lower recruitment at baseline. 

In comparison to clinical data acquired in multiple 
patients with no prior cardiopulmonary disease and 
with variable levels of tissue obstruction,[70,78] the model 
showed far less increase in PA pressure with degree of 
tissue obstruction. All of the model results for mechanical 
obstruction in the absence of vasoconstriction predicted 
PA pressure at levels below the clinically defined 
hypertensive level (mean PA pressure >25 mmHg); 
this level of PA pressure was not reached until >65% 
of the vascular bed was occluded. This contrasts 
with the clinical data, in which PA pressure in most 
subjects with >30% of tissue occluded had reached 
this threshold.[70] The discrepancy between the model 
predictions and clinical reality cannot be explained 
by a simple mis-parameterization of the model: the 
model geometry is well founded in human pulmonary 
vascular morphometry,[13] is consistent with previous 
morphometric studies,[4,79] and was tailored to each 
patient for this study; the functional model is based 
largely on physical conservation laws, and where this 
isn’t the case the parameters in the functional equations 
come from experimental measurements. The modeling 
study therefore provided evidence that mechanical 
obstruction alone is insufficient to elevate PA pressure to 
hypertensive levels in the human lung, and this is because 
of the large reserve of unrecruited capillaries that open 
in the unobstructed tissue. Elevating PA pressure implies 
either increased cardiac output or increased PVR. Cardiac 
output is most likely to decrease in PE,[70] which leaves 
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increase in PVR as the only possibility for increasing PA 
pressure. There are two means by which PVR could be 
elevated in the model: through a decrease in the radius of 
the vessels, which under acute conditions is most likely 
due to vasoconstriction; and by obstruction with smaller 
emboli that are usually unresolved on the imaging.

As proxies for vasoconstriction and/or increased vascular 
tone, further simulations were performed with vascular 
constriction enforced by setting all vessel radii to 80% of 
their baseline value, and a reduction in vessel elasticity 
to 80% of baseline. Neither mechanism was sufficient by 
itself to increase PA pressure to hypertensive levels for 
any volume of occluded tissue. PA pressure increased 
twice as much (~14%) as a result of vascular constriction 
compared to the reduction in vessel elasticity (PA 
pressure increased by ~7%). This result provides indirect 
evidence that the release of vasoactive mediators from 
emboli plays an important role in whole organ response 
to PE.[66-68]

Small sub-segmental emboli are not able to be assessed 
clinically (radiological examination of CTPA generally 
only identifies emboli down to the segmental level) 
and would be difficult, if not impossible, to assess 
experimentally. Inclusion of sub-segmental emboli in 
the full-circuit model (located one vessel downstream of 
a measured segmental partial occlusion) demonstrated 
that increases in PVR could be significant if sub-
segmental vessels are occluded in addition to partial 
occlusion of larger vessels (for example due to the break 
off of part of a large embolus). This provides a possible 
explanation for heterogeneity in PE outcome, particularly 
when taken in combination with vasoconstriction. 
This new prediction of the model requires clinical and 
experimental validation.

The full-circuit model is a unique tool for this type of 
clinically relevant study. A model by itself cannot prove 
a hypothesis, but a model that is biophysically-based can 
disprove the physical possibility of certain hypotheses. 
In this case the model clearly demonstrated that it is 
physically impossible for a previously normal pulmonary 
circulation to develop high enough PVR to reach 
hypertensive levels of PA pressure via purely mechanical 
obstruction of <50% of the vascular bed. This is an 
example of the insight that a model can provide when it 
does not fit the experimental data. 

