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collinearity. To mitigate this problem, we suggest using the Poisson KEYWORDS
Liu Regression Estimator (PLRE) and propose some new approaches MLE: MSE: Poisson

to estimate this shrinkage parameter. The small sample statistical regression; Liu estimator;
properties of these estimators are systematically scrutinized using shrinkage estimators;
Monte Carlo simulations. To evaluate the performance of these esti- simulation study

mators, we assess the Mean Square Errors (MSE) and the Mean Abso-
lute Percentage Errors (MAPE). The simulation results clearly illustrate
the benefit of the methods of estimating these types of shrinkage
parameters in finite samples. Finally, we illustrate the empirical rele-
vance of our newly proposed methods using an empirically relevant
application. Thus, in summary, via simulations of empirically relevant
parameter values, and by a standard empirical application, it is clearly
demonstrated that our technique exhibits more precise estimators,
compared to traditional techniques — at least when multicollinearity
exist among the regressors.

1. Introduction

The Poisson Regression (PR) model is an appropriate model for studying count variables
using appropriate covariates. For instance, the number of patients, bank failures, the num-
ber of road accidents, traffic flow and ideal gap distances, number of typing errors on a
page, failure of a machine in one month, the occurrences of virus disease, takeover bids
and criminal careers can be modeled with the Poisson distribution etc. The common Max-
imum Likelihood Estimator (MLE) is used to estimate unknown regression coefficients
in the PR model. The MLE can be found by applying an Iterative Weighted Least Square
(IWLS) algorithm. One problem with MLE occurs when there are linear dependencies
among the explanatory variables. This problem is called multicollinearity by Frisch [6].
For example, when counting the number of injuries that occur in the upper seam of mines
in the coal fields, then the inside burden thickness, lower seam height, and extraction of
the lower earlier mined seam in percentage are the important factors. In such situation,
the explanatory variables would be strongly correlated. High (imperfect) multicollinearity
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causes the MLE to overestimate the standard errors, while the standard errors are consis-
tent. It leads difficulty to isolate marginal effects of individual regressors since marginal
interpretation implies holding the other independent variables constant.

This problem of multicollinearity has significant impact on the performance of MLE
for the estimation of unknown regression coefficients in the PR model. Furthermore, it
leads to instability and a high variance of the parameters estimated by MLE. Another con-
sequence of multicollinearity is the wider confidence interval, decreased statistical power
which result in increased probability of type II error in hypothesis testing in terms of the
parameters. In addition, the uncertainty of the estimated coefficients is higher because
of an increased coefficient variance due to multicollinearity. By minimizing the standard
errors of the coeflicients, we demonstrate that our new Liu estimator is a beneficial and a
recommended remedy for the problem of multicollinearity.

In recent research, it is a stylized fact that the shrinkage estimators are considered as an
efficient remedial measure to combat multicollinearity problem [11,22]. Many researchers
propose different type of shrinkage estimators to overcome multicollinearity for different
models. Mansson and Shukur [20] proposed a Poisson ridge regression estimator which
was a generalization of the ordinary ridge regression. In 1993, Liu introduced a new esti-
mator, subsequently known as the Liu estimator. It is based on a linear function of d instead
of a non-linear function as in the ordinary ridge regression. This leads to a more stable
shrinkage of the vector of estimated coefficients. Therefore, due to the linear function of d,
researchers have used the more robust Liu estimator instead of the traditional ridge regres-
sion. Regarding the vast literature on the Liu estimator in the linear regression model, we
refer our readers primarily to Liu [12], Kaciranlar [10], Alheety and Kibria [1], Kibria [14],
Qasim et al. [22], among others. Furthermore, Arashi et al. [4,5] deliberated the improved
preliminary test and Stein-rule Liu estimators, and Liu type estimator. Recently, Karbalaee
et al. [11] introduced a Preliminary test generalized Liu estimator with series of stochastic
restrictions. However, the literature on the Liu estimator of a generalized linear model is
rather limited. For instance, Mansson et al. [19] suggested some shrinkage parameters for
the Poisson Liu Regression Estimator (PLRE), Ménsson et al. [18] introduced a Liu estima-
tor for the logit regression model, Ménsson [17] recommended some Liu parameters for
the negative binomial regression model, Inan and Erdogan [9] developed a Liu-type logis-
tic estimator, Siray et al. [23] proposed a restricted Liu estimator in the logistic regression
model, Amin et al. [3] recommend some shrinkage parameters for the gamma regression,
Qasim et al. [21] developed and adopted some new shrinkage parameters for the Liu esti-
mator for the gamma regression model, Wu et al. [25] developed the restricted almost
unbiased Liu estimator for the logistic regression model, and, finally, recently, Amin et al.
[2] proposed Liu type estimators for the gamma regression model.

The main contribution of this paper is to propose some new methods of estimating the
shrinkage parameter, d for the PR model. The original methods that inspired our new esti-
mation methods were developed by Hoerl and Kennard [8], Kibria [13], Mansson et al.
[18]. The Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE) are
considered as performance criteria for evaluation of the proposed estimators in the Monte
Carlo experiment. The intuitive, and empirical relevance, of the Liu estimator is demon-
strated by applying proposed estimation methods and traditional MLE on real-world data
where we systematically analyze which estimator that can to the highest degree remedy
the effects of multicollinearity. In this empirical application, we model the number of goals
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scored at home and away as a function of the quality of the teams (measured by bookmaker
odds). By this approach is easily demonstrated that the standard errors and the estimated
MSE:s decrease substantially. Hence, the precision of the estimated parameters is increased,
which of course is one of the main objectives in an empirical situation

This study is structured as follows: We discuss the model of interest and propose dif-
ferent shrinkage parameters in section 2. The Monte Carlo experiment and the simulated
results are addressed in Section 3. An empirical application is outlined in section 4. Finally,
the concluding remarks are provided in section 5.

