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ABSTRACT
This paper considers the estimation of parameters for the Poisson
regression model in the presence of high, but imperfect multi-
collinearity. To mitigate this problem, we suggest using the Poisson
Liu Regression Estimator (PLRE) and propose some new approaches
to estimate this shrinkage parameter. The small sample statistical
properties of these estimators are systematically scrutinized using
Monte Carlo simulations. To evaluate the performance of these esti-
mators, we assess the Mean Square Errors (MSE) and theMean Abso-
lute Percentage Errors (MAPE). The simulation results clearly illustrate
the benefit of the methods of estimating these types of shrinkage
parameters in finite samples. Finally, we illustrate the empirical rele-
vance of our newly proposed methods using an empirically relevant
application. Thus, in summary, via simulations of empirically relevant
parameter values, andby a standard empirical application, it is clearly
demonstrated that our technique exhibits more precise estimators,
compared to traditional techniques – at least when multicollinearity
exist among the regressors.
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1. Introduction

The Poisson Regression (PR) model is an appropriate model for studying count variables
using appropriate covariates. For instance, the number of patients, bank failures, the num-
ber of road accidents, traffic flow and ideal gap distances, number of typing errors on a
page, failure of a machine in one month, the occurrences of virus disease, takeover bids
and criminal careers can bemodeled with the Poisson distribution etc. The commonMax-
imum Likelihood Estimator (MLE) is used to estimate unknown regression coefficients
in the PR model. The MLE can be found by applying an Iterative Weighted Least Square
(IWLS) algorithm. One problem with MLE occurs when there are linear dependencies
among the explanatory variables. This problem is called multicollinearity by Frisch [6].
For example, when counting the number of injuries that occur in the upper seam of mines
in the coal fields, then the inside burden thickness, lower seam height, and extraction of
the lower earlier mined seam in percentage are the important factors. In such situation,
the explanatory variables would be strongly correlated. High (imperfect) multicollinearity
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causes the MLE to overestimate the standard errors, while the standard errors are consis-
tent. It leads difficulty to isolate marginal effects of individual regressors since marginal
interpretation implies holding the other independent variables constant.

This problem of multicollinearity has significant impact on the performance of MLE
for the estimation of unknown regression coefficients in the PR model. Furthermore, it
leads to instability and a high variance of the parameters estimated by MLE. Another con-
sequence of multicollinearity is the wider confidence interval, decreased statistical power
which result in increased probability of type II error in hypothesis testing in terms of the
parameters. In addition, the uncertainty of the estimated coefficients is higher because
of an increased coefficient variance due to multicollinearity. By minimizing the standard
errors of the coefficients, we demonstrate that our new Liu estimator is a beneficial and a
recommended remedy for the problem of multicollinearity.

In recent research, it is a stylized fact that the shrinkage estimators are considered as an
efficient remedial measure to combat multicollinearity problem [11,22]. Many researchers
propose different type of shrinkage estimators to overcome multicollinearity for different
models. Månsson and Shukur [20] proposed a Poisson ridge regression estimator which
was a generalization of the ordinary ridge regression. In 1993, Liu introduced a new esti-
mator, subsequently known as the Liu estimator. It is based on a linear function of d instead
of a non-linear function as in the ordinary ridge regression. This leads to a more stable
shrinkage of the vector of estimated coefficients. Therefore, due to the linear function of d,
researchers have used themore robust Liu estimator instead of the traditional ridge regres-
sion. Regarding the vast literature on the Liu estimator in the linear regression model, we
refer our readers primarily to Liu [12], Kaciranlar [10], Alheety and Kibria [1], Kibria [14],
Qasim et al. [22], among others. Furthermore, Arashi et al. [4,5] deliberated the improved
preliminary test and Stein-rule Liu estimators, and Liu type estimator. Recently, Karbalaee
et al. [11] introduced a Preliminary test generalized Liu estimator with series of stochastic
restrictions. However, the literature on the Liu estimator of a generalized linear model is
rather limited. For instance, Månsson et al. [19] suggested some shrinkage parameters for
the Poisson Liu Regression Estimator (PLRE),Månsson et al. [18] introduced a Liu estima-
tor for the logit regression model, Månsson [17] recommended some Liu parameters for
the negative binomial regression model, Inan and Erdogan [9] developed a Liu-type logis-
tic estimator, Şiray et al. [23] proposed a restricted Liu estimator in the logistic regression
model, Amin et al. [3] recommend some shrinkage parameters for the gamma regression,
Qasim et al. [21] developed and adopted some new shrinkage parameters for the Liu esti-
mator for the gamma regression model, Wu et al. [25] developed the restricted almost
unbiased Liu estimator for the logistic regression model, and, finally, recently, Amin et al.
[2] proposed Liu type estimators for the gamma regression model.

The main contribution of this paper is to propose some new methods of estimating the
shrinkage parameter, d for the PRmodel. The original methods that inspired our new esti-
mation methods were developed by Hoerl and Kennard [8], Kibria [13], Månsson et al.
[18]. The Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) are
considered as performance criteria for evaluation of the proposed estimators in the Monte
Carlo experiment. The intuitive, and empirical relevance, of the Liu estimator is demon-
strated by applying proposed estimation methods and traditional MLE on real-world data
where we systematically analyze which estimator that can to the highest degree remedy
the effects of multicollinearity. In this empirical application, wemodel the number of goals
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scored at home and away as a function of the quality of the teams (measured by bookmaker
odds). By this approach is easily demonstrated that the standard errors and the estimated
MSEs decrease substantially. Hence, the precision of the estimated parameters is increased,
which of course is one of the main objectives in an empirical situation

This study is structured as follows: We discuss the model of interest and propose dif-
ferent shrinkage parameters in section 2. The Monte Carlo experiment and the simulated
results are addressed in Section 3. An empirical application is outlined in section 4. Finally,
the concluding remarks are provided in section 5.