Micro-emboli
Emboli can also develop within the micro-vasculature of 
the pulmonary circulation. Although this would rarely be 
diagnosed as a clinical condition, some cases of arterial 
PE show signs of small micro-emboli breaking off from 
larger clots, perhaps exacerbating symptoms. There is also 

the rare occurrence of cor pulmonale as a result of tumor 
micro-emboli, in which clusters of tumor cells occlude 
small pulmonary arterioles. Cor pulmonale often develops 
more quickly with tumor emboli than blood clot emboli due 
to differences in interactions between the arterioles and 
the embolus.[80] Experimentally, the occlusion of multiple 
arterioles at the intra-acinar level has been shown to 
have a significant impact on pulmonary function, and–for 
an equivalent proportion of vascular bed occlusion–this 
impact is often greater than for emboli in the larger extra-
acinar vessels.[65,81] In contrast to emboli in the larger blood 
vessels, for small induced intra-acinar emboli (<170 µm 
in diameter) PH has been observed when less than 50% 
of the vascular bed is occluded.[81] Pulmonary micro-
embolism using inert emboli is therefore a useful method 
for inducing hypertension and pulmonary edema in animal 
experiments.[65,82] To properly interpret results from these 
animal models, an understanding of the implications of 
micro-emboli is important. It has been suggested that 
the location of obstruction within the acinus (proximal 
or distal) may have a role in determining differences in 
response to intra- and extra-acinar emboli.[30] In addition, 
constriction or loss of elasticity in intra-acinar vessels may 
increase the severity of the response to embolization. [80,81] 
Finally, edema as a result of increased micro-vascular 
blood pressure, or mechanical injury to the vascular bed, 
may increase the severity of symptoms following embolus 
occlusion.[81] 

Clark et al.[32] used the ladder model described in a 
previous section[29] distributed over an asymmetric 
intra-acinar branching geometry,[83] as illustrated in Fig. 
3b, to investigate blood flow redistribution and changes 
in vascular resistance following arterial occlusion at the 
microcirculatory level. An important application of this 
type of model is the ability to differentiate between the 
behaviors of different types of embolus. For example, PE 
can be induced in experimental animals using materials 
such as balloons,[84] glass beads,[82] or blood clots.[85] An 
embolus may occur in vivo due to a blood clot or a tumor. 
Each provides a mechanical obstruction to perfusion. 
However, although different types of embolus may 
ultimately have the same effect on pulmonary function, 
their interactions with surrounding blood vessels 
differ and these differences must be well understood 
to properly interpret experimental and clinical data.[81] 

The modeling study showed that with mechanical 
obstruction alone (without vasoconstriction), the size 
and location of emboli have an impact on the increase 
in PVR post-embolus occlusion, with larger or more 
proximally located emboli resulting in PH with a relatively 
small capillary bed occlusion. However, consistent with 
the studies of embolic obstruction in the larger arteries, 
the micro-circulatory model showed a rise in PVR, but 
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not sufficient to increase PA pressure to PH levels until 
>50% of the capillary bed was occluded. This again was 
suggestive of other factors, such as vessel constriction 
or loss of elasticity, also contributing to observed  
hypertension.[65,81] Further simulations showed that 
proximally occluded vessels along with localized 
constriction has the potential to induce hypertension 
with <50% capillary occlusion. The model analysis further 
showed that it is possible for capillary blood pressures 
to be elevated to levels that may cause capillary damage 
at approximately the onset of PH, that in some cases red 
blood cell transit time across the capillary bed can be 
reduced to below that required for oxygen saturation 
in the non-occluded region, and that both a localized 
arteriole constriction or loss of compliance can have a 
significant effect on PVR post occlusion.

A structure-based model was necessary for study of 
micro-embolism in that the structure of acinar blood 
vessels leads to both heterogeneity and stratification in 
perfusion within the acinus, and this must be captured 
sufficiently for plausible predictions of intra-acinar 
occlusions with micro-emboli. The series and parallel 
arrangement of blood vessels within the acinus model, 
which is only captured in models of this type, allows 
for a redistribution of perfusion within the acinus itself 
following the introduction of micro-emboli. Because the 
model–like the real pulmonary acinus–has capacity for 
perfusion redistribution and recruitment of capillary 
blood volume, it allows for substantial portions of the 
acinus to be occluded before a significant rise in resistance 
occurs. If arterioles of a similar size to the embolus are 
occluded then the smaller the embolus, the less effect it has 
on PVR. But if the serial-parallel structure of the acinus is 
disrupted by occlusion of the proximal capillary beds, the 
effect of the loss of capillary surface area has a far greater 
effect on PVR. Proximally located smaller emboli have a 
more significant effect on PVR for the same percentage 
occlusion as larger emboli in the model due to a substantial 
shift in flow to the distal capillary beds which are at the 
end of the highest resistance vessel pathways. 