2. A new Poisson Liu Regression Estimator (PLRE)

The Poisson Regression (PR) model is only applicable when the dependent variable deals
with count data. Suppose, y; is the dependent variable and follows a Poisson distribution
with parameter (6;) and is denoted as P(6;) with the following probability mass function

eligpi

fo)=——y=0123.5i=123...,n (1)
"

e

The PR model is commonly developed by using the canonical link function, such that
0; = exp(xfﬁ), where x; is the ith row of X which is an n x p data matrix with p non-
stochastic explanatory variables, 8 isa p x 1 vector of the unknown regression coefficients.
The log-likelihood function of the PR model can be defined as

1O;y) = 2”: {)’iln(@') —0;—In (ﬁ)’i!) }

i=1 i=1

n

1(0;y) = Z {y,-ln(exp(xfﬂ)) — exp(xip) —In (Hyﬂ)} ) (2)

i=1 i=1

The MLE is used to estimate the parameters of the model. The following TWLS
algorithm is applying to maximize the log-likelihood function.

,éMLE = (XtVX)_IXtVZ*, (3)
where V = diag {él,éz, . ,én}; 75 = xf,éMLE + y,-g;@- is the adjusted response variable.

Both Vand z*are evaluated by Fisher’s scoring iterative procedure. The MSEs of the estima-
tors are obtained by considering & = YT*S and A = diag(A1,A2,...,4p) = TXIVX)Y,
where Y is the orthogonal matrix whose columns are the eigenvectors of X'VX; and
A1 > A2 >,...,> Ap > 0 are the eigenvalues of the matrix X'VX and aj(j=1,2,...,p)
of the jth element of Y!B. Furthermore, the matrix MSE (MMSE) of the ﬁMLE is defined
as

MMSE(Byre) = (TAT'YH). (4)
Moreover, the scalar MSE of the ﬁMLE is defined as
) ) R p
MSE(Buie) = EBure — B)' (Bure — B) = tr(TATIYT} =) " —
j=1

1
=

<
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where A; is the jth eigenvalue of the X!VX matrix. When the explanatory variables
are linearly correlated, some of the eigenvalues will be small and X‘VX matrix will
be ill-conditioned which inflated the variance of MLE. To overcome this problem of
multicollinearity, we define a PLRE which is generalization of Liu [12].

Brre = X'VX + D7 NX' VX + dD) Bure (6)

where d (0 < d < 1) is the shrinkage parameter. If d = 1 then EMLE = /§pLRE and in case
d < 1 which implies that the absolute norm vector of PLRE is less than or equal to the
absolute norm vector of MLE, i.e. Bprrg < Bmre. The MMSE and MSE of the PLRE can be
defined as

Bias(Bprre) = YA 'a(d — 1) (7)
VAR(Bprre) = YA ' AgAA; " AgY! 8)
MMSE(Bprre) = YA " AGAA " AT + (d — 12 YA Lot AT 9)

where A = diag(A1 + LAz +1,...,Ap + ), Ay = diag(hy +d, A2 +d,...,Ap + d) and
A = diag(A1, A2, .. .5 hp) = Y(X!VX)Y!, where Y is the orthogonal matrix whose

columns are the eigenvectors of X!V X. Finally, the scalar MSE of the PLRE is obtained
by applying tr (.) operator on Equation (9), which can be defined as

MSE(BprrE) = i HHd Ny Z (10)
i 5+ D% 0y +1>2

Liu [12] provided a proof that the Liu estimator is better than the ordinary least squares
estimator for the linear regression model. We extend this method for PR model and show
that the PLRE perform better than the MLE. In order to do so, we follow Liu [12] and
differentiate Equation (10) with respect to d:

.~ OIMSE(Bpre)] s
g(d)—T—zzm 1)2 (—)Z (11)

Thus, by inserting the value 1 (the situation when PLRE and MLE are equal) we can see
that:

p
Ai+d

'‘1Hy=2y L~ -9 12

g jEZI )»j()»j+1)2> (12)

Therefore there exists 0 < d < 1 such that g(d) < g(1) or, equivalently, MSE(BPLRE) <
MSE(BMmLE)-

2.1. Proposed shrinkage estimators

The PLRE is a robust measure and it performs better than the usual MLE when the explana-
tory variables are linearly correlated. Furthermore, the performance of the PLRE depends
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on the optimal value of the shrinkage parameter, d. Therefore, we propose some new esti-
mators in order to obtain the value of d based on the work of Ménsson et al. [18]. In order
to obtain the optimal value of the PLRE, we take the first derivative of Equation (10) and
then solve it for d by equating to zero. Consequently, we obtain

2_1

j

dj = > (13)
+ J

Q

2=

The range of d depends on a?. However, as is specified in [12], the value of d is limited
between 0 and 1. Therefore, we use max operator with the proposed estimators to ensure
the value of d; lie between 0 to 1. The ideas of the proposed estimators are based on the
theoretical work of Hoerl and Kennard [8], Kibria [13], and Ménsson et al. [18]. For esti-
mation of an optimal value of d, we define Dy, D,-Dj3, and D4-Ds5 estimators based on the
work of Hoerl and Kennard [8], Kibria [13], and Ménsson et al. [18], respectively.

