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Abstract: Recently, the COVID-19 epidemic has had a major impact on day-to-day life of people all
over the globe, and it demands various kinds of screening tests to detect the coronavirus. Conversely,
the development of deep learning (DL) models combined with radiological images is useful for
accurate detection and classification. DL models are full of hyperparameters, and identifying the
optimal parameter configuration in such a high dimensional space is not a trivial challenge. Since the
procedure of setting the hyperparameters requires expertise and extensive trial and error, metaheuris-
tic algorithms can be employed. With this motivation, this paper presents an automated glowworm
swarm optimization (GSO) with an inception-based deep convolutional neural network (IDCNN) for
COVID-19 diagnosis and classification, called the GSO-IDCNN model. The presented model involves
a Gaussian smoothening filter (GSF) to eradicate the noise that exists from the radiological images.
Additionally, the IDCNN-based feature extractor is utilized, which makes use of the Inception v4
model. To further enhance the performance of the IDCNN technique, the hyperparameters are
optimally tuned using the GSO algorithm. Lastly, an adaptive neuro-fuzzy classifier (ANFC) is used
for classifying the existence of COVID-19. The design of the GSO algorithm with the ANFC model
for COVID-19 diagnosis shows the novelty of the work. For experimental validation, a series of
simulations were performed on benchmark radiological imaging databases to highlight the superior
outcome of the GSO-IDCNN technique. The experimental values pointed out that the GSO-IDCNN
methodology has demonstrated a proficient outcome by offering a maximal sensy of 0.9422, specy of
0.9466, precn of 0.9494, accy of 0.9429, and F1score of 0.9394.

Keywords: deep learning; inception networks; COVID-19; classification; GSO algorithm; radiological
images

1. Introduction

The 2019 novel coronavirus named COVID-19 has become a major threat to human
health across the globe. Earlier works reported that the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) began from decomposed cats that affected human beings,
and Middle East Respiratory Syndrome (MERS-CoV) virus began from Arabian camels to
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human beings. It is believed that COVID-19 started in bats and spread to humans. It can
infect the respiratory system easily and is rapidly transmitted to other people. It exhibits
milder symptoms in about 82% of patients, and the remaining worsens to a critical stage [1].
In most cases, 95% of people survived to a certain stage, and the remaining 5% of people
suffered from the advanced stage. It has also been observed that COVID-19 has affected
more men than women, and children in the age group of 0–6 are at risk of infection.

Since March 2020, several openly accessible X-ray images of COVID-19-infected per-
sons have existed. It offers a method of analyzing the medical images and identifying every
possible prototype that may lead to the automatic identification and classification of dis-
eases. Presently, the imprints of this virus are stimulating effort because the unreachability
of the COVID-19 diagnosis process results in stress globally. Because of the inadequate
availability of COVID-19 rapid test kits, it has become essential to rely on other diagnostic
techniques. Since the coronavirus damages the epithelial cells in the respiratory system,
doctors make use of X-rays to diagnose the patient’s lungs [2]. As the hospitals commonly
have X-ray imaging equipment, it becomes easy to test COVID-19 using X-rays without
specific test kits. Radiological imaging techniques have become essential to detecting and
classifying COVID-19. Although it denotes a circular allocation in the images, it exhibits
identical characteristics to the alternative viral pandemic lung contagion. Because the
coronavirus continues to grow quickly, different varieties of examinations are performed.

Deep learning (DL) is an effective method involved in the healthcare-based diagnostic
process. DL is a combination of machine learning (ML) algorithms and is majorly focused
on automated feature extraction and classification processes [3,4]. ML as well as DL
models have been recognized as well-identified models to mine, examine, and identify
the patterns that exist in the images. Improving the progression of medical decision
making and computer-aided design (CAD) turned out to be non-trivial, as effective data
are produced [5]. DL, normally named deep CNN (DCNN), was utilized for automatically
extracting the features that utilize the convolutional processes, and layers operate on
nonlinear data. All the layers have a data transformation for superior and more abstract
levels. Usually, DL refers to novel deep networks related to standard ML techniques
utilizing big data [6].

