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Discovery of the epidermal growth factor receptor gene mutation and the anaplastic lym-
phoma kinase chromosomal translocation in non-small cell lung cancer has prompted 
efforts around the world to identify many less common targetable oncogenic drivers. 
Such concerted efforts have been variably successful in both non-squamous and squa-
mous cell carcinomas of the lung. Some of the targeted therapies for these oncogenic 
drivers have received regulatory approval for clinical use, while others have modest 
clinical benefit. In this mini-review, several of these targets will be reviewed.
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inTRODUCTiOn

Epidermal growth factor receptor (EGFR) activating mutations in exons 18–21 and their exceptional 
responses to its kinase inhibitors (1, 2) marked the beginning of precision medicine in non-small 
cell lung cancer (NSCLC). Randomized trials showed treatment naïve, recurrent, or metastatic 
NSCLC patients harboring these mutations, particularly for exons 19 or 21 (3–10), had improved 
median progression-free survival (mPFS), tolerability, and quality-of-life from EGFR inhibitors over 
platinum-based chemotherapy. These studies triggered ongoing research to identify novel targets 
in both non-squamous (11, 12) and squamous NSCLC (13, 14) (Table 1). Crizotinib for ROS1 and 
dabrafenib/trametinib for BRAF mutation have received and submitted for regulatory approval, 
respectively. Selected targets, excluding EGFR and ALK, which will be discussed in separate reviews, 
will be discussed.

BRAF MUTATiOnS

BRAF is a serine/threonine intracellular kinase and is activated by RAS, subsequently activates 
mitogen-activated protein kinase (MAPK). Activating BRAF mutations occur in 2–5% of NSCLC 
(15, 16). It is rare to find concurrent driver mutations, like K-RAS or EGFR (17). Activating BRAF 
mutations in NSCLC can be categorized into V600 and non-V600, in contrast to the predominance 
of V600 mutation in melanoma (15, 16). Although non-V600 BRAF mutations are more prevalent in 
heavy smokers, V600 mutants are found in never or light smokers (17). There are conflicting reports 
regarding the prognostic difference between the two subtypes (17).

BRAF inhibitors, such as vemurafenib, have shown promising preliminary benefit in V600 BRAF 
mutant, advanced NSCLC patients with a response rate (RR) of 42% and mPFS of 7.3  months 
(18). Planchard et al. (19) reported an RR of 33% and mPFS of 5.5 months with dabrafenib. Dual 
inhibition of BRAF and MEK with dabrafenib and trametinib yielded an RR of 63.2% and mPFS of 
9.7 months in 57 evaluable patients (20). Dual inhibition prevents mechanisms leading to MAPK 
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TABLe 1 | Targets, mechanism(s) of target dysregulation, associated histology, and examples of current drugs in development and corresponding phase of clinical 
development in non-small cell lung cancer.