&2 —1 &].2 -1
Dy = max | 0, — 2% D, = max | 0, median -
+ a2 142
}Lmux max }Lj J
P (a1 7 — 1
D3 =max | 0, — | /P D4 = max | O,max | +—
— |\ L +4? ++a?
j=1 )Lj J }\,j ]
D5 = max | 0, min :
~2
=+
)»j ]

where &fmx and imax which defined in D; estimator are the maximum element of the &]»2

and T (X' VX)Y?, respectively.
A contribution of this paper is the following PLRE estimators.

Dyp1 = max(0, median(m;)), Djpr = max | 0, Z(m])/p
j=1
Dyp3 = max(0, max(m;)), Dyps = max(0, min(;))

Dy = max(0, median(hj)), D = max z}mm

Dg3 = max(0, max(hj)/p), Dga = max(0, min(hj))

~ 2 -1 2 _
where m; = — % and hj = —~~——— It should be noted that the PLRE perform
max % +&j2 max| A )-i—oz,znax
i

much better when the optimal value of d is close to zero. Hence our proposed estimator’s
value is always close to zero.
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2.2. Performance evaluation criteria of the estimators

The main objective of this article is to compare the performance of the proposed estimators
with the existing estimators in order to improve the performance of the PLRE in the pres-
ence of high, but imperfect, multicollinearity. So, there is a need to define the performance
criteria for selecting the best estimator. In this study, we consider the standard measure of
MSE and MAPE as the performance criteria. These are defined as follows:

25:1 (B(r) - ,B)t(lé(r) - ,3)
R

MSE = (14)

P |(B-B)
2j=1 ®);
p

MAPE = 100%, (15)

r=1
where 8 is the estimator of B at the ith repetition out of R = 2000 replicates.

3. The simulation study

In this section, we conduct a Monte Carlo simulation study to evaluate the performance of
our newly proposed estimators and the MLE. Below we provide a brief discussion about
the simulation results.

3.1. Thedesign of an experiment

The dependent variable of the PR model is generated from the Poisson distribution P, (6;),
where

0; = exp(Bo + Prxitts ..., +Bpxip)sj = 1,2,...,pi = 1,2,...,n. (16)

where Equation (16) is the mean function and it is generated for p = 4, 8 regressors, respec-
tively. Furthermore, the intercept value is set to be -1 or 1, and the slope parameter values

p
of Equation (16) are chosen to be zi ,31-2 =1and B; =,...,= Bp by considering differ-
]:
ent sample sizes. Table 1 shows the different factors that affect on the performance of the
estimators. We use the R 3.2.2 software to conduct the simulation study.
Since the performance of the estimators greatly depends on the strength of the cor-
relation, the following formula is used to generate the correlated explanatory variables

Table 1. Values of the factors that are used in the design of the experiment.

Factors Notations Values
Intercept Bo -1,1
Number of explanatory variables p 4,8

Degree of correlation 2 0.90, 0.98, 0.99, 0.999

Sample size n 25,50,75,100, 125
Replicates R 2000
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[7,13]:

xij=\/1—p225+pzip+1;j=1,2,...,p+1;i=1,2,...,n.

(17)

where z;; are the pseudo-random numbers which are generated from the standard normal
distribution. We consider four different values of p> = 0.90, 0.98,0.99, 0.999.

3.2. Simulation results and discussion

The simulated results for MSE and MAPE are presented in Tables 2-5 for p = 4and8,
respectively. All estimators performed better than the traditional MLE in every case. It is
observed that the factors influencing the performance of different estimators are the value

Table 2. Estimated MSE values when p = 4.

n ML D D; D; Dy Ds Dipv Dip2 D3 Dipa Dy Dga Dgz Dga
ﬂa =-1

p% =090

25  2.051 1.509 0.737 0677 1429 059 0652 0.658 1.150 0.596 0.624 0.672 0.674 0.595
50 0960 0.748 0.520 0.508 0.729 0.506 0.517 0.508 0.712 0.506 0.513 0.520 0.551 0.506
75 0655 0537 0436 0432 0532 0432 0436 0432 0.528 0432 0.434 0436 0.454 0.432
1020 0.514 0437 0377 0375 0435 0375 0377 0375 0434 0375 0376 0376 0.389 0.375
02 =098

25 8.961 7296 2796 2428 6390 0.895 1430 1.645 3.782 0.741 1.062 1.445 1.098 0.724
50 3,502 2650 0943 0.837 2384 0.750 0.869 0.858 2.038 0.747 0.809 0.947 0.985 0.745
75 2082 1617 0846 0.809 1.541 0.798 0.835 0.812 1.446 0.798 0.818 0.869 0.936 0.797
1(30 1457 1139 0727 0702 1.104 0.701 0.722 0.703 1.057 0.701 0.715 0.729 0.780 0.701
0% =099