2. A new Poisson Liu Regression Estimator (PLRE)

The Poisson Regression (PR) model is only applicable when the dependent variable deals
with count data. Suppose, yi is the dependent variable and follows a Poisson distribution
with parameter (θi) and is denoted as P(θi) with the following probability mass function

f (yi) = eθiθiyi

yi!
; yi = 0, 1, 2, 3, . . . ; i = 1, 2, 3, . . . , n. (1)

The PR model is commonly developed by using the canonical link function, such that
θi = exp(xtiβ), where xi is the ith row of X which is an n × p data matrix with p non-
stochastic explanatory variables, β is a p × 1 vector of the unknown regression coefficients.
The log-likelihood function of the PR model can be defined as

l(θ ; y) =
n∑
i=1

{
yiln(θi) − θi − ln

( n∏
i=1

yi!

)}

l(θ ; y) =
n∑
i=1

{
yiln(exp(xtiβ)) − exp(xtiβ) − ln

( n∏
i=1

yi!

)}
. (2)

The MLE is used to estimate the parameters of the model. The following IWLS
algorithm is applying to maximize the log-likelihood function.

β̂MLE = (XtV̂X)−1XtV̂z∗, (3)

where V̂ = diag {θ̂1, θ̂2, . . . , θ̂n}; z∗ = xti β̂MLE + yi−θi
θ̂i

is the adjusted response variable.

Both V̂and z∗are evaluated by Fisher’s scoring iterative procedure. TheMSEs of the estima-
tors are obtained by considering α = ϒ tβ and � = diag(λ1, λ2, . . . , λp) = ϒ(XtV̂X)ϒ t ,
where ϒ is the orthogonal matrix whose columns are the eigenvectors of XtV̂X; and
λ1 ≥ λ2 ≥, . . . ,≥ λp > 0 are the eigenvalues of the matrix XtV̂X and αj(j = 1, 2, . . . , p)
of the jth element of ϒ tβ . Furthermore, the matrix MSE (MMSE) of the β̂MLE is defined
as

MMSE(β̂MLE) = (ϒ�−1ϒ t). (4)

Moreover, the scalar MSE of the β̂MLE is defined as

MSE(β̂MLE) = E(β̂MLE − β)t(β̂MLE − β) = tr{ϒ�−1ϒ t} =
p∑

j=1

1
λj
, (5)
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where λj is the jth eigenvalue of the XtV̂X matrix. When the explanatory variables
are linearly correlated, some of the eigenvalues will be small and XtV̂X matrix will
be ill-conditioned which inflated the variance of MLE. To overcome this problem of
multicollinearity, we define a PLRE which is generalization of Liu [12].

β̂PLRE = (XtV̂X + I)−1(XtV̂X + dI)β̂MLE (6)

where d (0 ≤ d ≤ 1) is the shrinkage parameter. If d = 1 then β̂MLE = β̂PLRE and in case
d < 1 which implies that the absolute norm vector of PLRE is less than or equal to the
absolute norm vector of MLE, i.e. β̂PLRE ≤ β̂MLE. TheMMSE andMSE of the PLRE can be
defined as

Bias(β̂PLRE) = ϒ�I
−1α(d − 1) (7)

VAR(β̂PLRE) = ϒ�I
−1�d��I

−1�dϒ
t (8)

MMSE(β̂PLRE) = ϒ�I
−1�d��I

−1�dϒ
t + (d − 1)2ϒ�I

−1ααt�I
−1ϒ t (9)

where �I = diag(λ1 + I, λ2 + I, . . . , λp + I), �d = diag(λ1 + d, λ2 + d, . . . , λp + d) and
� = diag(λ1, λ2, . . . , λp) = ϒ(XtV̂X)ϒ t , where ϒ is the orthogonal matrix whose
columns are the eigenvectors of XtV̂X. Finally, the scalar MSE of the PLRE is obtained
by applying tr (.) operator on Equation (9), which can be defined as

MSE(β̂PLRE) =
p∑

j=1

(
λj + d

(λj + 1)2λj

)
+ (d − 1)2

p∑
j=1

(
α2
j

(λj + 1)2

)
. (10)

Liu [12] provided a proof that the Liu estimator is better than the ordinary least squares
estimator for the linear regression model. We extend this method for PR model and show
that the PLRE perform better than the MLE. In order to do so, we follow Liu [12] and
differentiate Equation (10) with respect to d:

g′(d) = ∂[MSE(β̂PLRE)]
∂d

= 2
p∑

j=1

λj + d
λj(λj + 1)2

+ 2(d − 1)
p∑

j=1

α2
j

(λj + 1)2
. (11)

Thus, by inserting the value 1 (the situation when PLRE andMLE are equal) we can see
that:

g′(1) = 2
p∑

j=1

λj + d
λj(λj + 1)2

> 0 (12)

Therefore there exists 0 < d < 1 such that g(d) < g(1) or, equivalently, MSE(β̂PLRE) <

MSE(β̂MLE).

2.1. Proposed shrinkage estimators

The PLRE is a robustmeasure and it performs better than the usualMLEwhen the explana-
tory variables are linearly correlated. Furthermore, the performance of the PLRE depends
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on the optimal value of the shrinkage parameter, d. Therefore, we propose some new esti-
mators in order to obtain the value of d based on the work of Månsson et al. [18]. In order
to obtain the optimal value of the PLRE, we take the first derivative of Equation (10) and
then solve it for d by equating to zero. Consequently, we obtain

dj =
α2
j − 1

1
λj

+ α2
j

(13)

The range of d depends on α2
j . However, as is specified in [12], the value of d is limited

between 0 and 1. Therefore, we use max operator with the proposed estimators to ensure
the value of dj lie between 0 to 1. The ideas of the proposed estimators are based on the
theoretical work of Hoerl and Kennard [8], Kibria [13], and Månsson et al. [18]. For esti-
mation of an optimal value of d, we define D1, D2-D3, and D4-D5 estimators based on the
work of Hoerl and Kennard [8], Kibria [13], and Månsson et al. [18], respectively.