Target Mechanism of target 
dysregulation

Histology associated example of targeted therapy Phase of clinical 
development

BRAF V600
Non-600

Adenocarcinoma Dabrafenib/trametinib
Vemurafenib ± cobimetinib

LGX 818

Awaiting approvala

I/II
I/II

DDR2 Mutation Squamous Dasatinib
Nilotinib

MGDC516

II
II
I/II

FGF1 Amplification Squamous Ponatinib
AZD4547
BGJ 398

INCB054828
JNJ-42756493

TAS120
ARQ087

Debio 1347
E7090

LY287445

II
I/II
I/II
I/II
I/II
I
I
I
I
I

HER-2 Exon 20 mutation
HER-2 amplification

Adenocarcinoma Afatinib
Dacomitinib

Trastuzumab ± pertuzumab
T-DM1

II/III and approvalb

II
II

II/III

K-RAS Point mutation Adenocarcinoma MEK inhibition:
Selumetinib
trametinib

CDK4/6 inhibitor:
Palbociclib

Abemaciclib
Ribociclib

III
I/II
I/II

II/III
I/II
I/II

MET Amplification
Exon 14

Non-squamous and squamous Crizotinib
Cabozantinib

Foretinib
Tepotinib

Capmatinib
Merestinib

Volitinib
Lorlatinib
RXDX106
PLB001

HS10241

II-approval
II
II
II
I/II
I/II
I/II

I/II/III
I
I
I

(Continued)
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pathway reactivation (21, 22), resulting in more effective growth 
inhibition. However, resistant mechanisms to dual inhibition 
may arise as a result of RAS or ERK activation or mutation 
(23, 24), epigenetic EGFR alteration (25), or overexpression of 
MCL-1 (26). Non-V600 BRAF mutants may not be as responsive 
to BRAF inhibition based on BRAF-mutated melanoma data (15, 
17, 20). There is no specific targeted therapy developed in this 
subpopulation.

DDR2 MUTATiOnS

DDR2 is a receptor kinase that binds to collagen at the discoidin 
domain leading to its activation and subsequently to cell migration, 
proliferation, and survival (27, 28). Activating DDR2 mutations 
were identified in 4% of squamous NSCLC, with the majority in 

the kinase domain. Tumor growth inhibition by dasatinib was 
observed preclinically (29). One partial response (PR), in a patient 
with S768R DDR2 mutation and wild-type EGFR, of almost 1 year 
was reported in the Phase II trial of dasatinib and erlotinib in 
advanced NSCLC (30). Another PR was reported in the Phase II 
trial of dasatinib in previously treated, advanced NSCLC (31).

A Phase II trial of dasatinib in patients with either inactivat-
ing BRAF mutations or DDR2 mutations was conducted. It was 
terminated prematurely due to intolerable dyspnea, fatigue, and 
nausea. Patients were on therapy for 9–42 days, with no observed 
response (32). Trials of dasatinib and MGCD516 in DDR2 
mutant solid tumors, including squamous NSCLC, are ongoing. 
Success in the development of DDR2 inhibitors should modulate 
the toxicity hindering adequate drug exposure and efficacy by 
careful dose and schedule selection.
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Target Mechanism of target 
dysregulation

Histology associated example of targeted therapy Phase of clinical 
development

NTRK Translocation
Point mutation

Adenocarcinoma Entrectinib
LOXO-101
AZD7451
DS 6051b
MGCD516
PLX 7486
TPX00005

II
I/II
I
I
I
I
I

P3K/AKT/mTOR PI3K mutation
AKT mutation

Squamous cell carcinoma PI3K inhibitor:
Pan inhibitor:

Buparlisib
Copanlisib

GSK2126458
MNL1117

XL147
CUDC-927 (HADC)

PKB inhibitor:
AZD8186

Alpelisib (BLY719)
BGT 226
GDC0084

PI3K/mTOR inhibitor:
BEZ 235
DS 7423

LY3023414
PF 04691502

VX-5584
XL 765

AKT inhibitor:
Ipatasertib (GDC 0068)

AZD 5363
GSK 2141795

LY2780301
Afuresertib
ARQ 092
ARQ 751

BAY 1125976
ONC201

mTOR inhibitor:
Temsirolimus
Everolimus

Vistusertib (AZD 2014)
AZD 8055
BI 860585
CC-223

GDC 0349
ME-344

P70/S6K inhibitor:
LY2584701

MSC 2363318A

II
II
II
II
I
I
I
II
I
I

I/II
I
I
I
I
I
II
I/II
I/II
I/II
I
I
I
I
I
II
II
I/II
I
I
I
I
I
I
I
I
I
I
I

I
I

RET Translocation Adenocarcinoma Cabozantinib
Lenvatinib
Ponatinib

Vandetanib
BLU667

II
II
II
II
I

ROS1 Translocation Adenocarcinoma Crizotinib
Cabozantinib

Ceritinib
Entrectinib
Lolatinib

DS 6015b
TPX0005

Approval
II
II
I/II
II
I
I

aDabrafenib and trametinib combination has received approval from EMEA in February 2017 and has been submitted to the FDA for approval.
bAfatinib has regulatory approval for EGFR mutation positive, treatment naïve, advanced NSCLC, and previously treated squamous cell carcinoma by the FDA and EMEA.
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FGFR PATHwAY ABeRRATiOnS