25 81.850 78.381 32.987 35.871 70.411 5304 8743 11915 27.129 0.689 4.158 7.958 2.433 0.464
50 35.344 32479 10353 10.789 28638 1.229 3741 5.640 14772 0592 1.847 3.859 1.794 0.445
75 17582 15226 4339 4479 13.122 0.731 2482 3.170 7.839 0.605 1.417 2464 1.411 0.538
1(;0 12554 10557 3.199 2755 9.122 0.788 2.028 2336 5.813 0.724 1343 2.008 1.380 0.692
0% = 0.999

25 819.622 815.484 404.997 522.065 794.182 74.259 75.347 114.554 256.690 4.425 34.536 74.044 16.707 1.273
50 314.751 310.796 116.421 155.670 301.592 12357 25246 45.196 110.561 2.332 9.485 27.791 7.588 0.731
75 176.454 172.637 58.213 80.207 164.807 6.463 18.359 29.765 67.385 2.110 7.168 17.903 4.999 0.655
100120.202 116.572 43.572 55.769 109.314 4.587 12567 19.374 45418 1.263 5.087 11.796 3.676 0.482

B, =1

p% =090

25 0230 0.209 0.204 0204 0209 0204 0.204 0.204 0.208 0.204 0.204 0.204 0.205 0.204
50 0.188 0.185 0.185 0.185 0.185 0.18 0.185 0.185 0.185 0.185 0.185 0.185 0.185 0.185
75 0216 0216 0216 0216 0216 0216 0216 0.216 0.216 0.216 0.216 0.216 0.216 0.216
1(%0 0.210 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211 0.211
02 =098

25 0931 0671 0539 0534 0657 0534 0538 0534 0.641 0534 0.537 0.537 0.559 0.534
50 0.521 0433 0415 0415 0431 0415 0415 0415 0430 0415 0.415 0415 0.418 0415
75 0406 0375 0372 0372 0375 0372 0372 0372 0.375 0372 0372 0372 0.373 0.372
120 0356 0338 0337 0337 0338 0337 0337 0337 0.338 0337 0.337 0.337 0.338 0.337
p° =0.99

25 8108 6.174 2.027 1368 4854 0.692 1.286 1418 3.285 0.678 1.001 1.338 1.068 0.666
50 4113 2838 1120 0.902 2363 0.800 1.004 0.966 2.007 0.797 0.916 1.034 1.027 0.796
75 2474 1621 0951 0889 1510 0.882 0.933 0.896 1.394 0.882 0.913 0.942 0.993 0.882
1(;0 1.817 1208 0820 0.805 1.138 0.801 0.815 0.805 1.098 0.801 0.810 0.823 0.867 0.801
0% = 0.999

25 84.81 81.13  32.01 3734 7443 3378 8964 12091 2892 0.894 4.046 8321 2.544 0.410
50 4047 3712 1191 13.89 32.80 1792 4297 6500 1471 0.737 2.042 4382 1.711 0.443
75 23.14  20.11 5.67 6.11 17.69 0.838 2893 3.945 9.284 0.627 1.606 2970 1.491 0.525
100 16.39  13.77 4.54 395 1115 0.801 2109 2808 6.861 0.723 1.293 2270 1.418 0.677
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Table 3. Estimated MSE values when p = 8.

n ML D D, Ds Dy Ds D1 D2 Dips  Dipa Dgi Dg2 Dgz Dga

p% =090

25 4.055 2827 1.142 1.075 2625 1.071 1102 1.102 2110 1.071 1.086 1.134 1.161 1.071
50 1.795 1308 0981 0980 1278 0980 00981 0980 1241 0980 0.981 0.982 1.010 0.980
75 1287 0.998 0.861 0.861 0.989 0.861 0861 0861 0980 0.861 0.861 0.861 0.875 0.861
1(30 0.836 0674 0635 0635 0672 0635 0635 0635 0669 0.635 0.635 0.635 0.639 0.635
p? =098

25 17323 14353 3590 2331 12589 1.383 1.865 2181 6587 1341 1.561 1.993 1.648 1.337
50 7473 5689 1.874 1700 5088 1614 1757 1746 4193 1611 1.671 1.842 1.842 1.610
75  4.804 3566 1618 1.586 3309 1.586 1.609 1.595 2994 1.586 1.596 1.652 1.729 1.586
1g0 3.167 2287 1370 1366 2165 1366 1369 1366 2049 1.366 1.368 1.376 1.440 1.366
p? =099

25 1763 1713  60.17 53.153 1567  2.041 7.039 11362 53.19 0.650 2.812 6.894 1.892 0.580
50 6648 6203 1289 12017 5407 0997 4748 6.619 2694 0.842 2233 4429 1819 0.798
75 4300 3884 8096 7.011 3325 1.139 3912 5107 1888 1.074 2172 3.738 1.909 1.053
1(30 2982 2606 5372 4072 2176 1240 3.045 3790 1346 1.229 1947 3.082 1.922 1.219
p? =0.999