This paper presents an automated glowworm swarm optimization (GSO) with an
inception-based deep convolutional neural network (IDCNN) for COVID-19 diagnosis and
classification, called the GSO-IDCNN model. The presented model utilizes a Gaussian
smoothening filter (GSF) to exterminate the noise that occurs from the radiological images.
Moreover, the IDCNN-based feature extractor was utilized, which employs the Inception
v4 method. To further boost the performance of the IDCNN model, the hyperparameters
are optimally tuned using the GSO algorithm. Finally, an adaptive neuro-fuzzy classifier
(ANFC) is used for classifying the existence of COVID-19. For experimental validation,
a series of simulations were performed on benchmark radiological imaging databases to
highlight the superior outcome of the GSO-IDCNN model. In short, the contribution of the
paper is listed as follows:

• To develop a new GSO-ODCNN model for COVID-19 detection and classification;
• To present a new GSF model to eradicate the noise that exists in the radiological images;
• To introduce a GSO model with an Inception v4-based feature extractor on radiological

images;
• To employ ANFC classifier to allocate proper class labels to it;
• To validate the performance of the GSO-ODCNN model on the benchmark dataset.

2. Related Works

ML algorithms fall under the topic of artificial intelligence (AI), which is commonly
employed for healthcare applications for feature extraction and image examination pur-
poses. A classification model is developed for computing the dissimilarity amongst a
collection of Regions of Interest (ROIs) [7,8]. Moreover, the features are classified by a
normal vector-oriented classifier technique. Another computed tomography (CT)-based clas-
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sification model is developed in [9] incorporating three classical features, such as grayscale
values, shapes, textures, and symmetric features. It can be performed using RBFNN to
classify the features involved in the images. A comparative study of JeffriesñMatusita (JñM)
distance and KarhunenñLoËve transformation-based feature extracting techniques were
developed [10].

A new classifier model is projected in [11] with an average grayscale value of images
for a multi-class image classifier. A novel automatic classifier technique is developed
in [12] for classifying breast cancer utilizing morphological features. Moreover, it is noticed
that the outcome decreases when an identical process is carried out on an alternative
dataset. Additionally, handcrafted techniques undergo initialization for deploying CNN
and automated feature extraction methods.

Ozyurt et al. [13] presented the hybridization technique known as fused perceptual
hash dependent on the CNN model to decrease the diagnosis time of liver CT images and
sustain the overall operation. Xu et al. [14] have executed a DTL technique to address the
medicinal imaging imbalance problem. Lakshmanaprabu et al. [15] have investigated CT
lung images using an optimum DNN as well as LDA. In [16], a transformation of original
CT images to lower attenuation actual images and higher attenuation pattern rescaling was
carried out. At last, the resampling of the images takes place and is classified using the
CNN technique. A DL-based automatic lung and affected region segmentation process take
place in [17] using a chest CT image. Wang et al. [18] relied on COVID-19 radiographical
modifications in CT images and designed a DL model for graphical feature extraction of
COVID-19, offering a medicinal examination prior to obtaining the pathogenic state to
avert the deadly disorder in the patients. In [19], data mining (DM) techniques are applied
to classifier SARS and pneumonia using X-rays.

Although numerous techniques exist to diagnose COVID-19, it is still a requirement
to analyze COVID-19 using chest X-ray images. X-ray machinery appeared to help scan
the body for damage, such as fracture, bone displacement, lung disease, pneumonia, and
tumor. By using X-rays, the scanning process is easy, quick, cheap, and harmless over CT.
Since the advanced stage of COVID-19 leads to serious illnesses, a proficient CAD model
for COVID-19 diagnosis is essential. At the same time, most of the earlier works have
concentrated on binary classification. Therefore, in this study, a multi-label classification
process is designed for COVID-19 diagnosis.