D1 = max

⎛
⎝0,

α̂2
max − 1

1
λ̂max

+ α̂2
max

⎞
⎠ D2 = max

⎛
⎝0,median

⎛
⎝ α̂2

j − 1
1
λ̂j

+ α̂2
j

⎞
⎠
⎞
⎠

D3 = max

⎛
⎝0,

p∑
j=1

⎛
⎝ α̂2

j − 1
1
λ̂j

+ α̂2
j

⎞
⎠ /p

⎞
⎠ D4 = max

⎛
⎝0,max

⎛
⎝ α̂2

j − 1
1
λ̂j

+ α̂2
j

⎞
⎠
⎞
⎠

D5 = max

⎛
⎝0,min

⎛
⎝ α̂2

j − 1
1
λ̂j

+ α̂2
j

⎞
⎠
⎞
⎠

where α̂2
max and λ̂max which defined in D1 estimator are the maximum element of the α̂2

j
and ϒ(XtV̂X)ϒ t , respectively.

A contribution of this paper is the following PLRE estimators.

Dkp1 = max(0,median(mj)), Dkp2 = max

⎛
⎝0,

p∑
j=1

(mj)/p

⎞
⎠

Dkp3 = max(0,max(mj)), Dkp4 = max(0,min(mj))

Dq1 = max(0,median(hj)), Dq2 = max

⎛
⎝0,

p∑
j=1

(hj)/p

⎞
⎠

Dq3 = max(0,max(hj)/p), Dq4 = max(0,min(hj))

wheremj = α̂2
j −1

max
(

1
λ̂j

)
+α̂2

j

and hj = α̂2
j −1

max
(

1
λ̂j

)
+α̂2

max

. It should be noted that the PLRE perform

much better when the optimal value of d is close to zero. Hence our proposed estimator’s
value is always close to zero.
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2.2. Performance evaluation criteria of the estimators

Themain objective of this article is to compare the performance of the proposed estimators
with the existing estimators in order to improve the performance of the PLRE in the pres-
ence of high, but imperfect, multicollinearity. So, there is a need to define the performance
criteria for selecting the best estimator. In this study, we consider the standard measure of
MSE and MAPE as the performance criteria. These are defined as follows:

MSE =
∑R

r=1 (β̂(r) − β)
t
(β̂(r) − β)

R
(14)

MAPE =

⎛
⎜⎜⎝ 1
R

⎛
⎜⎜⎝

R∑
r=1

⎛
⎜⎜⎝
∑P

j=1

∣∣∣∣ (β̂−β)j
(β)j

∣∣∣∣
p

⎞
⎟⎟⎠
⎞
⎟⎟⎠
⎞
⎟⎟⎠ 100%, (15)

where β̂ is the estimator of β at the ith repetition out of R = 2000 replicates.

3. The simulation study

In this section, we conduct a Monte Carlo simulation study to evaluate the performance of
our newly proposed estimators and the MLE. Below we provide a brief discussion about
the simulation results.

3.1. The design of an experiment

The dependent variable of the PRmodel is generated from the Poisson distribution Po(θi),
where

θi = exp(βo + β1xi1+, . . . ,+βpxip); j = 1, 2, . . . , p; i = 1, 2, . . . , n. (16)

where Equation (16) is themean function and it is generated for p = 4, 8 regressors, respec-
tively. Furthermore, the intercept value is set to be –1 or 1, and the slope parameter values

of Equation (16) are chosen to be
p∑

j=1
β2
j = 1 and β1 =, . . . ,= βp by considering differ-

ent sample sizes. Table 1 shows the different factors that affect on the performance of the
estimators. We use the R 3.2.2 software to conduct the simulation study.

Since the performance of the estimators greatly depends on the strength of the cor-
relation, the following formula is used to generate the correlated explanatory variables

Table 1. Values of the factors that are used in the design of the experiment.

Factors Notations Values

Intercept βo –1, 1
Number of explanatory variables p 4, 8
Degree of correlation ρ2 0.90, 0.98, 0.99, 0.999
Sample size n 25, 50, 75, 100, 125
Replicates R 2000
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[7,13]:

xij =
√
1 − ρ2zij + ρzip + 1; j = 1, 2, . . . , p + 1; i = 1, 2, . . . , n. (17)

where zij are the pseudo-random numbers which are generated from the standard normal
distribution. We consider four different values of ρ2 = 0.90, 0.98, 0.99, 0.999.

3.2. Simulation results and discussion

The simulated results for MSE and MAPE are presented in Tables 2–5 for p = 4and8,
respectively. All estimators performed better than the traditional MLE in every case. It is
observed that the factors influencing the performance of different estimators are the value

Table 2. Estimated MSE values when p = 4.