The acinar micro-circulatory model that was used in this 
study is a more elaborate version of the original ladder 
model of Clark et al.[29] The difference between the models 
lies in their geometry. The ladder model is a sufficient 
representation of intra-acinar perfusion for coupling to 
structure-based models of the pulmonary circulation, 
where each of the ~32,000 acini and their circulation 
is modeled explicitly. The more geometrically accurate 
model was necessary for the study of intra-acinar flow 
redistribution. Accurate acinar geometry has also been 
shown necessary for modeling based studies of inert gas 
washing and mixing,[9] and the intra-acinar distribution 
of respiratory gas exchange.[86]

FUTURE DIRECTIONS

Mathematical models of the pulmonary circulation have 
evolved from convenient tools with which to explain 
some experimental observations, to a new class of 
structure-based models that are giving a greater depth of 
understanding of blood flow in the lung and how it relates 
to the other physical processes with which it interacts. One 
obvious limitation of the current structure-based models 
described here is that they only include the passive features 
of the pulmonary circulation: the vascular geometries, 
blood flow, pressure, and tissue mechanics. That is, they 
do not include any of the vasoactive components that are 
likely to be important under non-baseline conditions. In 
terms of mathematics the models described above for PE 
are relatively simple–with complexity being introduced in 
the geometry. They suggest some, but not all, aspects of 
the pathophysiology. Looking forward, and in the context 
of the IUPS Physiome and VPH projects, a link between 
micro-scale behaviors and whole lung function is lacking. 
For example, a large part of the response to PE is likely 
to happen via cellular level signaling, which results in 
active alterations in vessel dimensions and so to PVR and 
perfusion distributions. 

The pulmonary vasculature is a dynamic system that 
responds rapidly to vasoactive mediators. Blood vessel 
dilation occurs in response to shear stress mediating 
production of NO by the endothelium, and its signaling 
for smooth muscle relaxation. Conversely the vessels 
are stimulated to constrict by hypoxia and circulating 
vasoconstrictive mediators. The smooth muscle in the 
vessel walls appears to operate under a fine balance of 
vasoconstrictive and vasodilatative stimuli. The next 
generation of computational models will play a role in 
understanding how these stimuli translate into smooth 
muscle contraction, and whether there is positive feedback 
that leads to excessive increase in PVR, or negative feedback 
that ensures system stability. An example of how such a 
model would be composed has recently been presented 
by Politi et al.[87] for the airway tree. In this multi-scale 
model the balance of forces acting on a stimulated airway 
is considered over spatial scales from the intra-cellular 
calcium dynamics, to development of force via a cross-
bridge model, to a cross-section of a constricting airway 
that is embedded in a dynamically expanding and recoiling 
parenchyma. This study demonstrates the viability of 
creating a model that accounts for force development over 
such a wide range of scales. The additional complexity in 
the pulmonary vasculature is the sheer range of mediators 
to which the smooth muscle responds. And whereas 
smooth muscle activation in the airway tree is undesirable, 
in the pulmonary vasculature it seems to be a prevalent 
feature that is continually acting to–presumably–optimize 
the delivery of blood to the gas exchange tissue. 
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A multi-scale modeling approach which links cellular 
mechanisms to arterial dilation and contraction and in 
turn to pulmonary function may be the only way to link 
small scale interactions with emergence of whole organ 
function. 
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