3. The Proposed GSO-IDCNN Model

The working procedure contained in the GSO-IDCNN technique is showcased in
Figure 1. As depicted, the noise that exists from the radiological images is discarded by
the GSF technique. Then, the feature extraction process takes place using the IDCNN
model, where the parameters involved in it are tuned by the GSO technique. Eventually,
the classification process is executed by the ANFC model to allocate appropriate class labels
to it.

3.1. GSF-Based Preprocessing

The design of 2D GSF is commonly employed to smoothen and remove noise. It
necessitates massive computational time, and its effectiveness in the design is fascinating.

The convolutional operators are the Gaussian operators, and the model of Gaussian
smoothing is attained by convolutional operations. The 1D Gaussian operator has been
represented by:

GlD(x) =
1√
2πo

e−
(

x2

2o2

)
(1)

A better smoothening filtering process for images is recognized from the spatial and
frequency domains, thus sustaining the uncertainty connection, as provided by [20]:

∆x∆ω ≥ 1
2

. (2)
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The 2D Gaussian operator (circularly symmetric) can be represented by:

G2D(x, y) =
1

2πσ2 e−
(

x2 + y2

2σ2

)
, (3)

where σ designates the standard deviation (SD) of the Gaussian function. Once it includes a
high value, the smoothening effect is found to be high, and (x, y) designates the Cartesian
co-ordinate points in the image that indicates the window dimensional.
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This filtering technique contains addition as well as multiplication tasks amongst the
image and kernel. An image can be defined as a matrix with values of 0–255. The kernel
was considered as a normalized square matrix that lies within the range of zero to one. The
kernel can be defined using a specific bit count.

The MSE is a cumulative square error amongst the reconstructed and original images
that can be represented by:
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MSE =
1

M× N ∑
i

∑
j

(
Oimage − Rimage

)
, (4)

where M × N indicates the image size, Oimage implies the original images, and Rimage
denotes the restoring image. PSNR is the peak value of SNR, and it can be represented
by the ratio of maximum probable power of pixel values and power of distorted noise. It
affects the actual quality of the image and is represented by:

PSNR = 10 log10

[
255× 255

MSE

]
, (5)

where 255× 255 is the higher pixel values that exist from the image, and MSE is determined
to input and saved images with M×N size. The convolutional process is the multiplication
method, and the informed logarithm product is ineffective with respect to the accurate-
ness. Thus, it is an effectual logarithm multiplier for improving the accurateness of the
Gaussian filter.

3.2. IDCNN-Based Feature Extraction Model

In this section, the features in the preprocessed image are filtered using the IDCNN-
based Inception v4 model [21]. The older Inception versions are useful for training distinct
blocks where all the repetitive blocks are split into a number of subnetworks enabling
the total memory. However, the Inception network is easily tuned, demonstrating that
several modifications are performed dependent upon the count of filters in different layers
that do not control the quality of completely trained networks. To optimally elect the
trained rate, the layer size needs to be set optimally to reach an effective tradeoff between
processing and distinct subnetworks. Figure 2 illustrates the network schema of Inception
v4. By contrast, in Tensor Flow, advanced Inception techniques are represented without
any replica partition.

For the residual version of the Inception network, the lower Inception blocks were
obtainable on regular Inception. Every Inception block arrives in the filter-expansion
layer, which increases the filtering bank’s dimensionality before the remaining summation
to match the input depth. Further variation amongst the remaining and non-remaining
Inception methods is that batch-normalization (BN) was applied on the conventional layer,
then not on the peak value of the remaining summaries. It can be anticipated to the exclusive
exploitation of BN is suitable, yet the plan of BN in TensorFlow necessitates massive
memory, so it becomes essential for minimizing the layer count. Thus, BN is employed.

It is expected that if the filter count exceeds 1000, the residual version starts offering
uncertainty, and the network “dies” beforehand from the training, signifying that the final
layer prior to average pooling creates only 0 s over different counts of iterations. Therefore,
the minimization remaining prior to attaching the preceding activation layer is steady at
the time of training. Usually, a few scaling factors exist in the interval of [0.1–0.3] to scale
the residual prior to attaching it to the accumulated layer activation.