n ML D1 D2 D3 D4 D5 Dkp1 Dkp2 Dkp3 Dkp4 Dq1 Dq2 Dq3 Dq4

βo = −1
ρ2 = 0.90
25 2.051 1.509 0.737 0.677 1.429 0.596 0.652 0.658 1.150 0.596 0.624 0.672 0.674 0.595
50 0.960 0.748 0.520 0.508 0.729 0.506 0.517 0.508 0.712 0.506 0.513 0.520 0.551 0.506
75 0.655 0.537 0.436 0.432 0.532 0.432 0.436 0.432 0.528 0.432 0.434 0.436 0.454 0.432
100 0.514 0.437 0.377 0.375 0.435 0.375 0.377 0.375 0.434 0.375 0.376 0.376 0.389 0.375
ρ2 = 0.98
25 8.961 7.296 2.796 2.428 6.390 0.895 1.430 1.645 3.782 0.741 1.062 1.445 1.098 0.724
50 3.502 2.650 0.943 0.837 2.384 0.750 0.869 0.858 2.038 0.747 0.809 0.947 0.985 0.745
75 2.082 1.617 0.846 0.809 1.541 0.798 0.835 0.812 1.446 0.798 0.818 0.869 0.936 0.797
100 1.457 1.139 0.727 0.702 1.104 0.701 0.722 0.703 1.057 0.701 0.715 0.729 0.780 0.701
ρ2 = 0.99
25 81.850 78.381 32.987 35.871 70.411 5.304 8.743 11.915 27.129 0.689 4.158 7.958 2.433 0.464
50 35.344 32.479 10.353 10.789 28.638 1.229 3.741 5.640 14.772 0.592 1.847 3.859 1.794 0.445
75 17.582 15.226 4.339 4.479 13.122 0.731 2.482 3.170 7.839 0.605 1.417 2.464 1.411 0.538
100 12.554 10.557 3.199 2.755 9.122 0.788 2.028 2.336 5.813 0.724 1.343 2.008 1.380 0.692
ρ2 = 0.999
25 819.622 815.484 404.997 522.065 794.182 74.259 75.347 114.554 256.690 4.425 34.536 74.044 16.707 1.273
50 314.751 310.796 116.421 155.670 301.592 12.357 25.246 45.196 110.561 2.332 9.485 27.791 7.588 0.731
75 176.454 172.637 58.213 80.207 164.807 6.463 18.359 29.765 67.385 2.110 7.168 17.903 4.999 0.655
100120.202 116.572 43.572 55.769 109.314 4.587 12.567 19.374 45.418 1.263 5.087 11.796 3.676 0.482

βo = 1
ρ2 = 0.90
25 0.230 0.209 0.204 0.204 0.209 0.204 0.204 0.204 0.208 0.204 0.204 0.204 0.205 0.204
50 0.188 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185
75 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216 0.216
100 0.210 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211
ρ2 = 0.98
25 0.931 0.671 0.539 0.534 0.657 0.534 0.538 0.534 0.641 0.534 0.537 0.537 0.559 0.534
50 0.521 0.433 0.415 0.415 0.431 0.415 0.415 0.415 0.430 0.415 0.415 0.415 0.418 0.415
75 0.406 0.375 0.372 0.372 0.375 0.372 0.372 0.372 0.375 0.372 0.372 0.372 0.373 0.372
100 0.356 0.338 0.337 0.337 0.338 0.337 0.337 0.337 0.338 0.337 0.337 0.337 0.338 0.337
ρ2 = 0.99
25 8.108 6.174 2.027 1.368 4.854 0.692 1.286 1.418 3.285 0.678 1.001 1.338 1.068 0.666
50 4.113 2.838 1.120 0.902 2.363 0.800 1.004 0.966 2.007 0.797 0.916 1.034 1.027 0.796
75 2.474 1.621 0.951 0.889 1.510 0.882 0.933 0.896 1.394 0.882 0.913 0.942 0.993 0.882
100 1.817 1.208 0.820 0.805 1.138 0.801 0.815 0.805 1.098 0.801 0.810 0.823 0.867 0.801
ρ2 = 0.999
25 84.81 81.13 32.01 37.34 74.43 3.378 8.964 12.91 28.92 0.894 4.046 8.321 2.544 0.410
50 40.47 37.12 11.91 13.89 32.80 1.792 4.297 6.500 14.71 0.737 2.042 4.382 1.711 0.443
75 23.14 20.11 5.67 6.11 17.69 0.838 2.893 3.945 9.284 0.627 1.606 2.970 1.491 0.525
100 16.39 13.77 4.54 3.95 11.15 0.801 2.109 2.808 6.861 0.723 1.293 2.270 1.418 0.677
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Table 3. Estimated MSE values when p = 8.

n ML D1 D2 D3 D4 D5 Dkp1 Dkp2 Dkp3 Dkp4 Dq1 Dq2 Dq3 Dq4

βo = −1
ρ2 = 0.90
25 4.055 2.827 1.142 1.075 2.625 1.071 1.102 1.102 2.110 1.071 1.086 1.134 1.161 1.071
50 1.795 1.308 0.981 0.980 1.278 0.980 0.981 0.980 1.241 0.980 0.981 0.982 1.010 0.980
75 1.287 0.998 0.861 0.861 0.989 0.861 0.861 0.861 0.980 0.861 0.861 0.861 0.875 0.861
100 0.836 0.674 0.635 0.635 0.672 0.635 0.635 0.635 0.669 0.635 0.635 0.635 0.639 0.635
ρ2 = 0.98
25 17.323 14.353 3.590 2.331 12.589 1.383 1.865 2.181 6.587 1.341 1.561 1.993 1.648 1.337
50 7.473 5.689 1.874 1.700 5.088 1.614 1.757 1.746 4.193 1.611 1.671 1.842 1.842 1.610
75 4.804 3.566 1.618 1.586 3.309 1.586 1.609 1.595 2.994 1.586 1.596 1.652 1.729 1.586
100 3.167 2.287 1.370 1.366 2.165 1.366 1.369 1.366 2.049 1.366 1.368 1.376 1.440 1.366
ρ2 = 0.99
25 176.3 171.3 60.17 53.153 156.7 2.041 7.039 11.362 53.19 0.650 2.812 6.894 1.892 0.580
50 66.48 62.03 12.89 12.017 54.07 0.997 4.748 6.619 26.94 0.842 2.233 4.429 1.819 0.798
75 43.00 38.84 8.096 7.011 33.25 1.139 3.912 5.107 18.88 1.074 2.172 3.738 1.909 1.053
100 29.82 26.06 5.372 4.072 21.76 1.240 3.045 3.790 13.46 1.229 1.947 3.082 1.922 1.219
ρ2 = 0.999
25 1673.9 1668.4 668.1 670.1 1629.2 20.62 53.61 89.87 443.58 0.85 18.95 52.11 7.648 0.328
50 680.8 675.4 168.0 195.4 650.7 4.16 38.22 58.81 258.64 1.05 10.94 30.68 5.057 0.391
75 421.9 416.5 103.3 116.6 397.9 2.78 28.78 41.31 167.34 0.85 8.85 21.69 3.732 0.420
100 304.2 299.0 73.9 79.7 279.2 2.50 20.31 29.69 122.81 0.76 6.06 15.63 3.056 0.395