25 16739 16684 668.1 670.1 1629.2 2062 53.61 89.87 44358 0.85 1895 52.11 7.648 0.328
50 680.8 6754 1680 1954 6507 416 3822 5881 25864 1.05 1094 30.68 5057 0.391
75 4219 4165 1033 1166 3979 278 2878 4131 16734 085 885 21.69 3.732 0.420
100 3042 2990 739 797 2792 250 2031 29.69 12281 076 6.06 1563 3.056 0395

p% =090

25 0.530 0454 0451 0451 0.453 0451 0451 0451 0453 0451 0451 0451 0.451 0451
50 0.361 0351 0351 0.351 0351 0351 0351 0351 0351 0351 0351 0351 0351 0.351
75 0318 0315 0315 0315 0315 0315 0315 0315 0315 0315 0315 0315 0315 0315
1(30 0.184 0.182 0.182 0.182 0.182 0.182 0.182 0.182  0.182 0.182 0.182 0.182 0.182 0.182
p? =098

25 2.094 1370 1.026 1.024 1333 1.024 1025 1.025 1257 1.024 1.025 1.028 1.049 1.024
50  1.049 0.840 0.829 0829  0.840 0.829 0.829 0.829 0.839 0.829 0.829 0.829 0.830 0.829
75 0790 0691 0689 0689  0.691 0.689 0689 0689 0.690 0.689 0.689 0.689 0.689 0.689
1(;0 0.499 0448 0447 0447 0448 0447 0447 0447  0.448 0447 0447 0447 0.447 0.447
p? =099

25 20397 16949 4216 2715 14459 1570 2207 2.640 7.441 1549 1.841 2390 1.908 1.547
50  8.965 6.545 2.083 1.883 5728 1.804 1967 1954 4562 1.804 1.882 2.062 2.055 1.804
75 5813 3939 1797 1749 3598 1.747 1781 1.758  3.157 1.747 1.764 1.812 1.891 1.747
100 4.100 2709 1.564 1.554 2537 1554 1561 1.554 2339 1.554 1.558 1.569 1.638 1.554
p% = 0.999

25 199.81 19462 63.80 5693 178488 1.955 7.518 12.129 5566 0.596 3.149 7.524 1.949 0.538
50 8697 8209 1752 1739 73017 1.029 6341 8778 3464 0.840 2777 5605 2.008 0.786
75 5632 5164 10791 9.875 45377 1.066 4996 6.550 2399 1.024 2469 4.534 2.005 1.001
100 39.62 3535 7428 5947 29.603 1.173 3598 4710 17.10 1.113 2.094 3.551 1924 1.099

of the intercept, a number of explanatory variables, the degree of correlation and the sam-
ple size. It is clearly noticed that as the intercept value increase from -1 to 1, the estimated
MSE decrease, and the MAPE increase. Moreover, when the number of explanatory vari-
ables and the degree of the generated correlation increases, the estimated MSE and MAPE
also increases. Furthermore, the estimated MSE and MAPE decrease with the increase in
the sample size. However, the estimated MSE of Dipa and Dg4 are increase with the increase
in sample size due to the minimum value of the m; and h;. Although, the performance of
Dyps and Dyg is better than the other estimation methods of the shrinkage parameter d in
PLRE and MLE. Overall, the simulated MSE of these estimation methods increases with
the increase in n and B, while it decreases more when p? increase. These results are sup-
ported by the simulated results of Mansson and Shukur [20], Kibria et al. [15] and Kibria
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Table 4. Estimated MAPE values when p = 4.

n ML Dy D, Ds Dy Ds D1 D2 Dip3s Dipa  Dpi Dg2 Dg3 Dga

p% =090

50 8538 71.84 5303 5164 7019 5008 51.57 5177 6514 50.07 50.87 5252 53.16 50.04
75 6137 5399 4640 4608 5343 46.04 4634 4607 5290 46.04 4623 4641 4772 46.04
100 4857 4424 4086 4075 4409 4075 40.85 4075 43.96 40.75 40.81 40.85 41.54 40.75
1225 4164 3865 3640 3637 3856 3637 3640 3637 3851 3637 3639 3640 3690 3637
p? =098

50 17977 15422 8455 7626 14134 5834 69.96 7400 11125 56.15 6422 7295 67.63 55.72
75 12105 101.71 61.14 5868 9670 56.85 59.69 5934 88.69 5679 5844 6221 6454 5675
100 93.80 8076 5885 57.93 7878 57.69 5861 5800 76.17 57.68 5822 5956 62.23 57.67
1225 7898 6845 5481 5401 6734 5398 5466 5403 6580 5398 5444 5478 5691 53.98
p? =099

50 540.65 520.44 269.04 27271 47737 8122 13502 168.96 267.24 4677 98.97 145.15 90.14 41.83
75 377.43 35474 161.03 16443 32853 53.68 98.96 12849 21563 44.88 7432 11243 8167 4158
100 27137 246.34 10866 109.68 22393 4935 8454 99.73 16537 47.32 6821 9232 7452 4598
1225 23134 20657 9669 90.19 189.77 5524 8096 89.11 14540 5420 69.85 86.25 75.15 53.51
p? =0.999

50 1727.271719.49 995.37 1198.74 168549 282.46 37554 51150 814.05 76.38 249.02 423.50 214.12 51.09
75 111453110346 551.06 686.35 1080.52 126.73 234.21 342.00 554.17 57.83 14936 281.42 150.46 39.20
100 849.03 83559 399.66 48800 80645 93.83 213.43 291.21 456.51 54.47 137.52 237.23 129.25 36.73
125 701.86 685.87 346.80 40424 65692 77.73 171.85 230.20 369.67 47.85 114.80 190.13 111.31 36.62