3.3. GSO-Based Hyperparameter Optimization Model

To optimize the hyperparameters of the GSO technique, a collection of glowworms is
initialized and arbitrarily distributed from the solution space in such a way that is effective.
The intensity of emitted lights was linked to the amount of luciferin that is closely integrated
into it, whereas the glowworms were located from their motion and had a dynamic decision
range ri

d(t) limited by a spherical sensor range rs (0 < ri
d <= ri

s). Firstly, the glowworm
comprises an identical count of luciferins, l0. Based on the resemblance of luciferin values,
the glowworm i selects their adjacent one j with probability pij and shifts from the direction
of decision ranges rs(0 < ri

d <= ri
s), whereas the position of the glowworm i is represented

by xi (xi ∈ Rm, i = 1, 2, . . . , n) [22].
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A luciferin update stage is affected by the function value in the glowworms’ place.
During the luciferin upgrade, the principle can be defined as:

li(t + 1) = (1− ρ)li(t) + γJ(xi(x + 1)) (6)

where li(t) denotes the luciferin level connected to a glowworm i at time t, ρ refers to the
luciferin decay constant 0 < ρ < 1, γ represents the luciferin improvement constant, and
J(xi(t)) signifies the value of the main function at agent i’s place at time t.

Along with the processes involved in the GSO technique, glowworms are fascinated
by their neighbors that glow brighter. Thus, the outcome, at the time of the movement
phase, the glowworms make use of the probabilistic process to move towards the neighbor
that has a maximum luciferin intensity. In the case of every glowworm i, the possibility of
moving over a neighboring glowworm can be represented as:

pij(t) =
lj(t)− lj(t)

Σk∈Ni(t)lk(t)−li(t)
(7)

where j ∈ Ni(t), Ni(t) =
{

j : dij(t) < ri
d(t), li(t), li(t) < lj(t)

}
denotes the collection of

nearby glowworms i at time t, dij(t) indicates the Euclidean distance amongst the glow-
worm i and j at time t, and ri

d(t) denotes the variable neighboring range related to glow-
worm i at time t. The variable restricted by a radial sensor range (0 < ri

d < rs).

xi(t + 1) = xi(t) + s

[
xj(t)− xi(t)
‖xj(t)− xi(t)‖

]
(8)
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where s (> 0) refers the step sizes, and ‖ ‖ implies the Euclidean norm operator. More-
over, xi(t) ∈ Rm denote the place of glowworm i at time t from the m dimensional real
space Rm. Afterward, let r0 be the initialized neighborhood ranges of all the glowworms
(i.e, ri

d(0) = r0, ∀i):

ri
d(t + 1) = min

{
rs, max

{
0, ri

d(t) + β(nr − |Ni(t)|)
}}

(9)

where β is a constant, and nt defines a parameter utilized to control the degree.

3.4. ANFC-Based Classification Model

The ANFIS-based classification model can be employed to determine the class labels
of the input radiological images. For simplicity, it is considered a network with two inputs,
u and v, and one outcome, f . The ANFIS is a fuzzy Sugeno method. In order for the ANFIS
structure to exist, two fuzzy if-then principles depend on the first-order Sugeno method,
which is regarded as follows:

Rule 1: if u is A and v is B1, then f1 = p1u + q1v + r1;
Rule 2: if u is A and v is B2, then f2 = p2u + q2v + r2;

where u and v are the input, A and Bi are the fuzzified groups, fi, i = 1, 2 are the resultants
of the fuzzy model, and pi, qi, and ri are the designing measures which is defined in the
training model. The ANFIS structure for applying these two rules is demonstrated in
Figure 3 [23], where the circle refers to the fixed node and the square denotes an adaptive
node. As shown in the figure, the ANFIS structure has five layers.
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Layer 1: All the nodes in layer 1 creates the adaptive node. The resultants of layer 1
are the fuzzified membership grade of input and are provided as:

O1
i = µAi (u) i = 1, 2 (10)

O1
i = µBi−2(u) i = 3, 4 (11)
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where u and v are the inputs to node I, A refers the linguistic label, and µAi (u) and µBi−2(u)
accept some fuzzy membership function (MF). In general, ∝Ai (u) is chosen by:

µAi =
1

1 +
{
[(u− ci)/ai]

2
}bi

(12)

where ai, bi, and ci are the measures of membership bell-shaped functions.
Layer 2: A node in this layer is labeled M, reflecting that it is executed by a simple

multiplier. The resultants of the layer are illustrated as:

O2
i = wi = µAi (u)µBi (v)i = 1, 2 (13)

Layer 3: It has static nodes that compute the ratio of firing strength of the principles,
as given below:

O3
i = wi =

wi
w1 + w2

i = 1, 2 (14)

Layer 4: In this layer, nodes are adaptive nodes. The resultants of this layer are
calculated by the procedure provided below:

O4
i = wi fi = wi

(
piu + qjv + ri

)
i = 1, 2 (15)

where wi is a normalized firing strength from layer 3.
Layer 5: A node executes the summary of each received signal. Therefore, an entire

output of the method is provided as:

O5
i = ∑

i
wi fi =

∑i wi fi

∑i wi
(16)

There are two adaptive layers in this ANFIS model, i.e., the first and fourth layers.
In the first layer, there are three modifiable measures {a, bi, ci} that are compared with
the input MFs. These measures are usually known as premise measures. The fourth layer
is also three modifiable measures {pi qi ri} relating to the first-order polynomial. The
consequent measures are during this measurement [24].

3.5. Learning Algorithm of ANFIS

The learning technique for this model is to tune every modifiable measure, such as
{aibici} and {piqiri}, to create an ANFIS output matching the trained data. If premise
measures ai, bi, and ci of the MFs are suitable, the resultant of the ANFIS method is
expressed by:

f =
w1

w1 + w2
f1 +

w2

w1 + w2
f2 (17)

By replacing Equation (14) and fuzzy if-then principles with Equation (8), it develops:

f = w1(p1 + q1v + r1) + w2(p2u + q2v + r2) (18)

where w1, w2 are calculated by Equation (14). After the rearrangement, the output is
demonstrated by:

f = (w1u)p1 + (w1v)q1 + (w1)r1 + (w2u)p2 + (w2v)q2 + (w2)r2 (19)

with the linear grouping of changeable resultant measures p1, q1, r1, p2, q2, and r2. These
measures are upgraded to forward pass the learning technique using the least squares
model. Let q be an unidentified vector comprising six measures. Thus, Equation (19) is
illustrated by:

f = θA (20)
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When A is an invertible matrix then:

θ = A−1 f (21)

Then, a pseudo-inverse is utilized to solve q as follows:

θ =
(

AT A
)−1

AT f (22)

During the backward pass, the error signals are propagated, and premise measures
are upgraded with gradient descent.

αnew = αold − η
∂E
∂α

(23)

where E is the MSE, α is all the premise measures, and η is the rate of learning. The chain
rule is applied to calculate the partial derivative utilized for upgrading the MF measures.

∂E
∂α

=
∂E
∂ f

∂ f
∂ f j

∂ f j

∂wj

∂wj

∂µi

∂µi
∂α

(24)

By following the above expression and computing all the partial derivatives, the
premise measures {aibici} are upgraded in Equation (23).