The FGF pathway consists of four receptors, FGFR1-4, and 18 
ligands. Activation of the pathway leads to downstream activation 
of the RAS/RAF/MAPK, PI3K/AKT/mTOR, STAT, and PLCγ, 
which cause cell growth, proliferation, differentiation, migration, 
and survival (33). Pathway dysregulation can result from over-
expression of either FGFs or their receptors, alternative splicing 
receptor isoforms, impaired downregulation, and degradation of 
activated FGF signal, FGFR gene amplification, point mutations, 
or chromosomal translocations (34). FGFR1 amplification is 
found in 10–25% of squamous NSCLC, commonly in smokers 
(35, 36). Whether FGFR1 amplification is prognostic remains 
controversial (36, 37).

An RR of 11.1% and disease-control rate (DCR) of 50% were 
reported in 36 FGFR1-amplified squamous NSCLC patients 
treated with BGJ398 (38). In the dose expansion cohort of the 
Phase 1 erdafitinib (JNJ-42756493) study, no response was 
observed (39). The criterion for FGFR1 amplification was not 
specified in either trial (38, 39). Two studies of AZD4547 reported 
0/4 and 1/14 PR in evaluable FGFR1-amplified NSCLC, respec-
tively. The responder had high FGFR1 amplification, defined as 
FGFR1:CEP8 ≥ 2.8 (40, 41).

It is premature to declare that FGFR1 amplification is not 
a driver mutation. Clinically significant toxicity from FGFR-
targeted agents may occur at doses below which adequate growth 
inhibition of amplified FGFR1 tumors can be achieved. It is still 
unknown if FGFR1 amplification translates to overexpression or 
activation of the receptor. The definition of FGFR1 amplifica-
tion needs to be refined, as in MET amplification and crizotinib 
efficacy (42).

Chandrani et  al. reported that 5.5% of adenocarcinoma 
NSCLC harbor FGFR3 mutations at S249C, which was previously 
described in squamous NSCLC, and G691R which are sensitive 
to FGFR kinase inhibition in preclinical models. The clinical 
relevance will be established by future clinical trials (43).

HeR-2 MUTATiOnS AnD AMPLiFiCATiOn

HER-2 is a member of the EGFR family. The most common 
HER-2 mutation is exon 20 in-frame deletion or insertion 
between codons 776–779 (44, 45), which occur in 1.7–9% of 
all adenocarcinoma NSCLC (44–47). The length of insertion 
or deletion is heterogeneous (48). They are most commonly 
found in females and non-smokers. HER-2 exon 20 mutation or 
amplification leads to HER-2 phosphorylation, RAS/RAF/MAPK 
and PI3K/AKT/mTOR activation, and subsequent cell growth, 
proliferation, survival, and metastasis.

Six patients with HER-2 3+ or amplification had an RR of 
83% and mPFS of 8.5 months as compared to an RR of 41% and 
mPFS of 7.0 months in those without after cisplatin/gemcitabine/
trastuzumab treatment (49). A retrospective series of metastatic, 
HER-2 exon 20 mutant NSCLC reported DCRs of 93 and 100% 
after trastuzumab (N = 15) and afatinib (N = 3), respectively (46). 
A Phase II study of dacomitinib in 30 NSCLC with HER-2 aberra-
tions reported an RR of 12% in those with exon 20 mutation and 
no response in those with amplification (50). The Phase II study 

of afatinib in 7 exon 20 mutant NSCLC had a DCR of 71% with 1 
unconfirmed PR (uPR) (51). The ETOP NICHE trial of afatinib 
in HER-2 exon 20 mutant NSCLC reported a disappointing DCR 
at 12-week of 54% and mPFS of 13 weeks (52).