ﬁo:1

p% =090

50 3043 2896 2873 2873 2895 2873 2873 2873 2894 2873 2873 2873 2878 2873
75 2549 2505 2503 2503 2505 2503 2503 2503 2505 2503 2503 2503 2503 2503
100 2317 2296 2296 2296 2296 2296 2296 2296 2296 22.96 2296 2296 2296 22.96
1225 20.83 2072 2071 2071 2072 2071 2071 2071 2072 2071 2071 2071 2071 20.71
p? =098

50 6146 5190 4779 47.68 5148 4768 4777 4768 5099 4768 47.74 4774 4850 47.68
75 470 4264 4187 4187 4257 41.87 4187 41.87 4254 4187 4187 4187 4204 41.87
100 3896 3684 3665 3665 3683 36.65 36.65 3665 36.83 36.65 3665 36.65 36.69 36.65
1225 3491 3344 3336 3336 3344 3336 3336 33.36 3344 3336 33.36 3336 3338 33.36
p? =099

50 18070 15036 78.82 6641 129.89 5397 67.11 7031 10633 5366 62.03 7031 66.11 53.43
75 13204 10458 66.03 6142 9508 59.45 63.86 63.04 87.87 5940 6222 6515 6639 5937
100 104.48 8083 6339 6207 7805 61.93 63.03 6221 7524 6193 6263 6325 6523 61.93
1225 80.98 70.10 5896 5864 6820 5857 5886 5866 67.10 58.57 5876 59.07 60.68 5857
p? =0.999

50 578.14 55857 289.53 308.64 520.64 70.53 14231 182.22 285.75 4573 100.50 153.89 91.82 37.42
75 406.13 381.23 178.60 187.89 346.65 57.16 105.27 13563 212.45 4510 78.15 117.66 78.96 40.08
100 312.94 283.44 12593 129.22 25838 50.75 91.98 11215 177.40 47.40 7278 101.84 76.58 4526
125 265.19 23433 11488 10591 20427 54.84 8242 96.76 15445 5351 69.04 90.85 76.05 52.55

et al. [16], where the effects of the multicollinearity problem on logistic and PR models are
assessed.

It is clear from Tables 234-5, that as the degree of multicollinearity increases, the sim-
ulated MSE values are inflated. This increase is especially strong for the MLE. In such
conditions, simulated MSEs of the PLREs by using proposed estimators are clearly smaller
than the MLE. In our evaluation we found that the performance of all analyzed shrinkage
estimators is approximately the same when 7 is large and p? is small. However, as multi-
collinearity levels increase (p? > 0.90), the performance of the proposed estimators is very
good as compared to the existing estimators. Our proposed Poisson Liu estimators always
exhibit a minimum MSE in the presence of multicollinearity - regardless of the value of the
other factors (such as number of explanatory variables, value of intercept and size of the
sample). We can also see that the simulated MSE of the estimators increases when the value



Table 5. Estimated MAPE values when p = 8.
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n ML

Dy

D,

Ds

Dy

Ds

ka1

kaZ

ka3

ka4

Dg

Dg2

Dg3

Daa

p% =090

50 188.43
75 123.92
100 103.53
125 85.26
p? =098
50 397.97
75 26745
100 216.02
125 175.78
p? =099
50 1260.45
75 804.42
100 655.84
125 54291
p? = 0.999
50 3901.20
75 2587.47
100 2051.78
125 1732.72

p% =090

50 67.00
75  47.69
100 40.27
125 3278
p? =098
50 140.14
75  96.74
100 81.26
125 66.89
p? =099
50 439.82
75 297.40
100 241.08
125 201.16
p? =0.999
50 1367.62
75 92642
100 749.91
125 626.78