βo = 1
ρ2 = 0.90
25 0.530 0.454 0.451 0.451 0.453 0.451 0.451 0.451 0.453 0.451 0.451 0.451 0.451 0.451
50 0.361 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351 0.351
75 0.318 0.315 0.315 0.315 0.315 0.315 0.315 0.315 0.315 0.315 0.315 0.315 0.315 0.315
100 0.184 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182
ρ2 = 0.98
25 2.094 1.370 1.026 1.024 1.333 1.024 1.025 1.025 1.257 1.024 1.025 1.028 1.049 1.024
50 1.049 0.840 0.829 0.829 0.840 0.829 0.829 0.829 0.839 0.829 0.829 0.829 0.830 0.829
75 0.790 0.691 0.689 0.689 0.691 0.689 0.689 0.689 0.690 0.689 0.689 0.689 0.689 0.689
100 0.499 0.448 0.447 0.447 0.448 0.447 0.447 0.447 0.448 0.447 0.447 0.447 0.447 0.447
ρ2 = 0.99
25 20.397 16.949 4.216 2.715 14.459 1.570 2.207 2.640 7.441 1.549 1.841 2.390 1.908 1.547
50 8.965 6.545 2.083 1.883 5.728 1.804 1.967 1.954 4.562 1.804 1.882 2.062 2.055 1.804
75 5.813 3.939 1.797 1.749 3.598 1.747 1.781 1.758 3.157 1.747 1.764 1.812 1.891 1.747
100 4.100 2.709 1.564 1.554 2.537 1.554 1.561 1.554 2.339 1.554 1.558 1.569 1.638 1.554
ρ2 = 0.999
25 199.81 194.62 63.80 56.93 178.488 1.955 7.518 12.129 55.66 0.596 3.149 7.524 1.949 0.538
50 86.97 82.09 17.52 17.39 73.017 1.029 6.341 8.778 34.64 0.840 2.777 5.605 2.008 0.786
75 56.32 51.64 10.791 9.875 45.377 1.066 4.996 6.550 23.99 1.024 2.469 4.534 2.005 1.001
100 39.62 35.35 7.428 5.947 29.603 1.173 3.598 4.710 17.10 1.113 2.094 3.551 1.924 1.099

of the intercept, a number of explanatory variables, the degree of correlation and the sam-
ple size. It is clearly noticed that as the intercept value increase from –1 to 1, the estimated
MSE decrease, and the MAPE increase. Moreover, when the number of explanatory vari-
ables and the degree of the generated correlation increases, the estimated MSE and MAPE
also increases. Furthermore, the estimated MSE and MAPE decrease with the increase in
the sample size. However, the estimatedMSE ofDkp4 andDq4 are increase with the increase
in sample size due to the minimum value of the mj and hj. Although, the performance of
Dkp4 and Dq4 is better than the other estimation methods of the shrinkage parameter d in
PLRE and MLE. Overall, the simulated MSE of these estimation methods increases with
the increase in n and βo while it decreases more when ρ2 increase. These results are sup-
ported by the simulated results of Månsson and Shukur [20], Kibria et al. [15] and Kibria



2266 M. QASIM ET AL.

Table 4. Estimated MAPE values when p = 4.

n ML D1 D2 D3 D4 D5 Dkp1 Dkp2 Dkp3 Dkp4 Dq1 Dq2 Dq3 Dq4

βo = −1
ρ2 = 0.90
50 85.38 71.84 53.03 51.64 70.19 50.08 51.57 51.77 65.14 50.07 50.87 52.52 53.16 50.04
75 61.37 53.99 46.40 46.08 53.43 46.04 46.34 46.07 52.90 46.04 46.23 46.41 47.72 46.04
100 48.57 44.24 40.86 40.75 44.09 40.75 40.85 40.75 43.96 40.75 40.81 40.85 41.54 40.75
125 41.64 38.65 36.40 36.37 38.56 36.37 36.40 36.37 38.51 36.37 36.39 36.40 36.90 36.37
ρ2 = 0.98
50 179.77 154.22 84.55 76.26 141.34 58.34 69.96 74.00 111.25 56.15 64.22 72.95 67.63 55.72
75 121.05 101.71 61.14 58.68 96.70 56.85 59.69 59.34 88.69 56.79 58.44 62.21 64.54 56.75
100 93.80 80.76 58.85 57.93 78.78 57.69 58.61 58.00 76.17 57.68 58.22 59.56 62.23 57.67
125 78.98 68.45 54.81 54.01 67.34 53.98 54.66 54.03 65.80 53.98 54.44 54.78 56.91 53.98
ρ2 = 0.99
50 540.65 520.44 269.04 272.71 477.37 81.22 135.02 168.96 267.24 46.77 98.97 145.15 90.14 41.83
75 377.43 354.74 161.03 164.43 328.53 53.68 98.96 128.49 215.63 44.88 74.32 112.43 81.67 41.58
100 271.37 246.34 108.66 109.68 223.93 49.35 84.54 99.73 165.37 47.32 68.21 92.32 74.52 45.98
125 231.34 206.57 96.69 90.19 189.77 55.24 80.96 89.11 145.40 54.20 69.85 86.25 75.15 53.51
ρ2 = 0.999
50 1727.27 1719.49 995.37 1198.74 1685.49 282.46 375.54 511.50 814.05 76.38 249.02 423.50 214.12 51.09
75 1114.53 1103.46 551.06 686.35 1080.52 126.73 234.21 342.00 554.17 57.83 149.36 281.42 150.46 39.20
100 849.03 835.59 399.66 488.00 806.45 93.83 213.43 291.21 456.51 54.47 137.52 237.23 129.25 36.73
125 701.86 685.87 346.80 404.24 656.92 77.73 171.85 230.20 369.67 47.85 114.80 190.13 111.31 36.62