Phase II trials of ado-trastuzumab emtansine in HER-2 
exon 20 or point mutations and HER-2 2+/3+ overexpressed 
NSCLC reported an RR of 6/18 and 10/49 with mPFS of 4 and 
2.7 months, respectively (53, 54). The preliminary result of the 
ongoing MyPathway trial of trastuzumab and pertuzumab, 
targeting HER-2 dimerization, reported an ORR of 13 and 
19% in 16 HER-2-amplified and 12-mutated NSCLC patients, 
respectively (55).

The benefit of HER-2-targeted therapeutics is modest. It is 
plausible that HER-2 exon 20 mutation and amplification repre-
sent two distinct molecular and therapeutic entities. There may be 
biological and therapeutic differences to HER-2-targeted agents 
based on the length of HER-2 exon 20 insertion or deletion (56). 
The full clinical and molecular data from these trials may help to 
elucidate the best treatment strategies to these subpopulations of 
HER-2 gene aberrant NSCLC.

K-RAS MUTATiOnS

K-RAS is a member of the guanosine triphosphate gene super-
family. Upon activation by upstream receptors or point mutations 
at codons 12, 13, 14, or 60/61, K-RAS activates RAF/MAPK and 
PI3K/AKT/mTOR. These pathways regulate cell proliferation, 
growth, motility, and apoptosis (57).

K-RAS is mutated in 20–30% of NSCLC, predominantly in 
adenocarcinoma, non-Asians, and smokers. The incidence of 
K-RAS mutations may correlate with the amount of cigarettes 
smoked (11, 57). The majority of K-RAS mutations in NSCLC 
are at codon 12 (58). In a meta-analysis (59), K-RAS muta-
tion was associated with poorer prognosis (HR  =  1.45, 95% 
CI: 1.29–1.62), particularly in adenocarcinoma and early-stage 
NSCLC. It remains controversial if K-RAS mutation is predic-
tive of platinum-based palliative chemotherapy efficacy (57), 
but it is associated with resistance to EGFR inhibitors. It is 
unclear if K-RAS mutation predicts efficacy to EGFR antibody 
(60–62), and if K-RAS transversion and transition mutations 
have different biology and thus therapeutic strategy and out-
come (63, 64).

Targeting K-RAS mutation remains elusive. RAS attaches 
to the cell membrane for activation of downstream pathways 
via isoprenylation by farnesyltransferase. Alternatively, this is 
achieved by adding geranyl group by geranylgeranyltransferase I,  
particularly for K-RAS and H-RAS. Farnesyltransferase inhibi-
tors failed possibly due to this geranylgeranyltransferase pathway 
(57, 65).

Current therapeutic approaches to K-RAS mutations in 
NSCLC focus on either the RAF/MAPK pathway or novel K-RAS 
biology. The MAPK pathway converges at MEK, which in turn 
activates ERK1/2. Targeting MEK will be expected to be effec-
tive in inhibiting the MAPK pathway, regardless of the upstream 
stimulatory signal. Despite encouraging Phase II results, the Phase 
III trial of docetaxel/selumetinib, an allosteric MEK1/2 inhibi-
tor, combination over docetaxel alone in platinum-pretreated, 
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advanced K-RAS mutant NSCLC (66), failed to confirm any 
survival improvement (67).

RAS activation drives G1/S cell cycle transition via cyclin-
dependent kinase 2 and 4 (CDK2/4), induces cyclin D1, and 
downregulates the cdk inhibitor, p27KIP. Cycle D1 activates 
CDK4/6, which in turn phosphorylates retinoblastoma protein, 
leading to G1/S transition (68). K-ras mutant NSCLC animal 
models were particularly sensitive to CDK4/6 inhibition (69, 70). 
Synergistic antitumor activity was observed with trametinib and 
CDK4/6 inhibitor because MEK or ERK activation leads to cyclin 
D1 expression (71). A number of CDK4/6 inhibitors as single 
agent or in combination with MEK inhibitors are being studied 
in this population (72).