152.34
105.25
90.97
76.63

351.67
227.58
181.61
146.42

1235.00
770.67
616.92
501.06

103.78
93.61
85.61
74.84

159.92
131.72
123.92
115.81

597.24
298.60
241.51
199.61

3892.28 2053.39
2574.90 1102.75

2035.64
1714.59

61.33
46.39
39.59
32.39

110.97
85.20
74.52
62.80

389.89
245.96
190.84
158.76

1343.94
894.61
711.52
585.03

874.83
728.35

61.18
46.39
39.59
32.39

99.35
84.73
74.45
62.78

178.39
139.70
130.94
124.38

640.13
353.12
279.67
231.18

101.94
93.60
85.61
74.84

135.27
127.32
123.04
115.70

554.96
286.68
221.90
175.27

217633
1242.34
957.50
771.21

61.18
46.39
39.59
32.39

99.31
84.73
74.45
62.78

149.34
134.85
129.70
124.13

606.59
349.79
267.49
207.46

147.19
104.24
90.62
76.53

325.80
214.03
174.60
142.51

1164.47
706.31
560.38
449.43

3833.15
2514.18
1978.05
1644.86

61.32
46.39
39.59
32.39

109.71
85.17
74.52
62.80

354.85
228.39
182.10
153.96

1273.43
830.52
655.68
525.97

Bo=—1

101.84
93.60
85.61
74.84

115.93
125.54
123.03
115.70

95.99
89.75
100.97
110.18

196.57
104.89

102.83
93.61
85.61
74.84

130.42
129.28
123.67
115.78

200.81
185.13
17417
157.53

494.04
483.00

102.84
93.60
85.61
74.84

140.39
128.97
123.28
115.70

270.03
230.99
207.03
180.77

718.21
664.07

92.82 431.58 565.39
88.45 358.70 476.17

B, =1

61.18
46.39
39.59
32.39

99.31
84.73
74.45
62.78

125.30
132.93
129.64
124.13

94.72
89.13
96.69
105.33

61.18
46.39
39.59
32.39

99.33
84.73
74.45
62.78

142.54
137.12
130.56
124.32

207.79
211.31
194.12
168.85

61.18
46.39
39.59
32.39

99.32
84.73
74.45
62.78

155.06
136.86
129.93
12413

283.35
266.07
233.27
199.66

133.96
103.00
90.26
76.43

231.08
194.18
166.09
138.85

588.47
475.83
409.67
34543

1687.49
1458.13
1188.51
1012.71

61.31
46.39
39.59
32.39

107.26
85.13
74.51
62.80

247.86
203.68
170.69
148.25

615.44
541.72
457.00
385.94

101.81
93.60
85.61
74.84

115.47
125.47
123.03
115.70

75.83
86.84
99.53
109.90

54.12
59.86
63.55
65.10

61.18
46.39
39.59
32.39

99.31
84.73
74.45
62.78

124.89
132.93
129.64
124.13

72.97
84.86
95.65
104.09

102.35
93.60
85.61
74.84

123.27
127.28
123.34
115.74

143.52
136.25
136.74
133.31

310.53
267.34
244.44
206.35

61.18
46.39
39.59
32.39

99.32
84.73
7445
62.78

134.31
135.14
130.12
124.23

149.99
149.66
145.10
136.84

103.97
93.65
85.61
74.84

137.44
132.35
125.04
115.99

225.11
196.40
183.10
168.23

574.47
498.93
424.66
361.08

61.18
46.39
39.59
32.39

99.39
84.73
74.45
62.78

150.82
140.35
131.49
124.54

237.34
221.28
200.91
179.56

105.51
94.76
86.19
75.04

127.74
133.72
128.29
118.55

128.75
130.95
134.68
137.32

22937
208.83
181.31
165.97

61.20
46.39
39.59
32.39

100.28
84.78
74.46
62.78

138.25
141.54
134.68
127.10

130.49
136.87
137.11
137.01

101.81
93.60
85.61
74.84

115.38
125.46
123.03
115.70

73.45
85.57
98.89
109.61

41.99
44.64
51.34
55.30

61.18
46.39
39.59
32.39

99.31
84.73
74.45
62.78

124.80
132.93
129.64
124.13

70.68
83.06
94.89
103.66

of intercept becomes lower. This is since the average value of § decreases with f8,, which
leads to a lower value of the diagonal weight matrix of V. The shrinkage estimators Dipa
and Dy are providing the minimum MSE when p? = 0.90. Among these shrinkage estima-
tors, the D4 estimator is the best and provides the minimum MSE in the presence of severe
multicollinearity. For alimited case (when 0> = 0.90and n = 100), the performance of Ds,
Dyps, and Dyy is the same. Overall, the proposed shrinkage parameters (Dyp1~Dkps) and
(Dgq1-Dg4) outperform the PLRE with the parameters suggested by Mansson et al. [18]. In
addition, these parameters also outperform MLE significantly. Finally, based on the simu-
lated results, we conclude that the PLRE should be used with the shrinkage parameter Dg4
in the presence of high, but imperfect multicollinearity since it has the lowest estimated
MSE and MAPE as compared to the other shrinkage parameters.
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4. Empirical application: Swedish football data

For the purpose of illustrating the empirical relevance of the proposed methods, we ana-
lyze Swedish football data in this empirical section. The proposed and existing estimation
methods are elucidated using a dataset regarding the performance of Swedish football
teams in the top Swedish league (Allsvenskan) during the year of 2018." The aims of
this application are twofold. Firstly, to analyze the number of full-time home team goals
(FTHTG) which is illustrated in Table 7. Secondly, to analyze the number of full-time away
team goals (FTATG) which is presented in Table 8. This dataset includes n = 242 observa-
tions and include two dependent variables as described above and six explanatory variables,
which are the pinnacle home win odds (x1), pinnacle away win odds (x;), maximum odd-
sportal maximum home win (x3), oddsportal maximum away win (x4), average oddsportal
home win (x5) and average oddsportal away win (xs). The effect of these regressors on
FTHTG and FTATG, respectively are demonstrated in the regression. The bivariate corre-
lations among the explanatory variables are demonstrated in Table 6. It is seen from Table 6
that there are high correlations in half of the cases, and moderate correlations among rest
of the cases. In addition, the condition number which is the ratio of maximum to the
minimum eigenvalues, is 6013.22 > 1000 which indicates what can be defined as a severe
multicollinearity problem in this dataset which originates from Tiirkan and Ozel [24].
The Chi square (x2) goodness of fit test is used before applying the Poisson regression
(PR) model for the empirical application. As is seen in Tables 7 and 8, these tests confirm
that the response variables are well suited to the PR model with p-values corresponding
to 0.77 and 0.88. Based on the analysis of the dataset using the standard glm{} package in
R, the estimated coeflicients, standard errors, and values of the MSE and cross validation
criterion estimates® (CVCE) are summarized in Tables 7 and 8 to assess the performance
of the PLRE and MLE. The effect of the estimated coefficients is changed, and the esti-
mated standard errors and the estimated MSE of the PLRE are smaller than the MLE due

Table 6. Correlation matrix.