4. Experimental Validation

To ensure the classification performance of the GSO-IDCNN method, an extensive
experimental validation process was carried out with a chest X-ray dataset [25]. It en-
compasses a set of 220 COVID-19 images, 27 normal images, 15 pneumocystis images,
and 11 SARS images. Figure 4 showcases the sample images. The presented method was
executed using an Intel i5, 8th-generation PC with 16GB RAM, MSI L370 Apro, Nividia 1050
Ti4 GB. For experimentation, the Python 3.6.5 tool was utilized together with Pillow, pan-
das, sklearn, TensorFlow, Keras, opencv, seaborn, Matplotlib, and pycm. The parameters
contained are batch size: 128, learning rate: 0.001, epoch count: 500, and momentum: 0.2.
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Table 1 and Figures 5–7 investigate the classifier outcome analysis of the GSO-IDCNN
model under several kinds of validation. The GSO-IDCNN model obtained effective
diagnostic outcomes by offering higher performance. For the samples on validation 1,
the GSO-IDCNN approach has reached higher sensy, specy, precn, accy, F1score, and kappa
values of 0.9324, 0.9380, 0.9389, 0.9365, 0.9310, and 0.9298, respectively.

Table 1. Result analysis of the presented GSO-IDCNN technique with respect to distinct measures.

No. of Validation Sensy Specy Precn Accy F1score Kappa

Validation 1 0.9324 0.9380 0.9389 0.9365 0.9310 0.9298

Validation 2 0.9389 0.9456 0.9490 0.9427 0.9354 0.9376

Validation 3 0.9423 0.9472 0.9498 0.9462 0.9403 0.9421

Validation 4 0.9492 0.9490 0.9515 0.9408 0.9472 0.9219

Validation 5 0.9481 0.9532 0.9576 0.9482 0.9431 0.9423

Average 0.9422 0.9466 0.9494 0.9429 0.9394 0.9347
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Eventually, in validation 2, the GSO-IDCNN method attained superior sensy, specy,
precn, accy, F1score, and kappa values of 0.9389, 0.9456, 0.9490, 0.9427, 0.9354, and 0.9376,
respectively. Moreover, in validation 3, the GSO-IDCNN approach gained increased sensy,
specy, precn, accy, F1score, and kappa values of 0.9423, 0.9472, 0.9498, 0.9462, 0.9403, and
0.9421, respectively. Further, in validation 4, the GSO-IDCNN model gained maximal
sensy, specy, precn, accy, F1score, and kappa values of 0.9492, 0.9490, 0.9515, 0.9408, 0.9472,
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and 0.9219, respectively. Furthermore, in validation 5, the GSO-IDCNN method achieved
superior sensitivity, specificity, precision, accuracy, F1-score, and kappa values of 0.9481,
0.9532, 0.9576, 0.9482, 0.9431, and 0.9423, respectively.

Table 2 and Figures 8 and 9 offer a detailed comparative analysis of the GSO-IDCNN
technique with respect to distinct measures [26]. The sensy analysis of the GSO-IDCNN ap-
proach with existing algorithms displays that the ANN approach accomplished ineffective
results with a lower sensy value of 0.8745. Moreover, the Conv-NN system resulted in a
somewhat increased sensy value of 0.8773, whereas the ANFIS and Deep-TL models have
accomplished reasonably closer sensy values of 0.8848 and 0.8961, respectively. Eventually,
the XGBoost algorithm demonstrated a reasonable outcome with a sensy value of 0.92.
Afterward, the MLP and LR approaches depicted considerably increased sensy values of
0.93 and 0.93. Though the FM-HCF-DLF methodology offered a slightly better sensy value
of 0.9361, the presented GSO-IDCNN technique achieved a maximum sensy value of 0.9422.

Table 2. Comparative studies of the existing models with the presented GSO-IDCNN models.