MeT MUTATiOn AnD AMPLiFiCATiOn

MET is a receptor kinase and is activated by its ligand, hepatocyte 
growth factor, which plays a role in cell growth and development. 
It subsequently activates downstream RAS/RAF/MAPK, PI3K/
AKT/mTOR, WNT/β-catenin, and STAT, promoting mitogen-
esis, motility, invasion, and morphogenesis (73, 74).

MET point mutation is detected in 3–4% of NSCLC. The most 
common is exon 14 splicing mutation (METex14) in 2–3% of 
NSCLC, who are older than 70 with non-squamous histology 
(sarcomatoid  >  adenosquamous and adenocarcinoma) and 
smokers. METex14 can have concurrent MET amplification, 
defined as MET/CEP7 ratio > 5.0 (75, 76). METex14 corresponds 
to the juxtamembrane domain, which is involved in its degrada-
tion by ubiquitin ligase, Cbl, leading to increase in MET activity 
(74, 77). METex14 alteration is highly variable, making it different 
to diagnose and predict therapeutic benefit (78). There has been 
encouraging preliminary antitumor activity of MET inhibitors 
in METex14 NSCLC (74), like an RR of 44 and 28% uPR after 
crizotinib (79).

It is challenging to define MET amplification. A recent study 
suggested the MET/CEP7 ratio  >  5 as a sensitive and specific 
diagnostic test for MET amplification with low oncogenic driver 
overlap and highly predictive of crizotinib efficacy. These patients 
were mainly female and ex-smoker. High MET gene copy number 
was identified in 33% of adenocarcinoma NSCLC, however, none 
responded to MET inhibitor (80). The Phase II study of crizotinib 
in advanced NSCLC harboring MET amplification reported RR 
in low (>1.8–<2.2), intermediate (>2.2–<5) and high (>5) MET/
CEP7 ratios of 0, 20, and 50%, respectively (42). It is important to 
determine MET amplification in non-responding EGFR mutants 
to EGFR inhibitors, as 2% of them have concurrent MET ampli-
fication (81).

Clinical development of MET inhibitors in MET aberration 
positive and in combination with EGFR inhibitors in EGFR 
mutant NSCLC is ongoing. This latter strategy may delay the 
emergence of MET amplification and thus prolong clinical 
benefit to EGFR inhibitors. Caution should be exercised in 
patient selection. Onartuzumab, MET antibody, or ARQ-197, 
MET kinase inhibitor, combined with erlotinib failed to improve 
survival in either unselected or non-squamous NSCLC with 
or without wild-type EGFR (82–84). Exploratory analysis 

found EGFR mutants had a trend toward poorer survival with  
onartuzumab/erlotinib (82).

nTRK MUTATiOn AnD CHROMOSOMAL 
TRAnSLOCATiOn

The NTRK family kinases, NTRK1–3, are activated by ligands 
from neurotrophin growth factor family. They are involved in 
neuronal development (85, 86). They subsequently activate 
downstream PI3K/AKT/mTOR, RAS/RAF/MAPK, PLC-γ, 
and protein kinase C, leading to cell proliferation, survival, 
and growth (86, 87). In addition, NTRK overexpression is 
prognostic (85, 88, 89). NTRK activation can result from trans-
location of the NTRK kinase to a transcription factor. NTRK1, 
NTRK2, and NTRK3 translocations account for 3.5, 0.2–1, 
and 1%, respectively, of adenocarcinoma NSCLC (87). NTRK1 
and NTRK2 mutations were identified primarily in large cell 
carcinoma (85, 87).

Due to the structural similarity in the kinase domain 
of NTRK, ROS1, and ALK, several pan-inhibitors, such as 
entrectinib, LOXO101, and TPX-0005, are in clinical investiga-
tion. Initial Phase 1 studies reported encouraging preliminary 
antitumor activity and tolerability (87, 90). Identifying the 
primary and secondary resistant mechanisms, based on the 
understanding from ALK and ROS1, will help to improve  
the efficacy of current inhibitors and identify novel therapeutics, 
not limited to NTRK inhibitors targeting gatekeeper or solvent 
front mutation.