Variables X1 X2 X3 X4 Xs5 X6
X1 1.0000

X2 -0.5746 1.0000

X3 0.9972 -0.5681 1.0000

X4 -0.5549 0.9938 -0.5488 1.0000

Xs 0.9952 -0.5949 0.9974 -0.5751 1.0000

X6 -0.5885 0.9948 -0.5824 0.9959 -0.6093 1.0000

Table 7. Estimated coefficients, standard errors, MSE and CVCE for FTHTG application®.

MLE PLRE (Dg4)

Variables Coefficients Standard Errors Coefficients Standard errors
X1 0.7825 0.6392 0.4379 0.4819

X 0.0307 0.1317 0.0254 0.1295

X3 -0.9190 0.8230 -0.4911 0.5627

X4 -0.1796 0.1718 -0.1667 0.1673

X5 0.0806 0.7601 -0.0368 0.5324

X6 0.2562 0.2280 0.2439 0.2178
MSE 1.927087 0.679863

CVCE 1.576436 1.576388

aThe response variable is FTHTG which is well fitted to the Poisson distribution (x2 = 2.5131,df = 5,p = 0.7745).
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Table 8. Estimated coefficients, standard errors, MSE and CVCE for FTATG application?.

MLE PLRE(Dg4)
Variables Coefficients Standard errors Estimates Standard errors
X1 -0.0085 03177 -0.0274 0.2908
Xy -0.0592 0.2919 -0.0690 0.2702
X3 -0.3570 0.4911 -0.2618 0.4117
Xa 0.1355 0.2742 0.1162 0.2574
X5 0.5346 0.4688 0.4416 0.3983
X6 -0.2052 0.4305 -0.1714 0.3704
MSE 1.097734 0.637463
CVCE 1.369209 1.369167

2The response variable is FTATG which is well fitted to the Poisson distribution (x? = 1.7359, df = 5,p = 0.8843).

to the high, but imperfect multicollinearity. The different estimators give qualitatively the
same results, and in order to save space we focus to analyze the Dy4 shrinkage estimator
since it performs better than the other estimators in the simulation study - given a degree
of correlation. Therefore, we used PLRE with D4 but of course full results for all estima-
tors are available from the authors upon request. It is evident from Table 7, based on high
standard errors and MSE, that the MLE do not estimate the coeflicients very precisely in
the presence of multicollinearity. However, on the other hand, the proposed estimation
method, estimates the coeflicients rather precisely. For instance, theoretically, oddsportal
maximum away win have negative effects on the FTHTG, while the MLE shows a posi-
tive effect. Meanwhile, proposed method shows negative affect and it is considered a good
approach to tackle the problem of multicollinearity. The estimated results of the second
model are shown in Table 8, where we can observe that the standard errors and the values
of the MSE and CVCE are high when the MLE is used. However, these estimated results
are reduced when applying the PLRE with Dy4 a shrinkage estimator. Hence, the advan-
tage of the proposed method over MLE by means of an empirical application is fairly easily
illustrated. However, cross-validation shows little improvement in the predictive power
between the methods. The plots of MSE(Bprrg) and MSE(Byirr) against different values
of d in the interval [0,1] has been presented for FTHTG in Figure 1. It is noted that the

2.00

s MLE

1.80 + -
- — — — PLRE
1.60 + _ -
140 + _ -

120 + -

1.00 + &5

MSE

0.80 + -

0.60 +

0.40 +

0.20 +

0.00 T T T T T T T T T
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 o0.80 0.90 1.00

d

Figure 1. Plot of MSE(Bpire) and MSE(Buie) against different values of d.
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estimated MSE of PLRE equals to MLE when the value of d equals 1 and it decreases as the
value of d becomes close to 0. Therefore, we can say that the performance of the PLRE is a
function of the values of the shrinkage estimators.

5. Concluding remarks

This article proposed new shrinkage estimators and conducts a comparison with existing
estimators by means of a Monte Carlo simulation and an empirical application. The MSE
and MAPE are considered as the performance criteria in the evaluation. These estimators
are proposed in order to minimize the increase of the MLE caused by multicollinearity.
The simulation results illustrated that the estimated MSE and MAPE are clearly affected by
changing different factors such as the value of intercept, number of explanatory variables,
multicollinearity level and the sample size. However, the general assessment is that the per-
formance of PLRE is superior than the MLE under very different, but empirically relevant,
conditions. Based on the Monte Carlo simulations and football dataset, we conclude that
the Dyq shrinkage parameter should be applied for the PLRE whenever the practitioner, in
the presence of considerable multicollinearity, needs to apply the PR model.

Notes

1. The data are publicly available on the webpage www.football-data.co.uk. The data are also
available from the authors upon request.

n
2. The mean squared prediction error is calculated by CVCE as Y (Y_; — Y;)?/n, where

i=1
n
> (Y_; — Y;)? is denoted as the prediction sum of squares, and we optimize toward those

=1

;nodels which has the smallest CVCE. We apply the leave-one-out cross validation (LOOCV)
approach for computation of ¥_;. In LOOCV and fit the model n times. We leave out the ith
value at step i and use the resulting fitted model to calculate the predicted value for the leave out
ith observation, V_;.
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