βo = 1
ρ2 = 0.90
50 30.43 28.96 28.73 28.73 28.95 28.73 28.73 28.73 28.94 28.73 28.73 28.73 28.78 28.73
75 25.49 25.05 25.03 25.03 25.05 25.03 25.03 25.03 25.05 25.03 25.03 25.03 25.03 25.03
100 23.17 22.96 22.96 22.96 22.96 22.96 22.96 22.96 22.96 22.96 22.96 22.96 22.96 22.96
125 20.83 20.72 20.71 20.71 20.72 20.71 20.71 20.71 20.72 20.71 20.71 20.71 20.71 20.71
ρ2 = 0.98
50 61.46 51.90 47.79 47.68 51.48 47.68 47.77 47.68 50.99 47.68 47.74 47.74 48.50 47.68
75 47.10 42.64 41.87 41.87 42.57 41.87 41.87 41.87 42.54 41.87 41.87 41.87 42.04 41.87
100 38.96 36.84 36.65 36.65 36.83 36.65 36.65 36.65 36.83 36.65 36.65 36.65 36.69 36.65
125 34.91 33.44 33.36 33.36 33.44 33.36 33.36 33.36 33.44 33.36 33.36 33.36 33.38 33.36
ρ2 = 0.99
50 180.70 150.36 78.82 66.41 129.89 53.97 67.11 70.31 106.33 53.66 62.03 70.31 66.11 53.43
75 132.04 104.58 66.03 61.42 95.08 59.45 63.86 63.04 87.87 59.40 62.22 65.15 66.39 59.37
100 104.48 80.83 63.39 62.07 78.05 61.93 63.03 62.21 75.24 61.93 62.63 63.25 65.23 61.93
125 89.98 70.10 58.96 58.64 68.20 58.57 58.86 58.66 67.10 58.57 58.76 59.07 60.68 58.57
ρ2 = 0.999
50 578.14 558.57 289.53 308.64 520.64 70.53 142.31 182.22 285.75 45.73 100.50 153.89 91.82 37.42
75 406.13 381.23 178.60 187.89 346.65 57.16 105.27 135.63 212.45 45.10 78.15 117.66 78.96 40.08
100 312.94 283.44 125.93 129.22 258.38 50.75 91.98 112.15 177.40 47.40 72.78 101.84 76.58 45.26
125 265.19 234.33 114.88 105.91 204.27 54.84 82.42 96.76 154.45 53.51 69.04 90.85 76.05 52.55

et al. [16], where the effects of the multicollinearity problem on logistic and PRmodels are
assessed.

It is clear from Tables 234–5, that as the degree of multicollinearity increases, the sim-
ulated MSE values are inflated. This increase is especially strong for the MLE. In such
conditions, simulated MSEs of the PLREs by using proposed estimators are clearly smaller
than the MLE. In our evaluation we found that the performance of all analyzed shrinkage
estimators is approximately the same when n is large and ρ2 is small. However, as multi-
collinearity levels increase (ρ2 ≥ 0.90), the performance of the proposed estimators is very
good as compared to the existing estimators. Our proposed Poisson Liu estimators always
exhibit aminimumMSE in the presence ofmulticollinearity – regardless of the value of the
other factors (such as number of explanatory variables, value of intercept and size of the
sample).We can also see that the simulatedMSE of the estimators increases when the value
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Table 5. Estimated MAPE values when p = 8.

n ML D1 D2 D3 D4 D5 Dkp1 Dkp2 Dkp3 Dkp4 Dq1 Dq2 Dq3 Dq4

βo = −1
ρ2 = 0.90
50 188.43 152.34 103.78 101.94 147.19 101.84 102.83 102.84 133.96 101.81 102.35 103.97 105.51 101.81
75 123.92 105.25 93.61 93.60 104.24 93.60 93.61 93.60 103.00 93.60 93.60 93.65 94.76 93.60
100 103.53 90.97 85.61 85.61 90.62 85.61 85.61 85.61 90.26 85.61 85.61 85.61 86.19 85.61
125 85.26 76.63 74.84 74.84 76.53 74.84 74.84 74.84 76.43 74.84 74.84 74.84 75.04 74.84
ρ2 = 0.98
50 397.97 351.67 159.92 135.27 325.80 115.93 130.42 140.39 231.08 115.47 123.27 137.44 127.74 115.38
75 267.45 227.58 131.72 127.32 214.03 125.54 129.28 128.97 194.18 125.47 127.28 132.35 133.72 125.46
100 216.02 181.61 123.92 123.04 174.60 123.03 123.67 123.28 166.09 123.03 123.34 125.04 128.29 123.03
125 175.78 146.42 115.81 115.70 142.51 115.70 115.78 115.70 138.85 115.70 115.74 115.99 118.55 115.70
ρ2 = 0.99
50 1260.45 1235.00 597.24 554.96 1164.47 95.99 200.81 270.03 588.47 75.83 143.52 225.11 128.75 73.45
75 804.42 770.67 298.60 286.68 706.31 89.75 185.13 230.99 475.83 86.84 136.25 196.40 130.95 85.57
100 655.84 616.92 241.51 221.90 560.38 100.97 174.17 207.03 409.67 99.53 136.74 183.10 134.68 98.89
125 542.91 501.06 199.61 175.27 449.43 110.18 157.53 180.77 345.43 109.90 133.31 168.23 137.32 109.61
ρ2 = 0.999
50 3901.20 3892.28 2053.39 2176.33 3833.15 196.57 494.04 718.21 1687.49 54.12 310.53 574.47 229.37 41.99
75 2587.47 2574.90 1102.75 1242.34 2514.18 104.89 483.00 664.07 1458.13 59.86 267.34 498.93 208.83 44.64
100 2051.78 2035.64 874.83 957.50 1978.05 92.82 431.58 565.39 1188.51 63.55 244.44 424.66 181.31 51.34
125 1732.72 1714.59 728.35 771.21 1644.86 88.45 358.70 476.17 1012.71 65.10 206.35 361.08 165.97 55.30