PiK3CA/AKT/PHOSPHATASe AnD 
TenSiOn HOMOLOG (pTen)/mTOR 
PATHwAY Gene ABeRRATiOnS

The PI3K/AKT/mTOR pathway is often activated in human can-
cers, leading to tumor proliferation, growth, and survival (91–93). 
There are three classes of PI3K. PIK3CA are heterodimers of a 
single p85 regulatory subunit, and one of the four isoforms of 
p110 catalytic subunits (α, β, γ, and δ). Different p110 subunit 
is preferentially expressed in different normal and malignant 
tissues. PIK3CA can be activated by upstream growth factor 
receptors, followed by AKT/mTORC1/p70S6K, which exerts a 
negative feedback on activated PIK3CA. In addition, tumor sup-
pressor pTEN is a key negative regulator to PI3K/AKT/mTOR 
activation at PIK3CA (91, 94).

Several PI3K pathway activation mechanisms have been 
documented in NSCLC. Activating mutations in the exon 9 
helical and exon 20 kinase domains are uncommon (92, 93, 95, 
96). Amplification or polysomy is the predominant mechanism  
(92, 93). PIK3CA genetic alterations are thought to be more 
pivotal in squamous NSCLC pathogenesis. A study screening 
NSCLC, SCLC, extrapulmonary small cell cancer cell lines, and 
resected NSCLC identified PIK3CA gain in 33.1 and 6.2% of squa-
mous and adenocarcinoma, respectively (92). Squamous NSCLC 
with PI3K family gene aberrations had inferior median overall 
survival (mOS) (8.5 versus 19.1  months, p  <  0.0001), higher 
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incidence of brain metastases, especially those with truncated 
pTEN loss (27 versus 11%, p <  0.0001), higher overall disease 
burden and genomic heterogeneity between the metastatic and 
primary tumors (37).

AKT consists of three isoforms, AKT1–3. Activating mutation, 
E17K in exon 4 kinase domain, accounts for 1–7% of all NSCLC 
(97, 98) with the majority being squamous NSCLC (99). Loss 
of pTEN expression occurred in up to 75% of NSCLC either by 
allelic loss (10–20%) (100, 101) or gene methylation (100, 102). It 
is postulated that pTEN loss leads to PIK3CAβ and downstream 
pathway activations.

Therapeutics targeting this pathway are currently in progress. 
Preliminary single agent antitumor activity has been disap-
pointing. Toxicity, including hyperglycemia and GI toxicity, at 
least in part, limits the delivery of the optimal dose or schedule 
and thus antitumor activity. Inhibition of specific PIK3CA or 
AKT isoform leads to compensatory activation of other iso-
forms, limiting the antitumor activity. Due to extensive negative 
feedback loops, inhibition of a component leads to rebound 
activation of the pathway upstream (103). Ongoing studies to 
fully understand how to best target these genetic alterations, 
particularly in squamous NSCLC, with single agents, such as the 
LUNG MAP trial, or in combination with other complementary 
pathways, such as EGFR, HER-2, BRAF, may help optimize their 
efficacy.

ReT CHROMOSOMAL TRAnSLOCATiOn

RET is a kinase receptor for the giant cell-derived neurotrophic 
factor ligand. Binding of ligand leads to activation of RAS/
RAF/MAPK, PI3K/AKT/mTOR, and PLC-γ, which regulate 
cell proliferation, migration, and differentiation. RET is 
important for renal organogenesis and enteric nervous system 
development (104).

RET was first determined to be oncogenic through the identi-
fication of interchromosomal translocation or intrachromosomal 
inversion in papillary thyroid cancer (105). Subsequently, RET 
chromosomal rearrangement was identified in NSCLC. The most 
common 5′ partner of the fusion oncogene is kinesin family 
member 5B, which is translocated to the kinase domain, leading 
to activation (106–110).