Methods Sensy Specy Precn Accy F1score

GSO-IDCNN 0.9422 0.9466 0.9494 0.9429 0.9394

FM-HCF-DLF 0.9361 0.9456 0.9485 0.9408 0.9320

Conv-NN 0.8773 0.8697 0.8741 0.8736 -

Deep-TL 0.8961 0.9203 0.9259 0.9075 -

ANN 0.8745 0.8291 0.8259 0.8509 -

ANFIS 0.8848 0.8774 0.8808 0.8811 -

MLP 0.9300 - 0.9300 0.9313 0.9300

LR 0.9300 - 0.9200 0.9212 0.9200

XGBoost 0.9200 - 0.9200 0.9157 0.9200

The specy analysis of the GSO-IDCNN approach with recent methodologies demon-
strates that the ANN model accomplished ineffective outcomes with the minimal specy
value of 0.8291. Additionally, the Conv-NN system resulted in a somewhat increased
specy value of 0.8697, whereas the ANFIS model accomplished a moderate specy value of
0.8774. Next, the Deep-TL approach showcased reasonable outcomes with a specy value
of 0.9203. Afterward, the FM-HCF-DLF model depicted a considerably increased specy
value of 0.9456. However, the proposed GSO-IDCNN system gained a superior specy value
of 0.9466.

The precn analysis of the GSO-IDCNN technique with the existing methods shows
that the ANN methodology accomplished an ineffectual outcome with a minimum precn
value of 0.8259. In line with this, the Conv-NN model resulted in a slightly higher precn
value of 0.8741, whereas the ANFIS approach accomplished a moderate precn value of
0.8808. Similarly, the LR and XGBoost models demonstrated a similar precn value of 0.9200.
In addition, the Deep-TL approach portrayed a reasonable outcome with a precn value of
0.9259. Next, the MLP model has depicted a considerably increased precn value of 0.9300.
Although the FM-HCF-DLF methodology offered a slightly better precn value of 0.9485,
the proposed GSO-IDCNN model achieved a higher precn value of 0.9494.
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The accy analysis of the GSO-IDCNN methodology with existing approaches exhibits
that the ANN method has accomplished ineffective results with a minimum accy of 0.8509.
Similarly, the Conv-NN model resulted in a somewhat enhanced accy of 0.8736, whereas
the ANFIS and Deep-TL systems accomplished reasonably closer accy values of 0.8811
and 0.9075, respectively. Following them, the XGBoost approach illustrated a reasonable
outcome with an accy value of 0.9157. Concurrently, the LR and MLP methodologies de-
picted considerably improved accy values of 0.9212 and 0.9313. Although the FM-HCF-DLF
model offered a near-optimal accy of 0.9408, the projected GSO-IDCNN technique reached
a superior accy of 0.9429. Finally, the F1score analysis of the GSO-IDCNN approach with the
existing methodologies displays that the LR and XGBoost methods accomplished ineffec-
tive results with the smallest F1score of 0.9200. Additionally, the MLP system resulted in a
somewhat maximum F1score of 0.9300. Eventually, the FM-HCF-DLF model outperformed
the reasonable results with an F1score of 0.9320. However, the proposed GSO-IDCNN
methodology achieved a superior F1score of 0.9394.
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From the brief experimental validation, we have ensured that the GSO-IDCNN tech-
nique exhibited an effective diagnostic performance on the related approaches since it
provided a maximal sensy value of 0.9422, a specy value of 0.9466, a precn value of 0.9494,
an accy value of 0.9429, and an F1score of 0.9394. It is due to the integration of the SSA for
the parameter tuning of IDCNN using GSO and ANFC models.

5. Conclusions

This paper has established a GSO-IDCNN approach for COVID-19 diagnosis and
classification. Primarily, the noise that occurs from radiological images is discarded by the
GSF technique. Then, the feature extraction process occurs utilizing the IDCNN model,
where the parameters involved in it are tuned by the GSO technique. Eventually, the
classification process is executed by the ANFC model to allocate appropriate class labels to
it. To validate the performance of the GSO-IDCNN method, extensive simulation analyses
were carried out on the benchmark radiological imaging databases to highlight the superior
outcome of the GSO-IDCNN technique. The experimental values pointed out that the
GSO-IDCNN approach has demonstrated proficient outcome by offering a maximal sensy
value of 0.9422, a specy value of 0.9466, a precn value of 0.9494, an accy value of 0.9429, and
an F1score of 0.9394. In the future, the COVID-19 diagnostic performance could be improved
by utilizing advanced end-to-end deep learning architectures.
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