βo = 1
ρ2 = 0.90
50 67.00 61.33 61.18 61.18 61.32 61.18 61.18 61.18 61.31 61.18 61.18 61.18 61.20 61.18
75 47.69 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39 46.39
100 40.27 39.59 39.59 39.59 39.59 39.59 39.59 39.59 39.59 39.59 39.59 39.59 39.59 39.59
125 32.78 32.39 32.39 32.39 32.39 32.39 32.39 32.39 32.39 32.39 32.39 32.39 32.39 32.39
ρ2 = 0.98
50 140.14 110.97 99.35 99.31 109.71 99.31 99.33 99.32 107.26 99.31 99.32 99.39 100.28 99.31
75 96.74 85.20 84.73 84.73 85.17 84.73 84.73 84.73 85.13 84.73 84.73 84.73 84.78 84.73
100 81.26 74.52 74.45 74.45 74.52 74.45 74.45 74.45 74.51 74.45 74.45 74.45 74.46 74.45
125 66.89 62.80 62.78 62.78 62.80 62.78 62.78 62.78 62.80 62.78 62.78 62.78 62.78 62.78
ρ2 = 0.99
50 439.82 389.89 178.39 149.34 354.85 125.30 142.54 155.06 247.86 124.89 134.31 150.82 138.25 124.80
75 297.40 245.96 139.70 134.85 228.39 132.93 137.12 136.86 203.68 132.93 135.14 140.35 141.54 132.93
100 241.08 190.84 130.94 129.70 182.10 129.64 130.56 129.93 170.69 129.64 130.12 131.49 134.68 129.64
125 201.16 158.76 124.38 124.13 153.96 124.13 124.32 124.13 148.25 124.13 124.23 124.54 127.10 124.13
ρ2 = 0.999
50 1367.62 1343.94 640.13 606.59 1273.43 94.72 207.79 283.35 615.44 72.97 149.99 237.34 130.49 70.68
75 926.42 894.61 353.12 349.79 830.52 89.13 211.31 266.07 541.72 84.86 149.66 221.28 136.87 83.06
100 749.91 711.52 279.67 267.49 655.68 96.69 194.12 233.27 457.00 95.65 145.10 200.91 137.11 94.89
125 626.78 585.03 231.18 207.46 525.97 105.33 168.85 199.66 385.94 104.09 136.84 179.56 137.01 103.66

of intercept becomes lower. This is since the average value of θ̂ decreases with βo, which
leads to a lower value of the diagonal weight matrix of V̂ . The shrinkage estimators Dkp4
andDq4 are providing theminimumMSEwhenρ2 = 0.90. Among these shrinkage estima-
tors, theDq4 estimator is the best and provides theminimumMSE in the presence of severe
multicollinearity. For a limited case (when ρ2 = 0.90 and n = 100), the performance ofD5,
Dkp4, and Dq4 is the same. Overall, the proposed shrinkage parameters (Dkp1–Dkp4) and
(Dq1–Dq4) outperform the PLRE with the parameters suggested by Månsson et al. [18]. In
addition, these parameters also outperformMLE significantly. Finally, based on the simu-
lated results, we conclude that the PLRE should be used with the shrinkage parameter Dq4
in the presence of high, but imperfect multicollinearity since it has the lowest estimated
MSE and MAPE as compared to the other shrinkage parameters.
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4. Empirical application: Swedish football data

For the purpose of illustrating the empirical relevance of the proposed methods, we ana-
lyze Swedish football data in this empirical section. The proposed and existing estimation
methods are elucidated using a dataset regarding the performance of Swedish football
teams in the top Swedish league (Allsvenskan) during the year of 2018.1 The aims of
this application are twofold. Firstly, to analyze the number of full-time home team goals
(FTHTG) which is illustrated in Table 7. Secondly, to analyze the number of full-time away
team goals (FTATG) which is presented in Table 8. This dataset includes n = 242 observa-
tions and include twodependent variables as described above and six explanatory variables,
which are the pinnacle home win odds (x1), pinnacle away win odds (x2), maximum odd-
sportalmaximumhomewin (x3), oddsportalmaximumawaywin (x4), average oddsportal
home win (x5) and average oddsportal away win (x6). The effect of these regressors on
FTHTG and FTATG, respectively are demonstrated in the regression. The bivariate corre-
lations among the explanatory variables are demonstrated in Table 6. It is seen fromTable 6
that there are high correlations in half of the cases, and moderate correlations among rest
of the cases. In addition, the condition number which is the ratio of maximum to the
minimum eigenvalues, is 6013.22 > 1000 which indicates what can be defined as a severe
multicollinearity problem in this dataset which originates from Türkan and Özel [24].