RET translocation is reported in 1–2% of NSCLC samples and 
are usually younger than 60, non-smoker, equally distributed in 
males and females and in mixed or solid adenocarcinoma. Over 
30% have signet ring features (106–110).

Preliminary antitumor activity in Phase II trials with cabo-
zantinib (111) and vandetanib (112, 113) demonstrated an RR 
of 18–47% and mPFS of 4.5–8 months. A global RET inhibitors 
registry reported an RR of 26% and mPFS of 2.3 months (114). 
The modest benefit from these multitargeted RET inhibitors may 
be related to subtherapeutic RET inhibition due to toxicity arising 
from inhibition of other targets. The heterogeneity of RET fusion 
partners and concurrent driver mutations may also impact the 
sensitivity to RET inhibitors. Highly selective RET inhibitors and 
better understanding of the biological differences in the fusion 
partners and concurrent mutations may help to improve the 
outcome of this NSCLC subtype.

ROS-1 CHROMOSOMAL 
TRAnSLOCATiOn

ROS is a kinase receptor in the insulin receptor superfamily. 
Rearrangement occurs in 1–2% of non-squamous NSCLC  
(115, 116). ROS-1 chromosomal rearrangement leads to 
STAT3, PI3K/AKT/mTOR, and RAS/RAF/MAPK activation, 
followed by cell growth, proliferation, and survival (117). 
ROS-1 translocation NSCLC patient is described to be young, 
female, non-smoker, and with advanced stage adenocarcinoma  
(115, 117–120). The 5′ partners and the breakpoints of the ROS1 
gene are variable (115, 116), which may impact on the biology 
and benefit to therapy.

The RR of 72%, mPFS of 19.2  months, and 1-year OS rate 
at 85% in 50 ROS-1 translocation NSCLC patients treated with 
crizotinib led to recent regulatory approval (121). Based on 77% 
homology in ALK and ROS-1, especially the kinase domain (121), 
ALK inhibitors are potentially efficacious. The Phase II study of 
ceritinib had an RR of 84% and mPFS of 19.3 months (122). In 
addition, pemetrexed-based chemotherapy may be effective, as 
ROS1 NSCLC have low thymidylate synthase mRNA levels (123). 
Further clinical validation is needed.

Overall, ROS1-rearranged NSCLC may have better prog-
nosis with mOS of 36  months after standard chemotherapy 
and exceeding 5 years with chemotherapy and crizotinib. The 
incidence of brain metastases may be lower (123). Ongoing 
development of novel ROS1 inhibitors or combination to 
improve the benefit and to overcome resistance is important. It 
is conceivable that the resistant mechanisms to ROS1 inhibition 
parallel to those to ALK (124), such as secondary kinase domain 
mutations (125–127), which are sensitive to cabozantinib and 
lorlatinib, KIT mutation (128), RAS or EGFR pathway activa-
tion (129, 130).

COnCLUSiOn

Multiple driver mutations have been identified in non-squamous 
and squamous NSCLC. There is regulatory approval of EGFR-, 
ALK-, ROS-1-, and BRAF-targeted agents. Benefits from thera-
pies to other targets are preliminary.

To bring targeted therapeutics into the clinic, emphasis 
should be made on careful selection of true drivers. The criteria 
remain to be defined (131). Early clinical development efforts 
to identify and validate the most predictive biomarkers are key. 
With increasing number of driver mutations and therapies, and 
limited diagnostic tissues in advanced NSCLC, it is important 
to optimize diagnostic tissue accruement, minimize unnecessary 
pathological tests, and implement multiplex mutation analysis. 
The latter approach and basket trials, such as the LUNG MAP 
trial, exploring multiple targets simultaneously, can reduce the 
number and risk of biopsy, increase enrollment, and improve 
clinical trial efficiency.

Continual basic, translational, and clinical investigations are 
crucial to understand the targets, their resistance mechanisms, 
and corresponding therapies. For treatment tumor or plasma 
biopsies are necessary.

http://www.frontiersin.org/Oncology/
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