The Chi square (χ2) goodness of fit test is used before applying the Poisson regression
(PR) model for the empirical application. As is seen in Tables 7 and 8, these tests confirm
that the response variables are well suited to the PR model with p-values corresponding
to 0.77 and 0.88. Based on the analysis of the dataset using the standard glm{} package in
R, the estimated coefficients, standard errors, and values of the MSE and cross validation
criterion estimates2 (CVCE) are summarized in Tables 7 and 8 to assess the performance
of the PLRE and MLE. The effect of the estimated coefficients is changed, and the esti-
mated standard errors and the estimated MSE of the PLRE are smaller than the MLE due

Table 6. Correlation matrix.

Variables x1 x2 x3 x4 x5 x6

x1 1.0000
x2 –0.5746 1.0000
x3 0.9972 –0.5681 1.0000
x4 –0.5549 0.9938 –0.5488 1.0000
x5 0.9952 –0.5949 0.9974 –0.5751 1.0000
x6 –0.5885 0.9948 –0.5824 0.9959 –0.6093 1.0000

Table 7. Estimated coefficients, standard errors, MSE and CVCE for FTHTG applicationa.

MLE PLRE (Dq4)

Variables Coefficients Standard Errors Coefficients Standard errors

x1 0.7825 0.6392 0.4379 0.4819
x2 0.0307 0.1317 0.0254 0.1295
x3 –0.9190 0.8230 –0.4911 0.5627
x4 –0.1796 0.1718 –0.1667 0.1673
x5 0.0806 0.7601 -0.0368 0.5324
x6 0.2562 0.2280 0.2439 0.2178
MSE 1.927087 0.679863
CVCE 1.576436 1.576388
aThe response variable is FTHTG which is well fitted to the Poisson distribution (χ2 = 2.5131, df = 5, p = 0.7745).
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Table 8. Estimated coefficients, standard errors, MSE and CVCE for FTATG applicationa.

MLE PLRE(Dq4)

Variables Coefficients Standard errors Estimates Standard errors

x1 –0.0085 0.3177 –0.0274 0.2908
x2 –0.0592 0.2919 –0.0690 0.2702
x3 –0.3570 0.4911 –0.2618 0.4117
x4 0.1355 0.2742 0.1162 0.2574
x5 0.5346 0.4688 0.4416 0.3983
x6 –0.2052 0.4305 –0.1714 0.3704
MSE 1.097734 0.637463
CVCE 1.369209 1.369167
aThe response variable is FTATG which is well fitted to the Poisson distribution (χ2 = 1.7359, df = 5, p = 0.8843).

to the high, but imperfect multicollinearity. The different estimators give qualitatively the
same results, and in order to save space we focus to analyze the Dq4 shrinkage estimator
since it performs better than the other estimators in the simulation study – given a degree
of correlation. Therefore, we used PLRE with Dq4 but of course full results for all estima-
tors are available from the authors upon request. It is evident from Table 7, based on high
standard errors and MSE, that the MLE do not estimate the coefficients very precisely in
the presence of multicollinearity. However, on the other hand, the proposed estimation
method, estimates the coefficients rather precisely. For instance, theoretically, oddsportal
maximum away win have negative effects on the FTHTG, while the MLE shows a posi-
tive effect. Meanwhile, proposed method shows negative affect and it is considered a good
approach to tackle the problem of multicollinearity. The estimated results of the second
model are shown in Table 8, where we can observe that the standard errors and the values
of the MSE and CVCE are high when the MLE is used. However, these estimated results
are reduced when applying the PLRE with Dq4 a shrinkage estimator. Hence, the advan-
tage of the proposedmethod overMLE bymeans of an empirical application is fairly easily
illustrated. However, cross-validation shows little improvement in the predictive power
between the methods. The plots of MSE(βPLRE) and MSE(βMLE) against different values
of d in the interval [0,1] has been presented for FTHTG in Figure 1. It is noted that the

Figure 1. Plot ofMSE(βPLRE) andMSE(βMLE) against different values of d.
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estimatedMSE of PLRE equals to MLE when the value of d equals 1 and it decreases as the
value of d becomes close to 0. Therefore, we can say that the performance of the PLRE is a
function of the values of the shrinkage estimators.

5. Concluding remarks

This article proposed new shrinkage estimators and conducts a comparison with existing
estimators by means of a Monte Carlo simulation and an empirical application. The MSE
and MAPE are considered as the performance criteria in the evaluation. These estimators
are proposed in order to minimize the increase of the MLE caused by multicollinearity.
The simulation results illustrated that the estimatedMSE andMAPE are clearly affected by
changing different factors such as the value of intercept, number of explanatory variables,
multicollinearity level and the sample size. However, the general assessment is that the per-
formance of PLRE is superior than the MLE under very different, but empirically relevant,
conditions. Based on the Monte Carlo simulations and football dataset, we conclude that
theDq4 shrinkage parameter should be applied for the PLRE whenever the practitioner, in
the presence of considerable multicollinearity, needs to apply the PR model.

Notes

1. The data are publicly available on the webpage www.football-data.co.uk. The data are also
available from the authors upon request.

2. The mean squared prediction error is calculated by CVCE as
n∑

i=1
(Ŷ−i − Yi)

2/n, where

n∑
i=1

(Ŷ−i − Yi)
2 is denoted as the prediction sum of squares, and we optimize toward those

models which has the smallest CVCE. We apply the leave-one-out cross validation (LOOCV)
approach for computation of Ŷ−i. In LOOCV and fit the model n times. We leave out the ith
value at step i and use the resulting fitted model to calculate the predicted value for the leave out
ith observation, Ŷ−i.
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